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Depression is a debilitating disorder that often starts manifesting in early childhood and peaks in onset during adolescence.

Neurocognitive impairments have emerged as clinically important characteristics of depression, but it remains controversial which

domains specifically index pre-existing vulnerability, state-related or trait-related markers. Here, we disentangled these effects by

analysing the Adolescent Brain Cognitive Development dataset (n = 4626). Using information of participants’ current and past

mental disorders, as well as family mental health history, we identified low-risk healthy (n = 2100), high-risk healthy (n = 2023),

remitted depressed (n = 401) and currently depressed children (n = 102). Factor analysis of 11 cognitive variables was performed to

elucidate latent structure and canonical correlation analyses conducted to probe regional brain volumes reliably associated with the

cognitive factors. Bayesian model comparison of various a priori hypotheses differing in how low-risk healthy, high-risk healthy,

remitted depressed and currently depressed children performed in various cognitive domains was performed. Factor analysis

revealed three domains: language and reasoning, cognitive flexibility and memory recall. Deficits in language and reasoning ability,

as well as in volumes of associated regions such as the middle temporal and superior frontal gyrus, represented state- and trait-

related markers of depression but not pre-existing vulnerability. In contrast, there was no compelling evidence of impairments in

other domains. These findings—although cross-sectional and specific to 9–10-year-old children—might have important clinical

implications, suggesting that cognitive dysfunction may not be useful targets of preventive interventions. Depressed patients, even

after remission, might also benefit from less commonly used treatments such as cognitive remediation therapy.
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Introduction
Depression is a debilitating psychiatric illness affecting more

than 300 million individuals globally (Smith, 2014). This

prevalent disorder often starts manifesting in early childhood

(Birmaher et al., 2004) and peaks in onset during adoles-

cence (Hankin et al., 1998; Lewinsohn et al., 1999; Kessler

et al., 2005; Thapar et al., 2012). Highlighting familiarity,

offspring of depressed parents are three to four times more

likely to suffer from depression than those of healthy parents

(Sullivan et al., 2000; Rice et al., 2002; Rasic et al., 2014).

To develop effective interventions, it is crucial to identify

and distinguish between vulnerability markers that predict

risk for developing the disorder, state markers that reflect

pathophysiological processes of the illness, and trait markers

that represent barriers to recovery.

A promising, yet highly debated, marker implicated in all

three mechanisms is disrupted cognition (Allott et al., 2016).

Case-control studies have highlighted widespread deficits in

domains such as conceptual reasoning, verbal fluency and

memory in both current (Austin et al., 2001; McDermott

and Ebmeier, 2009; Maalouf et al., 2011; Lee et al., 2012;

McIntyre et al., 2013; Snyder, 2013; Baune et al., 2014;

Rock et al., 2014; Goodall et al., 2018) and remitted depres-

sion (Smith et al., 2006; Hasselbalch et al., 2011; Bora

et al., 2013; Rock et al., 2014; Semkovska et al., 2019), but

conflicting results exist (Korhonen et al., 2002; Liu et al.,

2002; Robertson et al., 2003; Clark et al., 2005; Favre

et al., 2009; Klimkeit et al., 2011; Peters et al., 2017).

Whether cognitive functioning may improve in remission

relative to the acute phase is also equivocal (Maalouf et al.,

2010, 2011; Beaujean et al., 2013; Schmid and Hammar,

2013; Bloch et al., 2015). Moreover, these studies were in-

sufficient to dissociate state- and trait-related deficiencies

occurring as a consequence of the disorder from vulnerabil-

ity-related impairments. In other words, might cognitive dys-

functions have already existed before the onset of

depression? Investigations into this have provided mixed

results (Allott et al., 2016). Some studies have reported that

unaffected first-degree relatives of depressed individuals have

lower cognitive functioning compared to controls with no

familial history of depression (Winters et al., 1981;

Christensen et al., 2006; Belleau et al., 2013; Hughes et al.,

2013; Hsu et al., 2014; MacKenzie et al., 2019), but others

did not find any difference (Klimes-Dougan et al., 2006;

Micco et al., 2009; Santucci et al., 2014). Furthermore, indi-

viduals at familial risk for depression tend to exhibit higher

levels of subclinical depressive symptoms (Christensen et al.,

2007), but many prior investigations failed to account for it

(Winters et al., 1981; Klimes-Dougan et al., 2006; Micco

et al., 2009; Belleau et al., 2013; Hughes et al., 2013; Hsu

et al., 2014; MacKenzie et al., 2019). Taken together, it

remains unclear to what extent cognitive impairments might

be specific vulnerability, state and trait markers of

depression.

Previous studies have been limited by at least one of the

following reasons. First, the sample sizes of most empirical

studies were small and, thus, lacked statistical power to de-

tect small effect sizes (Korhonen et al., 2002; Liu et al.,

2002; Robertson et al., 2003; Clark et al., 2005; Klimes-

Dougan et al., 2006; Smith et al., 2006; Favre et al., 2009;

Micco et al., 2009; Maalouf et al., 2011; Santucci et al.,

2014; Bloch et al., 2015; Peters et al., 2017) or be inter-

preted with great confidence (Winters et al., 1981;

Christensen et al., 2006; Maalouf et al., 2010, 2011; Belleau

et al., 2013; Schmid and Hammar, 2013; Hsu et al., 2014;

Bloch et al., 2015). Meta-analyses that pool multiple studies

together possess greater statistical power (McDermott and

Ebmeier, 2009; Lee et al., 2012; Bora et al., 2013; Snyder,

2013; Rock et al., 2014; MacKenzie et al., 2019), but inter-

pretation is restricted by the task impurity problem (Phillips,

1997; Austin et al., 2001). That is, cognitive paradigms

often operate across multiple domains (e.g. a set shifting

task will involve attention, working memory, visual and spa-

tial processing), but distinct tasks adopted in different studies

were grouped together and assumed to measure one similar

construct (rather than based on latent variable methods).

There is also greater diversity in patients stemming from dif-

ferences in specific inclusion/exclusion criteria.

Second, prior studies were never designed to disentangle

vulnerability versus state versus trait impairments in depres-

sion. Instead, they tended to focus on only one aspect, com-

paring cognitive ability between depressed patients versus

controls (i.e. state-related) (Korhonen et al., 2002; Liu et al.,

2002; Robertson et al., 2003; Favre et al., 2009; Lee et al.,

2012; Snyder, 2013; Baune et al., 2014; Rock et al., 2014),

remitted patients versus controls (i.e. trait-related) (Clark

et al., 2005; Smith et al., 2006; Hasselbalch et al., 2011;

Bora et al., 2013; Rock et al., 2014; Bloch et al., 2015;

Peters et al., 2017), or healthy individuals at high versus low

familial risk (i.e. vulnerability-related) (Christensen et al.,

2006; Klimes-Dougan et al., 2006; Micco et al., 2009;

Belleau et al., 2013; Hsu et al., 2014; Santucci et al., 2014;

MacKenzie et al., 2019). To the best of our knowledge, no

empirical study has explored how individuals in the low-

risk, high-risk, remitted and depressed groups might perform

relative to one another. Furthermore, all previous studies

have adopted frequentist statistics, which suffer from the

asymmetrical inference problem and can only test whether

there is sufficient evidence to reject the null hypothesis, i.e.

one can never conclude the alternative hypothesis is true re-

gardless of P-value.

Third, significant, albeit not homogenous, evidence sug-

gests that acute and remitted depression are associated with

brain volume reduction in many regions including the

fronto-cingulate cortex, temporal cortex, hippocampus,

amygdala and basal ganglia (Koolschijn et al., 2009;

Lorenzetti et al., 2009; Bora et al., 2012). Individuals with

family history of depression were also found to have smaller

prefrontal and hippocampal volumes (Amico, 2011), as well
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as thinner grey matter across widespread areas in the right

hemisphere (Peterson et al., 2009), compared to subjects

with no depressed first-degree relatives. However, it is un-

clear how these brain structural abnormalities might contrib-

ute to putative vulnerability, state- and/or trait-related

cognitive impairments in depression. A few studies have

reported that worse attention (Leung et al., 2009; Li et al.,

2010), set-shifting (Vasic et al., 2008), and cognitive control

(Jung et al., 2014) were associated with specific structural

abnormalities, but sample sizes were relatively modest

(n = 15–50) and they examined only depressed patients ver-

sus controls (Vasic et al., 2008; Leung et al., 2009; Jung

et al., 2014), or remitted versus non-remitted patients (Li

et al., 2010). In a larger study (n = 131), Peterson et al.

