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Abstract
Investigations of pathophysiological mechanisms implicated in vulnerability to depression have been negatively
impacted by the significant heterogeneity characteristic of psychiatric syndromes. Such challenges are also reflected in
numerous null findings emerging from genome-wide association studies (GWAS) of depression. Bolstered by
increasing sample sizes, recent GWAS studies have identified genetics variants linked to MDD. Among them, Okbay
and colleagues (Nat. Genet. 2016 Jun;48(6):624–33) identified genetic variants associated with three well-validated
depression-related phenotypes: subjective well-being, depressive symptoms, and neuroticism. Despite this progress,
little is known about psychopathological and neurobiological mechanisms underlying such risk. To fill this gap, a
genetic risk score (GRS) was computed from the Okbay’s study for a sample of 88 psychiatrically healthy females.
Across two sessions, participants underwent two well-validated psychosocial stressors, and performed two separate
tasks probing reward learning both before and after stress. Analyses tested whether GRS scores predicted anhedonia-
related phenotypes across three units of analyses: self-report (Snaith Hamilton Pleasure Scale), behavior (stress-induced
changes in reward learning), and circuits (stress-induced changes in striatal reward prediction error; striatal volume).
GRS scores were negatively associated with anhedonia-related phenotypes across all units of analyses but only circuit-
level variables were significant. In addition, the amount of explained variance was systematically larger as variables
were putatively closer to the effects of genes (self-report < behavior < neural circuitry). Collectively, findings implicate
anhedonia-related phenotypes and neurobiological mechanisms in increased depression vulnerability, and highlight
the value of focusing on fundamental dimensions of functioning across different units of analyses.

Introduction
Progress in elucidating the pathophysiology and etiol-

ogy of major depressive disorder (MDD) has been ham-
pered by the substantial heterogeneity of this prevalent
disorder. In an attempt to overcome these challenges, in
2010, the US National Institute of Mental Health laun-
ched the Research Domain Criteria (RDoC) initiative1,2, in
which fundamental dimensions of behaviors are parsed
into domains (e.g., positive valence systems) and sub-
domains (e.g., reward learning) that map onto precise
behavioral and neurobiological variables. Within this

conceptual framework, domains and subdomains are
investigated across units of analyses—genes → molecules
→ cells → circuits → physiology→ behavior → self-report
—and are hypothesized to be critically implicated across
traditional diagnostic syndromes.
Anhedonia—defined as the loss of pleasure or interest

in previously rewarding stimuli—has emerged as an
important phenotype critically implicated in various dis-
orders, including major depression, schizophrenia, sub-
stance use disorders, and post-traumatic stress
disorders3,4, among others. In depression, anhedonia
has been found to predict depression5 and suicide6, and
linked to poor response to both pharmacological7 and
psychological8 treatments. Concurrently, convergence
across clinical and preclinical data has implicated
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dopaminergic-rich mesocorticolimbic pathways in anhe-
donic behaviors9–11.
In our efforts to parse the heterogeneity of MDD and

develop objective ways to assess anhedonia, we have
implemented a laboratory-based assessment of anhedonic
behavior probabilistic reward task (PRT)12. Rooted in
signal-detection theory, the PRT allows to assess reward
learning, that is, participants’ ability to modulate behavior
as a function of rewards. Of note, we and others have
found that reward learning in the PRT was correlated with
current and predicted future anhedonic symptoms12,13,
was blunted in individuals with past or current depression
as well as in unaffected offspring of parents with depres-
sion13–16, and was associated with functional and mole-
cular mesocorticolimbic markers17–19.
Directly relevant to the current study, both preclinical