(2009) found that cortical thinning in the right hemisphere

predicted lower attention and visual memory performance in

individuals at high familial risk for depression compared to

those at low risk. This suggested a potential vulnerability im-

pairment, although it should be noted that a substantial pro-

portion (�40%) of participants were either acutely

depressed or in remission when tested.

Here, we overcame the aforementioned limitations and

conducted the largest empirical study (n = 4626) to date to

clarify, using a Bayesian inference approach, whether cogni-

tive impairments might represent specific vulnerability, state

and trait markers of depression; and if so, which domains

might be most affected and whether there might be an asso-

ciation with regional abnormalities in brain volume. This

was achieved by analysing data in the second annual curated

release of the Adolescent Brain Cognitive Development

(ABCD) study (Volkow et al., 2018).

Materials and methods
Children aged 9–10 years old were recruited at 21 sites across

the USA (Garavan et al., 2018). A comprehensive protocol was

administered and, here, we focused on the following.

Clinical assessments

Kiddie Schedule for Affective Disorders and

Schizophrenia for DSM-5

The Kiddie Schedule for Affective Disorders and Schizophrenia

for DSM-5 (KSADS-5) is a well-established, reliable and valid

assessment of lifetime mental disorders in youths (Kaufman

et al., 1997; Barch et al., 2018). Children provided self-reports

in selected domains including mood and anxiety disorders, sleep

and suicidality. See Supplementary material for details.

Family history assessment module screener

This instrument probes parents/guardians for the presence/ab-

sence of symptoms associated with depression, mania, psychosis,

substance and alcohol use disorder, as well as antisocial person-

ality disorder in all first and second-degree biological relatives

of the child (Rice et al., 1995).

Achenbach Child Behavior Checklist

Parents were asked to complete the Achenbach Child Behavior
Checklist (CBCL), which assesses a wide range of emotional
and behavioural problems in youth. T-scores for subscales were
analysed (Achenbach and Rescorla, 2001).

Neurocognitive battery

Picture Vocabulary Test

This is a measure of receptive vocabulary in the NIH Toolbox
(Gershon et al., 2014). Each participant was presented with
four pictures and heard an audio recording of a word. The goal
was to select the picture that best depicted the meaning of the
word. Age-correct standard scores were analysed.

Oral Reading Recognition Test

The Oral Reading Recognition Test is part of the NIH Toolbox
and assessed participants’ ability to pronounce and read printed
letters or words on a screen (Gershon et al., 2014). Age-cor-
rected standard scores were analysed.

Flanker Task

The Flanker Task is a measure of executive attention and inhibi-
tory control in the NIH Toolbox (Zelazo et al., 2013). Age-cor-
rected standard scores were analysed. See Supplementary
material for details.

Dimension Change Card Sort Task

The Dimension Change Card Sort Task is a measure of cogni-
tive flexibility in the NIH Toolbox (Zelazo et al., 2013). Age-
corrected standard scores were analysed. See Supplementary ma-
terial for details.

Picture Sequence Test

In this NIH Toolbox task, participants were presented with a se-
quence of pictures one at a time (Dikmen et al., 2014). Every
picture stayed on the screen and was accompanied by an audio
that briefly described its content. The images were then jumbled
up and participants had to place each picture back in the correct
sequence order. The Picture Sequence Test consisted of three tri-
als and scores were derived by taking the number of adjacent
picture pairs remembered correctly across the trials. Age-cor-
rected standard scores were analysed.

List Sorting Test

The List Sorting Test is part of the NIH Toolbox and partici-
pants were presented with a series of stimuli, each for 2 s
(Tulsky et al., 2014). They had to remember each stimulus, re-
order the stimuli in terms of size and recite the names of the
stimulus in that order. Age-corrected standard scores were ana-
lysed. See Supplementary material for details.

Pattern Comparison Processing Test

The Pattern Comparison Processing Test is a measure of proc-
essing speed in the NIH Toolbox (Carlozzi et al., 2013).
Participants were required to determine whether two visual pat-
terns were identical. Patterns could vary in one of three dimen-
sions, namely colour, adding/taking something away, or one
versus many. The number of correct responses completed in
90 s was measured and age-corrected standard scores were
analysed.
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Rey Auditory Verbal Learning Test

In the Rey Auditory Verbal Learning Test (RAVLT), partici-
pants heard a target list of 15 nouns over five consecutive learn-
ing trials (Daniel et al., 2014). After each trial, they were asked
to list all the words they could remember. They were then pre-
sented with an interference list of 15 other nouns and had to
freely recall the words from this list. Following that, participants
were required to list words from the initial target list, and did so
again after a 20-min delay. The measures of interest were (i)
total recall score over the first five trials; and (ii) delayed recall
score.

Matrix Reasoning Task

In this task, participants saw an array of pictures with one miss-
ing square and were required to select the missing piece out of a
set of options (Daniel et al., 2014). There were 32 trials and the
total scaled score provided by the ABCD team was analysed.

Little Man Task

The Little Man Task (LMT) was a measure of visual spatial
processing, specifically mental rotation (Acker and Acker,
1982). The task involved presentation of a male figure holding
a briefcase appearing right side up, upside-down, facing the par-
ticipant, or with his back towards the participant. There were
32 trials and the participant had to indicate whether the brief-
case was held in the man’s left or right hand. Following the rec-
ommendation of the ABCD team (Luciana et al., 2018), we
analysed efficiency = (% correct) / (average reaction time for ac-
curate response) due to greater sensitivity in this measure.

Structural MRI

Participants completed a baseline MRI scan on a GE, Phillips or
Siemens scanner, which included a high-resolution (1 mm iso-
tropic voxels) T1-weighted structural MRI image. Structural
MRI data were processed by the ABCD staff using FreeSurfer
v5.3.0 (http://surfer.nmr.mgh.harvard.edu/). The structural data
were processed using a standardized pipeline that included re-
moval of non-brain tissue, cortical parcellation and segmenta-
tion of grey and white matter subcortical structures.
Participants’ structural data were excluded if they had poor
quality T1-weighted images, FreeSurfer output failed quality
control procedures, or if incidental findings were reported based
on a neuroradiological report. Analyses focused on 68 cortical
volumes based on the DK atlas (APARC ROI in FreeSurfer) as
well as 14 subcortical regions of interest based on the ASEG
atlas, namely left and right: caudate, putamen, accumbens, pal-
lidum, thalamus, hippocampus and amygdala.

Factor analysis

An intercorrelation examination revealed that some cognitive
variables are correlated with a group of other metrics, but not
with measures outside that group (Supplementary Fig. 1). This
suggests that more general, underlying cognitive factors might
be present. Using the psych package in R (Revelle, 2018), the
optimal number of factors was first determined via Horn’s par-
allel analysis. Next, a factor analysis was performed by using
ordinary least squares to find the minimum residual solution.
The solution was assessed by scree plot, root mean square error
of approximation (RMSEA) and standardized root mean square
residual (SRMR). Values of RMSEA and SRMR 5 0.05 are

generally considered to be good (Hu and Bentler, 1999). We
note that a factor analysis on the cognitive battery had been
conducted previously (Thompson et al., 2019), but it was neces-
sary to perform a factor analysis in this study because different
variables were examined in the RAVLT. Thompson and co-
workers only considered a single overall score, which is the sum
of number of words recalled across all trials and thought to be
a less pure measure aggregating several cognitive processes
(Vakil et al., 2010). In this study, we decided to use the more
standard measures of total recall over the first five learning trials
and delayed recall instead.

Canonical correlation analysis

To examine whether cognitive factors might be reliably associ-
ated with a set of regional brain volumes, we conducted canon-
ical correlation analysis (CCA) using the candisc package in R
(Friendly and Fox, 2017). Effects of intracranial volume and
gender were first regressed out from regional volumes (age was
not included due to narrow range). The matrix of residual brain
volumes, as well as a matrix of cognitive factor scores, were
then inputted into a CCA. CCA takes these two multidimen-
sional datasets and computes vectors in each subspace (i.e. ca-
nonical variates) that maximally correlate with each other to
form a canonical pair. Multiple canonical pairs that are orthog-
onal to one another can be found depending on the dimension-
ality of the input data.

The reliability of canonical pairs were determined by three
methods (Dinga et al., 2019). The first was through Wilks’
lambda statistic with cut-off of P5 0.05. Second, 10-fold cross-
validation was conducted. The sample was randomly parti-
tioned into 10 approximately equal subsets. One subset was
retained as validation data for testing while the remaining nine
were used as training data. During cross-validation, CCA was
performed on the training data. Coefficients from the training
set were then used to compute canonical variates and correla-
tions in the test set. Ten rounds of cross-validation were per-
formed, with each of the 10 subsets being used exactly once as
validation data. The average out-of-sample correlation for each
component was calculated and compared against the original
value. Finally, we conducted permutation testing. The dataset
was randomly shuffled in order to mismatch subject indices be-
tween the brain and cognitive matrices. CCA was then per-
formed on this random dataset. Twenty thousand permutations
were run to generate a null distribution of canonical correlations
for comparison to the original value.

Bayesian model comparison

To examine group differences in cognitive factors and canonical
variates, Bayesian linear mixed effect models were constructed
using the BayesFactor package in R (Morey and Rouder, 2018)
and default multivariate Cauchy priors, which have been shown
to be appropriate for many real-world experimental designs
common in psychological science and possess desirable proper-
ties, including location and scale invariance, consistency in
Bayes Factor (BF) approaching the appropriate bound as sample
size tends towards infinity, and consistency in information
(Rouder et al., 2012). Multiple models that differed in equality
constraints between groups were computed. This allowed us to
derive BF, which quantify how much more likely one model
explained the observed data compared to another model.
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A larger BF indicates stronger evidence in favour of one model
over another. In contrast, BF close to 1 suggest data insensitiv-
ity, that is, more data are required as there is insufficient evi-
dence for either theory. Parameters were estimated by
simulating posterior distributions via Markov Chain Monte
Carlo sampling.

Bayesian correlations

Bayesian correlations were performed using the brms package in
R (Bürkner, 2017). For robustness, we assumed a multivariate t-
distribution for the data and applied a weakly informative
gamma prior on its degrees of freedom, i.e. m � C(2, 0.1), with
2 and 0.1 representing the associated parameters adopted for
the prior (Juárez and Steel, 2010). This can be thought of as a
generalized correlation model that can flexibly adapt to the level
of noise and incorporates conventional bivariate normal
Pearson’s correlation within it as a special case when m is large.
Estimation is conducted in Stan (Carpenter et al., 2017) using
the Hamiltonian Monte Carlo algorithm extension, No-U-Turn
Sampler (Hoffman and Gelman, 2014).

Data availability

Data used in the preparation of this article were obtained from
the ABCD Study (https://abcdstudy.org), held in the NIMH
Data Archive (NDA). The ABCD data repository grows and
changes over time. The ABCD data used in this report came
from the Curated Annual Release 2.0 (doi: 10.15154/1503209).

Results

Participant demographics

Using information from the KSADS-5 and Family History

Assessment Module Screener (FHAM-S), we identified: (i)

low-risk healthy children (LRH, n = 2100), who fulfilled no

diagnostic criteria on the KSADS-5 and had both biological

parents without any history of mental illnesses; (ii) high-risk

healthy children (HRH, n = 2023), who did not fulfil any

diagnostic criteria on the KSADS-5 but had at least one bio-

logical parent with history of depression; (iii) remitted

depressed children (RD, n = 401), who fulfilled KSADS-5 cri-

teria for past (but not current) major, persistent or unspeci-

fied depressive disorder. Parental history of depression was

not an inclusion criterion; and (iv) currently depressed chil-

dren (CD, n = 102), who had major, persistent or unspecified

depressive disorder based on KSADS-5. Parental history of

depression was not an inclusion criterion (Table 1).

Three-factor latent structure
revealed in the ABCD cognitive
battery

A simple three-factor model provided the most parsimonious

account of the data. This structure had good model fit

[RMSEA = 0.037 with 90% confidence interval (CI) of

0.032–0.042, SRMR = 0.02] (Hu and Bentler, 1999) and

was supported by Horn’s parallel analysis (Horn, 1965),

which showed that the observed eigenvalues of three factors

were larger than the mean eigenvalues of 50 uncorrelated

random datasets. We adopted a cut-off of 40.30 for vari-

able loadings and labelled each factor according to what we

believe best characterized the component variables (Table 2).

Factor 1 comprised the Picture Vocabulary Test and Oral

Reading Recognition Test, which assessed language compre-

hension, as well as the List Sorting Test and Matrix

Reasoning Task, which tested reasoning skills such as ability

to sort items based on a certain criterion and identify miss-

ing pieces in a pattern. Accordingly, it was labelled ‘language

and reasoning’. Factor 2 consisted of the Flanker Task,

Dimension Change Card Sort Task, Pattern Comparison

Processing Test and Little Man Task, which assessed ability

to think flexibly and shift between different concepts. Hence,

we designated it as ‘cognitive flexibility’. Factor 3 comprised

the Picture Sequence Test, as well as RAVLT total and

delayed recall metrics that measured ability to recall a target

list of words over the first five trials and after 20 min, re-

spectively. Thus, it was labelled ‘memory recall’.

Remitted and currently depressed
children were more impaired in
language and reasoning than
healthy children

To assess group differences in these cognitive domains, we

examined eight a priori models that each included a random

effect of site but varied in equality constraints between

groups: (i) LRH=HRH=RD=CD, null hypothesis; (ii)

LRH6¼HRH=RD=CD, non-specific vulnerability/state/trait

effect; (iii) LRH=HRH6¼RD=CD, non-specific state/trait,

but no vulnerability, effect; (iv) LRH=HRH=RD6¼CD, spe-

cific state, but no vulnerability and trait, effect; (v)

LRH6¼HRH6¼RD=CD, specific vulnerability and non-specif-

ic state/trait effects; (vi) LRH6¼HRH=RD6¼CD, non-specific

vulnerability/trait and specific state effects; (vii) LRH=

HRH6¼RD6¼CD, specific state and trait, but no vulnerability,

effects; and (viii) LRH6¼HRH6¼RD6¼CD, specific vulnerabil-

ity, state and trait effects.

For language and reasoning, Model 7 (LRH=HRH

6¼RD6¼CD) was best (BF = 1.06 � 103) relative to the null

hypothesis (Model 1: LRH=HRH=RD=CD). However, it

only slightly outperformed the second-best model (Model 3:

LRH=HRH6¼RD=CD, BF = 1.08). Compared to the third-

best model (Model 8: LRH6¼HRH6¼RD6¼CD), Models 7

and 3 were 4.95 and 4.57 times more likely, respectively, to

explain the observed data, which indicated these two models

offered the most parsimonious account (Supplementary

Tables 1 and 2). Thus, LRH and HRH did not differ in lan-

guage and reasoning abilities, suggesting the absence of a

pre-existing vulnerability in this domain. In contrast, RD

and CD performed worse than the other two groups, with

evidence reflecting either a non-specific state/trait impair-

ment or unique state and trait effects. To facilitate
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interpretation, we plotted estimated marginal means of the

fully unconstrained model in Fig. 1A. Findings were similar

even after correcting for differences in internalizing and

externalizing syndromes (Supplementary material). At the re-

quest of an anonymous reviewer, we also conducted add-

itional analyses which suggested that besides depression,

impairments in language and reasoning might also be related

to attention-deficit hyperactivity disorder (ADHD)

(Supplementary material).