and clinical studies have highlighted the role of stress in
the emergence of anhedonic behaviors. In preclinical
studies, prolonged stressors have been found to induce
anhedonic behaviors (e.g., reduced consumption of pala-
table food, reduced reward learning in a rodent version of
the PRT11,20) and abnormalities within the mesocortico-
limbic pathways, including profound dopaminergic
downregulation within the nucleus accumbens (NAc) and
striatal regions9,10. In humans, exposure to both acute and
chronic stressors induced increased self-reported anhe-
donic symptoms21, reduced reward learning as assessed
by the PRT22–24, and disrupted reward prediction errors
(RPEs) in the NAc25. Moreover, both among healthy and
depressed samples, self-reported anhedonia was inversely
related to bilateral NAc and putamen volume26–28.
Of note, stress-induced reduction in reward learning or

striatal RPE in healthy controls mirrored similar effects
emerging when comparing unmedicated individuals with
MDD to healthy controls under baseline (no-stress)
conditions, indicating that stress-induced anhedonia
might be a promising phenotype linked to increased
vulnerability to depression (for review, see ref. 29). A focus
on objectively assessed phenotypes might be particularly
useful in genetics studies of MDD, which—with the
exception of recent reports30,31—have been characterized
by null findings at the genome-wide association level32,33.
Recently, Okbay et al.34 performed a genome-wide asso-
ciation study (GWAS) by aggregating data across sub-
jective well-being, depressive symptoms, and neuroticism
(a well-known risk factor for MDD). Using a large sample
(N= 298,420), they found that these three phenotypes
were strongly genetically correlated (ρ ≈ 0.8); critically,
they also identified several variants associated with these
depression-relevant phenotypes. Although valuable, these
associations do not pinpoint mechanisms that might
confer increased depression vulnerability.
In the current study, we investigated whether a genetic

risk score (GRS) computed using the variants emerging

from the Okbay’s study predicted anhedonia-related
markers across three units of analysis: self-report, beha-
vior, and brain circuits. To this end, we performed
genetics association analyses using data from a recent
study in psychiatrically healthy women exposed to
laboratory stressors in both a behavioral and imaging
session. Prior publications from this sample have focused
on links between (1) inflammation and ventral striatal
RPE signaling during a reinforcement learning task25; and
(2) cortisol responses and hippocampal volume35. Here,
we tested the hypothesis that increased GRS would be
associated with markers related to anhedonia across units
of analyses. We also evaluated whether the GRS would be
differentially linked to a construct depending on the units
of analysis under consideration. Specifically, we tested
whether the amount of variance explained by the GRS
would become increasingly larger as units of analyses
become closer to the putative effects of genes (i.e., var-
iance explained: self-report < behavior < brain circuitry).
Note that this assumption is consistent with central tenets
of endophenotypic conceptualizations of psychopathol-
ogy36,37 and imaging genetics38,39 and the hope that, by
focusing on intermediate psychopathological and biolo-
gical (endo)phenotypes, we may “move closer to the DNA
level”40 (p. 789). Although intuitive, these tenets have
been challenging to confirm40–43.

Methods
Participants
Eighty-eight psychiatrically, medically and neurologi-

cally healthy female participants recruited from the
community through various advertisement took part in a
behavioral session, in which they performed the PRT
both before and after a psychosocial stressor (see
below)35. Before any procedures were administered,
participants provided written informed consent to a
protocol approved by the Partners HealthCare Human
Research Committee. The sample size was based on
power analyses based on effect sizes from prior studies
probing stress-induced reduction in reward learning22,23,
highlighting that a sample exceeding N= 80 would pro-
vide > 0.85 power to detect effects. All participants were
right-handed, nonsmokers; their mean age was 26 (SD=
5.3), and their mean years of education was 16.5 (SD=
1.7). Totally, 69% were Caucasian, 92% non-Hispanic (see
also Supplementary Table 1). Of the 88 participants, 75
completed a neuroimaging session, in which they per-
formed an instrumental reinforcement learning task
before and after a different psychosocial stressor25. To
avoid sex-dependent differences in stress reactivity44,
only females were included. Participants were excluded if
they reported current or past psychiatric disorder (as
assessed by a Structured Clinical Interview for the DSM-
IV, SCID45), >five lifetime exposures to any illegal
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substance (potential recent use was evaluated using a
urine drug test), psychotropic medications or being a
current smoker. Of the 88 participants, 83 were available
for DNA analyses.