Results of Bayesian model
comparison for other cognitive
factors

There was no compelling evidence for vulnerability, state or

trait impairment in cognitive flexibility (Fig. 1B) and mem-

ory recall (Fig. 1C). See Supplementary material for details.

Brain-cognition canonical
correlation analysis

Next, we conducted a CCA to examine whether the three

cognitive factors might be reliably associated with a set of

regional brain volumes. All three canonical variates (CVs)

were significant according to Wilks’ lambda statistic (CV1:

r = 0.307, P50.001; CV2: r = 0.189, P5 0.001; CV3:

r = 0.169, P5 0.01). However, CCA is prone to overfitting.

To evaluate reliability, we adopted a 10-fold cross-validation

approach and found that while the average out-of-sample

canonical correlation for CV1 was moderate at 0.244, those

for CVs 2 and 3 were very low at 0.070 and 0.073, respect-

ively. This suggests that only the first CV is reliable (Fig. 2).

To support this, CCA on 20 000 permuted datasets revealed

that the canonical correlation for CV1 was highly unlikely

to occur under the generated null distribution (P50.001,

Supplementary Fig. 3).

CV1 predominantly defined language and reasoning,

which was correlated with a set of brain volumes showing

the highest loadings in regions such as the middle temporal

gyrus, pars orbitalis, superior frontal gyrus and superior par-

ietal cortex (Fig. 2).

State and trait deficits in regional
brain volumes were correlated with
language and reasoning

With respect to CV1 scores along the brain dimension,

we found that Model 4 (LRH=HRH=RD6¼CD) had the

best fit relative to null (Model 1: LRH=HRH=RD=CD, BF

= 5.94), although it should be noted that it was only

modestly better than the second-best (Model 7:

LRH=HRH6¼RD6¼CD, BF = 1.95) and third-best models

(Model 3: LRH=HRH6¼RD=CD, BF = 1.98). No other al-

ternative hypotheses outperformed the null model

(Supplementary Tables 13 and 14). Hence, there was no dif-

ference in brain CV1 scores between LRH and HRH, indi-

cating the absence of a pre-existing vulnerability. However,

a state-related impairment is present as CD children had

considerably smaller volumes in brain regions associated

with language and reasoning. More data are required to de-

termine if deficiencies in these areas might be a trait marker

(Fig. 3A). Results for CV1 cognition were, unsurprisingly,

Table 1 Demographic and clinical details of participants

LRH HRH RD CD BF10

n 2100 2023 401 102 –

Age, months, mean (SD) 119.1 (7.3) 118.7 (7.4) 119.2 (7.4) 118.7 (7.7) 0.011

Sex at birth, male: femalea 1078:1022 1010:1013 220:181 65:37 0.016

Major depressive disorder, n (%)b 0 (0.0) 0 (0.0) 192 (47.9) 81 (79.4) –

Persistent depressive disorder, n (%)b 0 (0.0) 0 (0.0) 4 (1.0) 0 (0.0) –

Unspecified depressive disorder, n (%)b 0 (0.0) 0 (0.0) 209 (52.1) 22 (21.6) –

Maternal depression history, n (%)c 0 (0.0) 1498 (74.0) 131 (32.7) 35 (34.3) –

Paternal depression history, n (%)c 0 (0.0) 921 (45.5) 64 (16.0) 19 (18.6) –

aBayesian contingency table test assuming joint multinomial sampling scheme.
bDiagnoses are based on the KSADS-5. Number in the RD and CD groups add up to slightly more than total because four RD and one CD participant fulfilled the diagnostic criteria

for two categories.
cThe same child might have both mother and father with history of depression, hence the sum of n’s in the maternal and paternal cells do not equal the number of unique individuals.

There are 2023 (100%), 151 (37.6%) and 41 (40.1%) unique children with parental history of depression in the HRH, RD and CD groups, respectively.

Table 2 Loadings from factor analysis of the ABCD cog-

nitive battery

Factor 1 Factor 2 Factor 3

Matrix Reasoning Task 0.46 0.17 0.24

Picture Vocabulary Test 0.66 0.14 0.17

Oral Reading Recognition Test 0.64 0.16 0.15

List Sorting Test 0.48 0.24 0.29

Flanker Task 0.18 0.58 0.08

Dimensional Change Card Sort 0.17 0.64 0.16

Pattern Comparison Processing 0.06 0.61 0.11

Little Man Task 0.16 0.33 0.10

RAVLT Total Recall 0.28 0.17 0.78

RAVLT Delayed Recall 0.19 0.12 0.82

Picture Sequence Test 0.24 0.20 0.40

RAVLT = Rey Auditory Verbal Learning Task. Loadings 40.30 are highlighted in bold.
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very similar to those found earlier for the language and rea-

soning factor (Fig. 3B and Supplementary material).

Accounting for parental history of

depression in remitted and

currently depressed children

Parental depression was not an inclusion criterion for RD

and CD groups, but 37.6% of remitted and 40.1% of cur-

rently depressed children have at least one parent with a his-

tory of depression. To account for this, we compared three

models that each included group (RD versus CD) and a ran-

dom effect of site, but differed in whether they comprised

parental depression and/or its interaction with group. For all

cognitive factors and canonical variates, the data were more

likely to occur under a model with only group, compared to

a model that additionally included parental depression and

the full model that also included the interaction term

(Supplementary Table 18). This suggests that RD and CD

children performed similarly regardless of parental depres-

sive history.

Gender effects in cognitive factors

and canonical variates

At the request of an anonymous reviewer, potential gender

effects were also tested. For each cognitive factor and canon-

ical variate, we took the best-fitting model that contained

only group and a random effect of site and examined

whether adding gender and/or its interaction with group

would explain the data better. In terms of memory recall,

there was very strong evidence for the presence of an add-

itional effect of gender (but not interaction) whereby females

performed better than males (BF 4 100, Supplementary

Tables 19 and 20), but no compelling evidence for gender

differences in the other cognitive factors and canonical vari-

ates (Supplementary Table 19).

Children who were more
withdrawn/depressed had lower
cognitive flexibility

Given the heterogeneity of depression, we also conducted

Bayesian correlations in the CD group to investigate how

different CBCL depressive syndromes—specifically, anxious

depression, withdrawn depression and somatic complaints—

might be related to the cognitive factors and canonical vari-

ates. Interestingly, an examination of the posterior distribu-

tion revealed that the correlation coefficient between

withdrawn depression and cognitive flexibility was between

–0.43 and –0.02 (median = –0.21) with 95% probability.

This suggests that depressed children who were more with-

drawn were likely to have lower cognitive flexibility. There

was no evidence for the presence of other reliable correla-

tions (Supplementary Fig. 4).

Discussion
The degree to which neurocognitive impairments might rep-

resent pre-existing vulnerability, state or trait markers of de-

pression is highly debated and remains unclear. To clarify

this, we analysed the large ABCD dataset and adopted a

Bayesian inference approach to compare several a priori

hypotheses differing in their postulates of how LRH, HRH,

RD and CD children performed in various cognitive

domains. This method presents several distinct advantages

(Wagenmakers et al., 2018). Unlike frequentist inference,

there is perfect inferential symmetry with no bias against the

Figure 1 Group comparison of scores across the three cognitive factors. (A) For the language and reasoning factor, Bayesian model

comparison found that Models 7 (LRH=HRH6¼RD6¼CD) and 3 (LRH=HRH 6¼RD=CD) performed the best, indicating the absence of any vulner-

ability impairment. However, more data will be required to determine whether these reflected a non-specific state/trait impairment, or unique

state and trait effects. (B) In terms of cognitive flexibility, the null Model 1 (LRH=HRH=RD=CD) was comparable to Model 3

(LRH=HRH6¼RD=CD) (BF = 1.01), but outperformed all other alternative models. (C) For memory recall, Models 4 (LRH=HRH=RD6¼CD), 6

(LRH6¼HRH=RD6¼CD) and 3 (LRH=HRH6¼RD=CD) were only anecdotally better than the null model (LRH=HRH=RD=CD). The fit of all

other models were worse than the null hypothesis. Vertical lines indicate lower and upper bound of the 95% highest posterior density.
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null hypothesis. Bayes factors are also easily interpretable

and quantify the strength of evidence provided by the data

for competing models without any dependence on sample

size or number of comparisons made.