Study procedures
The study involved two laboratory visits, both taking

place between 11 a.m. and 4 p.m. to minimize diurnal
cortisol variations46. During the first visit, a masters-level
clinician performed the SCID to confirm eligibility. Par-
ticipants then provided plasma and saliva samples for
DNA and cortisol analyses, respectively, and completed
the Snaith–Hamilton Pleasure Scale (SHPS47) to assess
anhedonia, among other scales. Next, participants com-
pleted two tasks, including the PRT, before stress (pres-
tress administration). Subsequently, they underwent a
psychosocial stressor (Maastricht acute stress test
(MAST)). Immediately thereafter, participants repeated
the PRT (poststress administration).
After the first session, participants returned within a

month (on average, 25 ± 21 days) to complete the func-
tional magnetic resonance imaging (fMRI) session. This
session included a second stress paradigm (Montreal
imaging stress task (MIST)) interleaved with six blocks of
an instrumental reinforcement learning task, with two
runs for each stress condition (runs 1 and 2: prestress;
runs 3 and 4: during-stress; runs 5 and 6: poststress), thus
enabling us to assess the impact of stress on RPE
modeling25.

Genotyping and computation of GRS
DNA was extracted from venous whole blood. Geno-

typing was performed at the Stanley Center for Psychiatric
Research at the Broad Institute using the Illumina Infi-
nium PsychArray BeadChip and Birdsee calling algo-
rithm48. Single nucleotide variants (SNVs) were excluded
when missing genotypes per SNVs > 5% and missing SNV
genotypes per individual > 2%. GRS analyses were per-
formed in PLINK49 based on established procedures
described elsewhere50 using imputed genotype data.
Imputation was performed using the 1000 Genomes Pro-
ject Data with an imputation quality score of INFO > 0.8
retained for analysis. The GRS was generated based on the
summary statistics from the top 22 SNVs derived from the
GWAS of subjective well-being (n= 298,420), depressive
symptoms (n= 180,866) and neuroticism (n= 170,911) by
Okbay et al.34. After imputation and quality control, the
dataset comprised 14 of the 22 SNVs (see Supplementary
Table 2). For each SNV we retained the risk allele and the
effect size of the association measured as a regression beta
value. The weighted GRS was generated using the
logarithmic-transformed version of the beta value.

MAST (behavioral session)
The MAST51 included a 10-min acute stress phase that

combines the physical aspects of immersing one hand in
ice water (1–3 °C) from the cold pressor test, with the
unpredictability, uncontrollability, negative social-feed-
back, and mental arithmetic elements of the trier social
stress test. To prolong stress, immediately upon MAST
completion participants were told by a nonemphatic male
study staff that their performance in the math portion was
not good enough and that they would need to repeat the
task afterwards. Later, participants were informed that
repeating the task was not necessary since their perfor-
mance was “good enough” (i.e., relief was provided). As
described in details in recent publications from the cur-
rent sample25,35, our modified version of the MAST
produced highly significant increase in salivary cortisol,
negative affect, and state anxiety as well as decreases in
positive affect.

MIST (imaging session)
During fMRI, stress was induced using a modified ver-

sion of the MIST52. This task requires participants to
complete arithmetic problems of varying difficulty while
their performance was publicly evaluated by strangers.
Problems vary in terms of time allotted and difficulty level
such that “Easy” runs involved only simple arithmetic
problems (e.g., 4− 0+ 2), whereas “Hard” runs involved
more difficult problems and shorter response times (e.g.,
65/15+ 27/3). Participants were instructed that they had
to maintain an 80% accuracy level. In reality, maintaining
80% was very easy for Easy blocks and made impossible
for Hard blocks by increasing difficulty and reducing
response times according to individual participants’
accuracy. After Hard blocks, participants were presented
with a prerecorded video that was made to believe as a live
video-conference call, which showed an unfriendly and
impatient experimenter who complained that their per-
formance was not adequately maintained at the 80% level.
As described in details in a recent publication from the
current sample25, our modified version of the MIST
produced highly significant increase in negative affect and
decreases in positive affect.

PRT (behavioral session)
The PRT has been described in detail elsewhere12,13,53.

In each trial, participants were asked to indicate whether a
short or long mouth (or nose) was presented by pressing
one of two keys (counterbalanced across subjects). The
task included 160 trials, divided into two 80-trial blocks.
Each trial started with the presentation of a fixation cross
(750–900ms), followed by a mouthless (or noseless)
cartoon face (500 ms); next, either a short or long mouth
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(or nose) was presented for 100ms, and the mouthless (or
noseless) cartoon face remained for 500ms. In each block,
32 correct responses were followed by positive feedback
(“Correct!! You won 20 cents”), which was displayed for
1500 ms in the center of the screen, followed by a blank
screen for 250ms. To induce a response bias, an asym-
metrical reinforcer ratio was used, such that correct
responses for the rich stimulus were rewarded three times
more frequently than correct responses for the other
(“lean”) stimulus (i.e., 24 vs. 8 rewards, respectively).
Participants were informed that not all correct responses
would be rewarded but were not told that one of the
stimuli would be rewarded more frequently.

Instrumental learning task (imaging session)
Interleaved within the “Easy” and “Hard” blocks of the

MIST were functional MRI runs of a separate instru-
mental conditioning task54. This well-validated paradigm
was used to measure RPE signals in the ventral striatum.
For each trial, participants were instructed to choose
between two visual stimuli. Each of the stimulus pairs was
associated with a given outcome (gain: win $1 or $0; loss:
lose $1 or $0; neutral: look at gray square or nothing). For
gain and loss pairs, the probabilities of winning $1/$0
varied between 80/20% and 20/80% for each stimulus in
the pair. In the neutral pair, there was no monetary out-
come. For each trial, one pair was randomly presented,
with one stimulus above and one below a fixation cross
(counterbalanced). The subject was instructed to choose
the upper or lower stimulus by pressing one of two keys.
After a jittered delay interval, participants received feed-
back (either “Nothing”, “Gain”, “Loss” or a gray square
with no monetary value for neutral trials). Each run lasted
approximately 4 min and consisted of 36 trials (12 per
condition). There was a total of six RL runs, with two runs
for each stress condition (“Pre-Stress”, “During-Stress”,
and “Post-Stress”).

Computational RL model
To estimate prediction errors, a standard Q-learning

model was fit to participants’ choice data. For this model,
individual choices and outcomes for each pair of stimuli,
A and B, were entered into a Q-learning algorithm to
estimate the expected values of choosing stimulus A (Qa)
or stimulus B (Qb)55. For each condition (e.g., prestress
and poststress), Q values were initialized at 0. For every
subsequent trial t, the value of the chosen stimulus (A or
B) was updated according to the rule Qa(t+ 1)=Qa(t)+
α*δ(t), where δ(t) represented a prediction error [δ(t)= R
(t)−Qa(t)], which was operationalized as the difference
between the expected outcome [Q(t)] and the actual
outcome [R(t)]. The reinforcement magnitude R was set
to be +1, −1 and 0 for winning, losing, and neutral out-
comes, respectively. Based on the Q value for each option

at each trial, the probability of selecting an option was
then estimated using the softmax selection rule56

Pa tð Þ ¼ exp Qa tð Þ=betað Þ= exp Qa tð Þ=betað Þð Þ þ exp Qb tð Þ=betað Þ:

For generation of prediction error-signals for analyses,
predetermined alpha and beta parameters were drawn
from a prior study using this paradigm54, in keeping with
the recommendation to use population-level free-para-
meters for the purpose of fMRI modeling57. Consistent
with best-fitting learning rate (alpha) parameters identi-
fied by Pessiglione and colleagues54, we observed a best-
fitting group-averaged alpha of 0.28 (vs. 0.29 as reported
in ref. 54) for gain pairs and 0.46 for loss pairs (identical to
that reported in ref. 54). For temperature (beta) para-
meters, we observed a group-averaged optimal beta of
2.24 for gain pairs and 5.23 for loss pairs.