Our first key finding was that there were no pre-existing

vulnerabilities in language and reasoning, cognitive flexibility

and memory recall. Prior studies comparing unaffected first-

degree relatives of depressed individuals to controls with no

familial history of depression have yielded mixed results.

Some have reported deficits in executive function (Winters

et al., 1981; Christensen et al., 2006; Belleau et al., 2013;

Hughes et al., 2013), language processing (Christensen

et al., 2006; Hsu et al., 2014), memory (Christensen et al.,
2006) and cognitive flexibility (Hsu et al., 2014), but others

found no difference in similar domains (Klimes-Dougan

et al., 2006; Micco et al., 2009; Hsu et al., 2014; Santucci

et al., 2014). MacKenzie et al. (2019) recognized that these

investigations had very small samples sizes; hence, they

conducted a meta-analysis and identified the presence of pre-

existing vulnerabilities across all measures of cognition in

domains including language, intelligence and memory. This

appears incongruent to our results, although several caveats

in their study should be noted. First, they did not account

for potential differences in subclinical symptoms of psycho-

pathology. In contrast, we showed that there is no difference

in cognition between children at low and high familial risk

of depression even after controlling for individual differences

in internalizing and externalizing problems. Second, cogni-

tive paradigms are often impure and operate across multiple

domains (Phillips, 1997; Austin et al., 2001). Despite this

task impurity problem, the numerous different tasks that

were included in the meta-analysis were each classified into

various cognitive domains. In contrast, we used a latent vari-

able method to extract common variance across a consistent

cognitive battery completed by every participant. Third,

Mackenzie et al. (2019) concluded that general impairment

Figure 2 Results of canonical correlation analyses. (A) Left: As can be seen by the loadings of the cognitive factors, the first canonical vari-

ate along the cognition dimension is dominated by language and reasoning. Right: Correlation of the first brain-cognition canonical pair. (B)

Illustration of loadings of regional brain volumes on the first canonical variate. The most strongly loading regions included those implicated in lan-

guage processing, such as the middle temporal gyrus and inferior frontal cortex, as well as areas thought to be involved in reasoning, such as the

superior frontal gyrus and superior parietal cortex. The Desikan-Killiany and automatic subcortical atlases in Freesurfer were used.
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in cognition is a vulnerability feature of depression on the

basis of significant frequentist tests, even though what they

have really demonstrated is the lack of sufficient evidence to

reject the null hypothesis. In other words, the absence of evi-

dence had been interpreted incorrectly as the evidence of ab-

sence. In contrast, our Bayesian model comparison analyses

have demonstrated that the most parsimonious accounts of

the data for language and reasoning, cognitive flexibility and

memory recall all indicate the absence of a pre-existing vul-

nerability in these domains.

Second, we found that impairments in language and rea-

soning were state and trait features of depression. However,

there is insufficient evidence to determine whether it repre-

sented a non-specific state/trait deficit, or unique state and

trait effects. Even though the sample sizes of RD and CD

children (n = 503) were substantially larger than previous

empirical studies, more data (probably for CD) are required

to disentangle them. Nevertheless, we can confidently con-

clude that state and trait deficits are present in this domain,

which are in line with prior literature reporting worse lan-

guage and executive functioning (e.g. reasoning and plan-

ning) performances in current and remitted depression

(McDermott and Ebmeier, 2009; Lee et al., 2012; Bora

et al., 2013; Snyder, 2013; Baune et al., 2014; Rock et al.,

2014). Based on our results, one might be tempted to specu-

late that scar impairments in language and reasoning, which

are independent of pre-existing vulnerability, are also present

in depression. Indeed, we found that RD children performed

worse in this domain than LRH and HRH children.

Moreover, only 37.7% of RD children have parental history

of depression (Table 1), suggesting that most of these indi-

viduals had low pre-existing vulnerability. These observa-

tions provide some support for the scarring hypothesis,

although future studies with a longitudinal design are needed

to confirm this. Interestingly, there was no compelling evi-

dence for the existence of vulnerability, state and trait defi-

cits in cognitive flexibility and memory recall

(Supplementary material).

To the best of our knowledge, this is also the first study to

find reliable regional brain volume correlates of language

and reasoning, as well as dissociate vulnerability, state and

trait effects in them. Peterson et al. (2009) reported that cor-

tical thinning in the right hemisphere predicted lower atten-

tion and visual memory performance in individuals at high

familial risk for depression compared to those at low risk.

However, it is unclear to what degree this reflects a pre-

existing vulnerability as �40% of their sample were acutely

depressed or in remission. Lower performance in attention

(Leung et al., 2009; Li et al., 2010), set-shifting (Vasic et al.,

2008), and cognitive control (Jung et al., 2014) have also

been associated with specific structural abnormalities, albeit

in relatively small sample sizes (n = 15–50); moreover, these

studies examined only depressed patients versus controls

(Vasic et al., 2008; Leung et al., 2009; Jung et al., 2014), or

remitted versus non-remitted patients (Li et al., 2010). Using

canonical correlation via traditional Wilks’ lambda, 10-fold

Figure 3 Group comparison of scores along the first canonical variate. (A) For structural MRI (sMRI) CV1, Bayesian model comparison

found that Models 4 (LRH=HRH=RD6¼CD), 7 (LRH=HRH6¼RD6¼CD) and 3 (LRH=HRH6¼RD=CD) provided the most parsimonious account

of the data. Thus, a state deficit, but no pre-existing vulnerability, is present. However, more data are required to determine if deficiencies in

these areas might be a trait marker. (B) The results for cognition CV1 are similar to those for the language and reasoning factor. Models 7

(LRH=HRH6¼RD6¼CD) and 3 (LRH=HRH6¼RD=CD) performed the best, indicating the absence of any pre-existing vulnerability, but more data

will be required to determine whether these reflected a non-specific state/trait impairment, or unique state and trait effects. Models included a

random effect of site. Vertical lines indicate lower and upper bound of the 95% highest posterior density.
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cross-validation and permutation testing, we found a reliable

canonical variate of brain volumes that was associated pre-

dominantly with language and reasoning. The most strongly

loading regions included those implicated in language proc-

essing, such as the middle temporal gyrus (Stemmer and

Whitaker, 2008; Petrides, 2014; Friederici, 2015) and infer-

ior frontal gyrus (Stemmer and Whitaker, 2008; Petrides,

2014; Friederici, 2015), as well as areas implicated in rea-

soning, such as the superior frontal gyrus (Prabhakaran

et al., 1997; Perfetti et al., 2009; Schilling et al., 2013) and

superior parietal gyrus (Prabhakaran et al., 1997; Goel and

Dolan, 2001; Knauff et al., 2002, 2003; Wendelken, 2014).

Consistent with behavioural findings, CD children had the

smallest volumes in these areas (i.e. presence of state effect)

while LRH and HRH children did not differ (i.e. absence of

vulnerability effect). The volumes of RD children were com-

parable to LRH and HRH children, although it should be

noted that evidence in favour of this hypothesis was only

modestly better than two alternative models postulating the

presence of a trait deficit.

In addition, robust Bayesian correlations in the CD group

revealed a negative relationship between cognitive flexibility

and withdrawn depression, but not anxious depression and

somatic complaints. Accordingly, depressed children who

were more withdrawn tended to have lower cognitive flexi-

bility. These findings suggest it might be important to con-

sider different symptom dimensions when examining the

cognitive profile of depression. Interestingly, our results ap-

pear to contradict a previous study (Lundy et al., 2010),

which reported that children with better cognitive flexibility

based on the Trail Making Tests had higher levels of anx-

ious depression but not withdrawn depression. This discrep-

ancy might have arisen due to paradigm differences and

future work is needed to reconcile these differences.

Limitations in this study should be noted. First, we ana-

lysed a young pre-adolescent sample (9–10 years old) and

thus, findings may not be generalizable to older samples,

including adults. Despite this, our results might be valuable

as the early adolescent phases represent a highly vulnerable

period for onset of depression, but most of the prior litera-

ture has focused on adults (Baune et al., 2014; Allott et al.,

2016). Moreover, our data are less likely to suffer from con-

founds that are associated with older populations and may

impact on cognitive ability, such as long-term medication

use, substance abuse, prior hospitalization, and electrocon-

vulsive therapy. Nevertheless, the development of cognitive

abilities in domains including language, reasoning and mem-

ory continues throughout adolescence and early adulthood

(Luna et al., 2004; Rosselli et al., 2014; Cromer et al.,
2015). Thus, it is possible that cognitive vulnerabilities might

not yet have emerged in our sample. Furthermore, depres-

sion tends to peak in onset at mid-to-late adolescence, i.e.

the age of 9–10 years old is thought to be generally young

for experience of depression and might suggest more serious

illness with poorer prognosis (Thapar et al., 2012). Future

studies could investigate an older sample within the adoles-

cent age range.

Second, while the ABCD cognitive battery was comprehen-

sive, only ‘cold’ emotional-independent tasks were adminis-

tered. Given that mood dysregulation is a key feature of

depression, future work could seek to dissociate vulnerability,

state and trait features using ‘hot’ emotion-laden cognitive

paradigms (Roiser and Sahakian, 2013). Third, we have

adopted a cross-sectional design comparing healthy children

at high- and low-familial risk to examine the vulnerability

hypothesis. However, not all high-risk individuals will go on

to develop depression and it is unlikely that everyone at low

familial risk will remain free of depression. In other words,

vulnerability markers derived from family studies are limited

in predicting risk for developing the disorder. One way to

overcome this weakness in the future is to use prospective

longitudinal designs instead, which acquire repeated neuro-

cognitive assessments before and after the onset of depression

(Zammit et al., 2004; Airaksinen et al., 2007; Koenen et al.,

2009; Simons et al., 2009). Fourth, although the focus of this

study was on depression, it should be noted that we also

found a relationship between language and reasoning with

ADHD (Supplementary material). This suggests that the find-

ings might also be generalizable to ADHD. Fifth, despite the

very large sample size in the ABCD study, it was still insuffi-

cient to distinguish between some models, such as whether

or not deficits in language and reasoning and their associated

brain volumes represented unique state and trait features of

depression. One possible explanation might be that tasks

used in the ABCD study were not sensitive enough, and fu-

ture studies could consider investigating different tasks

(including ‘hot’ cognition tasks) instead.

To conclude, this is the first empirical study to disentangle

pre-existing vulnerability, state and trait features of neurocog-

nitive impairments in depression. By adopting a Bayesian in-

ferential approach in the ABCD study, we showed that state

and trait impairments in language and reasoning—as well as

state (and possibly trait) abnormalities in brain structures

involved in this cognitive domain—were characteristic of de-

pression in early adolescence. However, there is no compel-

ling evidence for the existence of vulnerability, state and trait

deficits in other domains of cognition, at least as assessed by

the tasks administered in the ABCD study. These findings

have important clinical implications, suggesting that cognitive

dysfunction may not be useful targets of preventive interven-

tions—although it should be noted that they are cross-section-

al in nature and specific to a narrow group of 9–10-year-old

children. Depressed patients, even after remission, might also

derive benefit from less commonly used treatment strategies

such as cognitive remediation therapy (Kim et al., 2018).
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Supplemental Methods 

Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-5 (KSADS-5)  

Participants were evaluated using the KSADS-5, which is a well-established, 

reliable and valid assessment of lifetime mental disorders in youths (Kaufman et al., 

1997; Barch et al., 2018). Children provided self-reports in selected domains including 

mood and anxiety disorders, sleep and suicidality. Although parents/guardians also 

completed the KSADS-5 about their children, the ABCD team suggested that children’s 

self-report may provide more accurate assessments due to three main reasons (Barch 

et al., 2018). First, several studies have shown that parent and youth report start to 

diverge in early adolescence. Second, some evidence suggests that parents’ report 

may be biased by their own mental health experiences. That is, parents’ experience of 

depression and anxiety can color judgement of their child’s level of depression and 

anxiety. Third, there is evidence for greater predictive utility in youth report over and 

above parent report. Therefore, we have chosen to use children self-report when 

determining children’s current and past mental health. 

 

Flanker Task (FT)  

The FT is a measure of executive attention and inhibitory control in the NIH 

Toolbox  (Zelazo et al., 2013). Participants had to indicate the orientation (left or right) of 

a stimulus presented in the center of a screen. The central stimulus was flanked by two 

stimuli on each side, which were either in a congruent or incongruent orientation with 

the center stimulus. Participants completed a four-trial practice block, followed by an 

easier 25-trial test block that used fish as stimuli and a harder 25-trial test block that 
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used arrows at the stimuli. Each test block consisted of 16 congruent and 9 incongruent 

trials. Participants could only advance to the test block with arrow stimuli if they correctly 

answered at least 5 of 9 incongruent fish stimuli trials. Scoring procedures utilized a 

two-vector method, which incorporated accuracy as well as reaction time (RT) for 

participants who maintained a greater than 80% level of accuracy. Scores were based 

on the first 20 trials of each block due to fatigue effects found in the last five trials. 

Accuracy scores ranged from 0 to 5 and were derived from the equation: Accuracy = 

(5/40) × (Number of correct responses). With regards to RT, trials lower than 100ms or 

greater than 3SDs from the mean RT were discarded. Median RTs were computed 

based on correct incongruent trials and were log-transformed. A minimum 500ms and 

maximum 3000ms RT scoring range was established and RTs falling outside this range 

were reset to the minimum or maximum as appropriate. RT scores ranged from 0 to 5 

and were added to the accuracy scores for participants that met the 80% accuracy 

criteria. Age-corrected standard scores were analyzed.    

 

Dimension Change Card Sort Task (DCCST)  

The DCCST is a measure of cognitive flexibility in the NIH Toolbox (Zelazo et al., 2013). 

Participants were required to sort the target stimuli (i.e., white boat and green rabbit) by 

shape or color to match the target stimuli (i.e., a green boat or white rabbit). On each 

trial, participants were presented with the test stimulus for 100ms along with the 

instruction of whether to sort by “shape” or “color”. Following that, the target stimuli 

appeared along with the test stimulus for up to 10,000ms and participants had to select 

the target stimulus matching the test stimulus. There were 4 practice trials each of 

sorting by color and shape that contained performance feedback. The test blocks 
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consisted of five trials sorting on one dimension (pre-switch block), followed by five trials 

sorting on the other dimension (post-switch block). Participants who correctly responded 

to four out of the five trials on the post-switch block completed a 50-trial “mixed” block, 

with 40 “frequent” trials and 10 “infrequent” trials presented in a pseudorandom order. 

The frequent trials corresponded to the sorting dimension used in the post-switch block. 

Scores were derived using the same two-vector method described above for FT. Only 

the first 30 mixed-trial blocks were incorporated into the scoring algorithm due to fatigue 

effects. Age-corrected standard scores were analyzed.  

 

List Sorting Test (LST)  

The LST is part of the NIH Toolbox and participants were presented with a series 

of stimuli, each for 2 seconds (Tulsky et al., 2014). They had to remember each 

stimulus, re-order the stimuli in terms of size and recite the names of the stimulus in that 

order. The task consisted of a “1-list” and “2-list” block, with “1-list” requiring the 

sequencing of items from a single category (animals or foods) and “2-list” demanding 

the ordering of items from two categories (animals and foods) simultaneously. 

Participants began with a two-item string, which increased by one item with each item. 

In the event of an incorrect response, they were presented with a second trial containing 

the same number of items. The task was discontinued when participants provided 

incorrect responses on two trials with the same number of items or correctly sequenced 

seven items. Scores were derived by summing the total number of correct responses 

across both lists. Age-corrected standard scores were analyzed.     
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Supplemental Results 

Group differences in internalizing and externalizing syndromes   

In terms of CBCL internalizing, Model 6 (LRH≠HRH=RD≠CD) is the most preferred 

model with BF=2.39×1077 relative to null (Model 1: LRH=HRH=RD=CD). It is also 6.36 

times more likely than the second-best model (Model 5: LRH≠HRH≠RD=CD) to have 

produced the observed data (Table S3 and S4). Hence, LRH had the least internalizing 

problems while CD had the most symptoms. The severity for HRH and RD were similar 

and ranked in-between the other two groups (Fig. S2A).  