fMRI acquisition
Data were acquired using a 3-T Siemens Tim Trio

scanner with a 32-channel head coil at the McLean
Imaging Center. Trial presentation was synchronized to
initial volume acquisition. Scanning protocol included
low- and high-resolution structural images using standard
parameters. Functional (T2* weighted) images were
acquired using a GRAPPA EPI protocol with the following
parameters: TR= 3000 ms, TE= 30ms, flip angle= 75°,
FOV= 224 × 224 × 170 mm with 57 interleaved axial sli-
ces. High-resolution T1-weighted MPRAGE images [TR
= 2200ms; TE= 1.54 ms; FOV= 230mm; matrix=
192 × 192; resolution= 1.22 mm3; 144 slices] were col-
lected for volumetric analyses.

Neuroimaging analysis
Neuroimaging data were analyzed using SPM8 (http://

www.fil.ion.ucl.ac.uk/spm/software/spm8/). For func-
tional analyses, preprocessing in SPM8, included slice
timing correction, realignment estimation, and imple-
mentation, normalization to MNI space, and spatial
smoothing using a 6 mm Gaussian kernel. For single-
subject fixed-effects models, a single GLM was used to
estimate BOLD signal across the 6 runs that separately
modeled the cue and feedback phases for win, loss, and
neutral trials. To examine neural RPE signals, model-
derived estimates of trial-wise prediction errors were
entered as a parametric modulator (pmod) during trial
feedback for win and loss trials. This pmod contrast
representing RPE signals across all runs was then entered
into a random-effects analysis to examine the main effect
of PE signals across all stress conditions. To examine the
effects of stress on RPE signaling, additional random-
effects models were tested examining the interactions
between RPE prestress vs. poststress runs. Beta weights
were extracted from a priori ROIs for further analyses on
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effects of stress on RPE signaling. A positive-RPE beta
indicates higher activation for unexpected reward and
lower activation for unexpected omission of rewards
during gain trials.

Regions-of-interest (ROI) analyses
Based on prior findings, two ROIs were tested. The first

was the bilateral NAc region emerging from prior analyses
of this sample to be associated with stress-induced RPE
reductions25 (Fig. 1a). (One participant was an outlier in
stress-induced NAc activation and thus was omitted from
the analyses.) The second included the bilateral putamen
due to evidence of (1) reduced RPE signals in the putamen
in MDD58; (2) correlations between reduced RPE in the
putamen and depressive symptoms59; and (3) links
between smaller bilateral putamen and anhedonia among
adolescents28. Anatomically constrained bilateral puta-
men were extracted from a recent meta-analysis of RPE
studies in healthy controls60 (Fig. 1b). A Bonferroni cor-
rection (p= 0.05/2= 0.025) was used.

Structural analyses
Volumetric segmentation was performed using Free-

Surfer61 (v5.3). The brain parcellation and segmentation
were run using the standard “recon-all” script using
default settings. For each subject, the postprocessing
output was thoroughly inspected for segmentation errors
and no manual edits were required. Intracranial volume
was calculated to correct for interindividual differences in

total brain size. To parallel the functional analyses, bilat-
eral volume for the NAc (Fig. 1c) and putamen (Fig. 1d)
were extracted.

Statistical analysis
Genetic analyses were performed in the Linux envir-

onment. Imputation was performed using the molgenis-
imputation software, which provides rapid generation of
genetic imputation scripts for grid/cluster/local environ-
ments using SHAPEIT for phasing, Genotype Harmonizer
for quality control and impute2 tool for imputation
(https://github.com/molgenis/molgenis-imputation)62.
GRS was generated using PLINK and the association
analysis with phenotypic variables of interest were per-
formed in R. Plots were generated using the R-package
“ggplot2” (http://ggplot2.tidyverse.org/reference/).