 Similarly, for CBCL externalizing, Model 6 (LRH≠HRH=RD≠CD) was the best 

model with a BF=1.53×1070 compared to null (Model 1: LRH=HRH=RD=CD). However, 

it only marginally outperformed (BF=1.72) the second-best model (Model 8: LRH≠HRH≠ 

RD≠CD). Models 6 and 8 were 5.31 and 3.08 times better, respectively, than the third-

best model (Model 5: LRH≠HRH≠RD=CD), suggesting that they provided the most 

parsimonious account of the data (Table S5 and S6). Hence, the severity of 

externalizing problems was lowest for LRH, highest for CD, and intermediate for HRH 

and RD (Fig. S2B).          

 

Results of Bayesian model comparison in language and reasoning after 

accounting for CBCL internalizing and externalizing syndromes 

One might argue that that our analysis in the main text did not conduct accurate 

vulnerability or trait comparison since potential subclinical psychiatric symptoms were 

not considered. Indeed, even though HRH and RD were not clinically depressed, they 

reported greater internalizing and externalizing problems than LRH (Fig. S2). To 
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address this interpretative conundrum, we investigated four new models that only 

included observations in LRH, HRH and RD (CD was excluded as it would be unusual 

to remove effects of psychiatric symptoms from a psychiatric group). Each model also 

included a random effect of site and covariates of CBCL internalizing and externalizing 

subscales:     

9.  LRH=HRH=RD. Fully constrained model and null hypothesis. 

10.  LRH≠HRH=RD. Non-specific vulnerability/trait effect. 

11.  LRH=HRH≠RD. Specific trait, but no vulnerability, effect. 

12.  LRH≠HRH≠RD. Specific vulnerability and trait effect. 

In line with results in the main text, Model 11 (LRH=HRH≠RD) was most preferred 

(BF=10.8) relative to null (Model 9: LRH=HRH=RD), and performed 3.61 times better 

than the second-best model (Model 12: LRH≠HRH≠RD) (Table S7). Hence, even after 

correcting for differences in internalizing and externalizing syndromes, evidence still 

points to the presence of a trait, but not vulnerability, impairment in language and 

reasoning (Table S8).     

 

Results of Bayesian correlational analyses between language and reasoning and 

CBCL DSM diagnoses 

Might impairments in language and reasoning also be associated with other 

childhood psychiatric disorders besides depression? We performed Bayesian 

correlations to examine how various CBCL DSM-oriented scales – specifically 

depressive problems, anxiety problems, somatic problems, attention-deficit hyperactive 

disorder (ADHD), oppositional defiant problems and conduct problems – were related to 
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language and reasoning ability. Only the RD and CD groups were included in these 

analyses. LRH and HRH were excluded because these children fulfilled no diagnostic 

criteria on the KSADS-5. Thus, adding such a large number of them (N=4123) along 

with RD and CD (N=503) would cause an extreme skew of the CBCL DSM scores 

towards the low end and result in correlations that are not meaningful. Interrogations of 

posterior distributions revealed that the correlation between depression and language 

and reasoning was between -0.20 and -0.01 (median=-0.11) with 95% probability, which 

was in line with our main findings and suggested that children who were more 

depressed were worse in this cognitive domain. Interestingly, there was also a negative 

association between ADHD and language reasoning (between -0.20 and -0.01 

[median=-0.10] with 95% probability). See Supplemental Fig. S5 for details. Using 

robust linear regression with t-distribution, we compared one model that predicted 

language and reasoning with only ADHD to another that uses both ADHD and 

depression. The difference in expected log predictive density (ELPD_diff) indicated that 

the model including depression did not differ in predictive performance to the one with 

only ADHD (ELPD_diff=-0.6, SE=2.0), which suggested that the findings for language 

and reasoning might also be generalizable to ADHD.         

 

Results of Bayesian model comparison for other cognitive factors 

 In terms of cognitive flexibility, the null model (Model 1: LRH=HRH=RD=CD) was 

comparable to Model 3 (LRH=HRH≠RD=CD) with BF=1.01, but outperformed all other 

alternative models (Models 2, 4–8) by a BF ranging from 4.22–62.5 (Table S9). This 

suggests that more data will be required to examine whether a non-specific state/trait 
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impairment was present. Interestingly, after excluding CD and considering CBCL 

internalizing and externalizing subscale scores, the null model (Model 9: 

LRH=HRH=RD) was most strongly favored and was 3.46 times more likely to explain 

the observed data than the best-performing alternative model (Model 11: 

LRH=HRH≠RD; Table S10). Therefore, current evidence supports the lack of any 

vulnerability, state or trait impairment in cognitive flexibility (Fig. 2B).       

 When examining memory recall, Models 4 (LRH=HRH=RD≠CD), 6 

(LRH≠HRH=RD≠CD) and 3 (LRH=HRH≠RD=CD) performed better relative to null 

(Model 1: LRH=HRH=RD=CD), albeit only anecdotally by 1.45–2.18 times. The fit of all 

other models were 1.15–4.57 times worse than the null hypothesis (Table S11 and 

S12). However, after accounting for CBCL internalizing and externalizing by selecting 

only children in LRH, HRH and RD, the null model (Model 9: LRH=HRH=RD) was best 

fitting and outperformed the next best alternative model (Model 11: LRH=HRH≠RD) by 

BF=10.8 (Table S13). Together, these results suggest there is no compelling evidence 

for vulnerability, state or trait impairment in memory recall (Fig. 2C).   

 

Results for first cognition canonical variate scores were highly similar to that for 

the language and reasoning factor  

In terms of the first canonical variate (CV1) cognition scores, the results were 

unsurprisingly highly similar to that found earlier for the language and reasoning factor. 

Model 7 (LRH=HRH≠RD≠CD) was most preferred (BF=5.42×103) relative to null (Model 

1: LRH=HRH=RD=CD), but only slightly outperformed the second-best model (Model 3: 

LRH=HRH≠RD=CD) with BF=1.4. However, when compared to the third-best model 

(Model 8: LRH≠HRH≠RD≠CD), Models 7 and 3 were 7.45 and 5.41 times better 
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respectively at explaining the observed data (Tables S16 and S17). Therefore, LRH 

and HRH showed no difference in CV1 cognition scores, which indicated the absence of 

a pre-existing vulnerability. On the other hand, RD and CD performed worse than the 

other two groups and reflected either a non-specific state/trait impairment, or unique 

state and trait effects (Fig. 3B).         

 

Supplemental Discussion 

Interestingly, there was no compelling evidence for state or trait impairments in 

cognitive flexibility and memory recall. We found that a model theorizing the presence of 

a non-specific state/trait deficit in cognitive flexibility was comparable in likelihood to the 

null hypothesis; whereas for memory recall, three alternative models that all postulated 

a state impairment performed better than the null model, albeit only marginally. After 

excluding CD children and accounting for internalizing and externalizing syndromes, the 

null model for both cognitive flexibility and memory recall provided the most 

parsimonious account of the data. Prior investigations of these domains in small 

samples of acute and/or remitted depression have yielded conflicting findings, with 

some reporting impairments (Smith et al., 2006; McDermott and Ebmeier, 2009; Lee et 

al., 2012; Snyder, 2013; Baune et al., 2014; Rock et al., 2014) and others finding no 

difference (Robertson et al., 2003; Favre et al., 2009; Klimkeit et al., 2011; Peters et al., 

2017). Differences in tasks aside, our findings in a relatively larger group (N=503) 

indicate support for the latter.  
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Supplemental Tables 

 
Table S1: Bayesian model comparison for Language and Reasoning factor.   
Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 1.33 × 100   ± 0.40% 
3 LRH = HRH ≠ RD = CD 9.78 × 102   ± 0.49% 
4 LRH = HRH = RD ≠ CD 6.79 × 101   ± 0.58% 
5 LRH ≠ HRH ≠ RD = CD 9.32 × 101   ± 0.35% 
6 LRH ≠ HRH = RD ≠ CD 8.32 × 100   ± 0.73% 
7 LRH = HRH ≠ RD ≠ CD 1.06 × 103   ± 0.59% 
8 LRH ≠ HRH ≠ RD ≠ CD 2.14 × 102   ± 0.33% 

Note: All models include random effect of site.  