GRS analyses
We used GWAS summary results from Okbay et al.34 to

derive GRS (see Supplementary Table 2). Next, six hier-
archical regression analyses were performed to evaluate
whether GRS predicted anhedonia-related measures
assessed across units of analysis: self-report (SHAPS
score), behavior (stress-induced reduction in reward
learning), and brain circuits. Brain circuit was probed
both at the functional (stress-induced reduction in striatal
RPE) and structural (striatal volume) level. For all ana-
lyses, ancestry-related variables (i.e., PC1 and PC2 scores)
were entered in the first step, followed by GRS score in
the second step. Unique variance explained by the GRS
after accounting for ancestry-related variables is reported.
Statistical analyses were performed using SPSS
(version 24.0).

Results
GRS was available for 83 participants; the distribution of

GRS was normally distributed (Fig. 2). Table 1 sum-
marizes the findings emerging from the hierarchical
regression analyses, whereas Supplementary Table 3
summarizes intercorrelations among units of analysis.
Self-report measure of anhedonia (SHAPS score): The

GRS did not significantly predict SHAPS scores (ΔR2=
0.017, p > 0.24).
Behavioral measure of anhedonia (stress-induced

changes in reward learning): The GRS did not significantly
predict stress-induced changes in reward learning
([response bias (Block 2)− response bias (Block 1)]posts-
tress− [response bias (Block 2)− response bias (Block 1)]prestress) (ΔR

2

= 0.035, p > 0.12). For the main effect of stress on
response bias, see “Supplement”.
Neural (functional) measures of anhedonia (stress-

induced changes in striatal RPE): The regression analyses
indicated that GRS predicted both bilateral NAc (ΔR2=
0.065, ΔF(1,58)= 4.73, p= 0.033) and bilateral putamen

Fig. 1 Coronal slices showing the functional and structural
regions-of-interest (ROIs) considered for the analyses. a
Functional (bilateral) nucleus accumbens ROI (yellow color) previously
found to be associated with stress-induced RPE reductions25. b
Functional (bilateral) putamen ROI (red color) emerging from a meta-
analysis of RPE studies in healthy controls60. c Structural (bilateral)
nucleus accumbens (yellow color) and putamen (red color) ROI. For
analyses, structural ROIs were extracted for each participant
individually and entered into analyses. For panel a, circles highlight
the nucleus accumbens ROI that was considered for analyses
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(ΔR2= 0.074, ΔF(1,58)= 5.14, p= 0.027) stress-induced
RPE changes ([RPE]poststress− [RPE]prestress). Individuals
with a higher genetic risk exhibited higher stress-induced
reduction in RPE in the bilateral NAc and putamen (Fig.
3a, b).
Neural (structural) measures of anhedonia (striatal

volume): The regression analyses indicated that GRS
predicted both bilateral NAc (ΔR2= 0.095, ΔF(1,69)=
5.01, p= 0.028) and bilateral putamen (ΔR2= 0.095, ΔF
(1,69)= 7.32, p= 0.009) volume. Individuals with a higher
genetic risk exhibited smaller bilateral NAc and putamen
volume (Fig. 3c, d).
A comparison across units of analyses indicated that the

amount of variance GRS explained increased gradually
from self-report→ behavior→ circuits (Fig. 4). Consistent
with this observation, a final set of hierarchical regression
analyses entering ancestry-related variables in the first

step, SHAPS scores and stress-induced changes in reward
learning in the second step, and GRS in the third step
indicated that GRS explained significant unique variance
for all four circuits-level variables [NAc RPE: ΔR2= 0.170,
ΔF(1,49)= 11.19, p= 0.002; Putamen RPE: ΔR2= 0.081,
ΔF(1,49)= 4.64, p= 0.036; NAc volume: (ΔR2= 0.076),
ΔF(1,57)= 4.88, p= 0.031; Putamen volume: ΔR2= 0.122,
ΔF(1,57)= 8.09, p= 0.006].

Discussion
GWAS have proven successful in identifying common

single-nucleotide polymorphisms (SNPs) associated with
disease risks for psychiatric disorders, including schizo-
phrenia63, bipolar disorder64, autism spectrum disorder65,
and very recently, MDD30,66. GWAS have also demon-
strated that a substantial proportion of the heritability of
MDD is explained by a polygenic component consisting of
thousands of common SNPs of small effect and over-
lapping polygenic risk among schizophrenia, bipolar, and
MDD disorders, indicating pleiotropic effects of some risk
variants across traditional diagnostic classifications67,68.
Recently, large-scale GWAS analyses have identified a
number of genetic variants robustly associated with
depressive symptoms and subjective well-being34,69.
Results of these studies also confirm the highly poly-
genetic and heterogenous nature of depressive phenotype.
Although these results are statistically robust, the func-
tional effects of these variants remain unclear. Mapping
the effects of risk genes on distinct domains of brain
function and structure can provide important biological
insights into the mechanisms by which these genes may
confer illness risk70.
Here, we tested the novel hypothesis that, among young,

psychiatrically healthy women, GRS linked to depression-
related phenotypes34 would predict anhedonic pheno-
types across three units of analysis: self-report, behavior,
and brain circuits. This hypothesis was derived from a

Fig. 2 Histogram of genetic risk scores across 83 female participants

Table 1 Summary of statistical associations between genetic risk score and anhedonia-related markers across units of
analyses (self-report, behavior, and brain circuit)

Units of analyses Measure N ΔR2 ΔF, p value

Self-report Snaith Hamilton pleasure scale score 82 0.017 1.39, 0.24

Behavior Stress-induced changes in reward learning 59 0.035 2.31, 0.135

Circuits (functional) Stress-induced changes in RPE

Bilateral NAc RPE (poststress–prestress)

Bilateral Put RPE (poststress–prestress)

62a

63

0.065

0.074

4.76, 0.033

5.14, 0.027

Circuits (structural) Striatal volume

Bilateral NAc volume

Bilateral Put volume

73

73

0.064

0.095

5.01, 0.028

7.32, 0.009

RPE reward prediction error, NAc nucleus accumbens, Put putamen
aOne participant was an outlier in stress-induced NAc activation and was omitted from the analyses
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convergence of clinical evidence emphasizing that anhe-
donia plays a critical role in vulnerability to, disease
course of, and treatment for MDD5,7,8,29 and preclinical
literature emphasizing the role of stress-induced disrup-
tions in mesolimbic pathways in the emergence of anhe-
donic phenotypes and depression vulnerability9,10,20,29.
Two main findings emerged. First, although GRS was
negatively associated with anhedonia-related markers
across all three units of analyses, only brain circuit mar-
kers were significantly associated with GRS. Specifically,
individuals with a higher genetic risk exhibited higher
stress-induced reduction in RPE in the bilateral NAc and

putamen as well as smaller bilateral NAc and putamen
volume. Second, the amount of explained variance was
systematically larger as a function of the hypothesized
proximity to the effects of genes: self-report (1.70%) <
behavior (3.50%) < circuits (functional) (6.95%), circuits
(structural) (7.95%). Notably, stress-induced reduction in
RPE in the right NAc and left putamen volume showed
the largest explained variance (12.6% and 10.2%, respec-
tively) (data not shown). Highlighting incremental valid-
ity, GRS scores continued to predict both functional and
structural anhedonia-related markers when accounting
for ancestry-related variables as well as both self-reported
and behavioral markers of anhedonia.
Mounting evidence implicates dorsal and ventral striatal

regions in the pathophysiology of and increased vulner-
ability to depression. First, hemodynamic, structural and
molecular imaging studies have reported abnormalities in
both the NAc and putamen in MDD as well as unaffected
offspring of parents with MDD27,58,71–74. Second, struc-
tural MRI studies have linked smaller dorsal striatum to
anhedonic symptoms among healthy samples26,28. Third,
abundant preclinical data have shown that experimental
models relevant to depression (which typically involve
exposure to uncontrollable and prolonged stressors) are
characterized by profound downregulation of mesolimbic
dopaminergic pathways implicated in incentive motiva-
tion and reinforcement learning10,11,29. The current find-
ings add to this literature by showing that genetic variants
linked to key depressive phenotypes (well-being,

Fig. 3 Scatterplots of associations between depression-related genetic risk scores and a bilateral nucleus accumbens stress-induced RPE changes
(ΔR2= 0.065, p= 0.033); b bilateral putamen stress-induced RPE changes (ΔR2= 0.074, p= 0.027); c bilateral nucleus accumbens volume (ΔR2=
0.095, p= 0.028); and d bilateral putamen volume (ΔR2= 0.095, p= 0.009). For the anhedonia markers, residualized values are plotted (removing
variance associated with ancestry-related variables (i.e., PC1 and PC2 scores)). For the volumetric data, intracranial volume was calculated to correct
for interindividual differences in total brain size

Fig. 4 Amount of variance explained by the genetic risk score for
anhedonia-related markers across units of analysis (self-report →
behavior → brain circuits)
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depressive symptoms, and neuroticism) at the GWAS
level are associated with individual differences in (1) the
propensity to reduce reward prediction errors after
exposure to a stressor, and (2) volume of two striatal
regions (NAc and putamen) critical for reinforcement
learning and motivation. We speculate that such liability
might increase risk for depression when facing severe life
stressors.
The current study has several strengths, including the

focus on an important (endo)phenotype of depression
(anhedonia) across multiple units of analyses; the use of
two independent and well-validated psychosocial stressors
(MAST and MIST); objective assessment of anhedonic
phenotypes through laboratory-based tasks (PRT and an
instrumental reinforcement learning task); the imple-
mentation of computational modeling for fMRI analyses;
and the focus on a young, psychiatrically healthy and
unmedicated sample, which avoids potential confounds
(e.g., medication and prior hospitalization). There are,
however, important limitations, including a sample size
relatively modest for genetics analyses, which possibly
contributed to null findings with respect to self-reported
and behavioral markers; the sole focus on a female sam-
ple; and the lack of an independent replication sample.
The latter point is especially important but we were
unable to find a similar dataset involving multiple
experimental sessions with psychosocial stressors and
reward tasks. Nevertheless, the current findings require
independent replication. Moreover, interpretations in
terms of effect sizes across units of analysis should be
cautious since effect sizes are inversely related to mea-
surement errors40,43. For example, the reliability of fMRI
data75,76 is quite variable and task-dependent, with esti-
mates close to only 0.30. Conversely, structural MRI
data77 have shown superior reliability, including recent
test–retest correlations exceeding 0.95 for measures of
cortical thickness77 (see also ref. 78). Thus, it is also pos-
sible that psychometrics features—rather than the hypo-
thesized proximity of a given unit of analysis to the effects
of genes—might partially explain the systematic differ-
ences in effect sizes. Finally, the current analyses were also
repeated by considering (1) a GRS derived from an early
report by the MDD Working Group of the Psychiatric
GWAS Consortium32; (2) a single SNP in the Oprl1 gene
(opioid receptor-like 1)79; and (3) a genetic profile score
combining variants across stress-system genes80. Thus,
with the exception of bilateral putamen volume (p=
0.009), the other results would not survive correction for
the four genetic scores considered. In spite of these lim-
itations, the current findings provide novel evidence that
GWAS-ascertained genetic variants linked to depression
are associated with individual differences in functional
and structural features of the key regions within the brain
reward system (dorsal and ventral striatum). They also

provide corroborating evidence that units of analysis
hypothesized to the more proximally related to the effects
of genes (e.g., brain circuits) are more strongly linked to
genetic risks.
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