 

Table S2: Posterior distributions of the parameter estimates of best model for Language 
and Reasoning factor (Model 7). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.234 -0.152 -0.111 -0.070 0.009 
group – LRH/HRH 0.080 0.120 0.140 0.159 0.197 
group - RD -0.063 -0.017 0.007 0.031 0.077 
group - CD -0.248 -0.181 -0.147 -0.112 -0.044 

Note: Model includes random effect of site. Mu represents the grand mean.   

 
Table S3: Bayesian model comparison for CBCL internalizing subscale.   
Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 1.59 × 1076   ± 0.22% 
3 LRH = HRH ≠ RD = CD 2.50 × 1010   ± 0.47% 
4 LRH = HRH = RD ≠ CD 5.20 × 103     ± 0.51% 
5 LRH ≠ HRH ≠ RD = CD 3.76 × 1076   ± 0.31% 
6 LRH ≠ HRH = RD ≠ CD 2.39 × 1077   ± 0.78% 
7 LRH = HRH ≠ RD ≠ CD 1.75 × 1010   ± 0.33% 
8 LRH ≠ HRH ≠ RD ≠ CD 2.67 × 1076   ± 0.39%  

Note: All models include random effect of site.  
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Table S4: Posterior distributions of the parameter estimates of best model for CBCL 
internalizing subscale (Model 6). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.339 0.614 1.090 1.593 2.540 
group - LRH -5.371 -4.879 -4.630 -4.376 -3.899 
group - HRH/RD 0.542 1.007 1.251 1.501 1.981 
group - CD 2.038 2.920 3.374 3.826 4.703 

Note: Model includes random effect of site. Mu represents the grand mean.   

 
Table S5: Bayesian model comparison for CBCL externalizing subscale.   
Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 5.71 × 1067   ± 0.33% 
3 LRH = HRH ≠ RD = CD 9.75 × 1014   ± 0.47% 
4 LRH = HRH = RD ≠ CD 3.41 × 106     ± 0.66% 
5 LRH ≠ HRH ≠ RD = CD 2.88 × 1069   ± 0.84% 
6 LRH ≠ HRH = RD ≠ CD 1.53 × 1070   ± 0.34% 
7 LRH = HRH ≠ RD ≠ CD 2.87 × 1015   ± 0.37% 
8 LRH ≠ HRH ≠ RD ≠ CD 8.86 × 1069   ± 0.36% 

Note: All models include random effect of site.  

 

Table S6: Posterior distributions of the parameter estimates of best model for CBCL 
externalizing subscale (Model 6). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu 0.136 1.040 1.493 1.943 2.853 
group - LRH -5.333 -4.867 -4.625 -4.382 -3.914 
group - HRH/RD -0.087 0.362 0.602 0.842 1.306 
group - CD 2.756 3.592 4.019 4.458 5.293 

Note: Model includes random effect of site. Mu represents the grand mean.   
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Table S7: Bayesian model comparison for Language and Reasoning factor when 
selecting only LRH, HRH and RD.   
Model no. Equality constraint Bayes Factor 
9 LRH = HRH = RD 1 
10 LRH ≠ HRH = RD 0.24    ± 0.57% 
11 LRH = HRH ≠ RD 10.8    ± 0.45% 
12 LRH ≠ HRH ≠ RD 2.99    ± 0.81% 

Note: All models include random effect of site and covariates of CBCL internalizing and 
externalizing subscales. 
 
 
Table S8: Posterior distributions of the parameter estimates of best model for Language 
and Reasoning factor when selecting only LRH, HRH and RD (Model 11). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.142 -0.067 -0.028 0.009 0.084 
group – LRH/HRH 0.017 0.043 0.057 0.071 0.097 
group – RD -0.097 -0.071 -0.057 -0.043 -0.017 

Note: Model includes random effect of site. Mu represents the grand mean.   
 
 
Table S9: Bayesian model comparison for Cognitive Flexibility factor.   
Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 0.028    ± 0.38% 
3 LRH = HRH ≠ RD = CD 0.991    ± 0.58% 
4 LRH = HRH = RD ≠ CD 0.237    ± 0.87% 
5 LRH ≠ HRH ≠ RD = CD 0.064    ± 0.43% 
6 LRH ≠ HRH = RD ≠ CD 0.016    ± 0.28% 
7 LRH = HRH ≠ RD ≠ CD 0.214    ± 0.40% 
8 LRH ≠ HRH ≠ RD ≠ CD 0.018    ± 0.56% 

Note: All models include random effect of site. 
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Table S10: Bayesian model comparison for Cognitive Flexibility factor when selecting 
only LRH, HRH and RD.   
Model no. Equality constraint Bayes Factor 
9 LRH = HRH = RD 1 
10 LRH ≠ HRH = RD 3.78 × 10-2   ± 0.42% 
11 LRH = HRH ≠ RD 2.89 × 10-1   ± 0.34% 
12 LRH ≠ HRH ≠ RD 2.71 × 10-2   ± 0.72% 

Note: All models include random effect of site and covariates of CBCL internalizing and 
externalizing subscales. 
 
 
Table S11: Bayesian model comparison for Memory Recall factor.   
Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 0.219    ± 0.44% 
3 LRH = HRH ≠ RD = CD 1.445    ± 0.55% 
4 LRH = HRH = RD ≠ CD 2.181    ± 0.38% 
5 LRH ≠ HRH ≠ RD = CD 0.717    ± 0.61% 
6 LRH ≠ HRH = RD ≠ CD 2.056    ± 0.71% 
7 LRH = HRH ≠ RD ≠ CD 0.868    ± 0.79% 
8 LRH ≠ HRH ≠ RD ≠ CD 0.511    ± 0.45% 

Note: All models include random effect of site 
 
 

Table S12: Posterior distributions of the parameter estimates of best model for Memory 
Recall factor (Model 4). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.247 -0.156 -0.111 -0.066 0.025 
group – LRH/HRH/RD 0.020 0.076 0.106 0.136 0.192 
group - CD -0.192 -0.136 -0.106 -0.076 -0.020 

Note: Model includes random effect of site. Mu represents the grand mean.   
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Table S13: Bayesian model comparison for Memory Recall factor when selecting only 
LRH, HRH and RD.   
Model no. Equality constraint Bayes Factor 
9 LRH = HRH = RD 1 
10 LRH ≠ HRH = RD 0.046   ± 0.41% 
11 LRH = HRH ≠ RD 0.093   ± 0.63% 
12 LRH ≠ HRH ≠ RD 0.007   ± 0.84% 

Note: All models include random effect of site and covariates of CBCL internalizing and 
externalizing subscales. 
 
 
Table S14: Bayesian model comparison for sMRI cv1.   

Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 0.02    ± 0.82% 
3 LRH = HRH ≠ RD = CD 3.04    ± 0.47% 
4 LRH = HRH = RD ≠ CD 5.94    ± 0.33% 
5 LRH ≠ HRH ≠ RD = CD 0.28    ± 0.56% 
6 LRH ≠ HRH = RD ≠ CD 0.35    ± 0.34% 
7 LRH = HRH ≠ RD ≠ CD 3.00    ± 0.25% 
8 LRH ≠ HRH ≠ RD ≠ CD 0.33    ± 0.44% 

Note: All models include random effect of site 
 
 
Table S15: Posterior distributions of the parameter estimates of best model for sMRI 
CV1 (Model 4). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.330 -0.172 -0.093 -0.010 0.149 
group – LRH/HRH/RD 0.038 0.100 0.131 0.163 0.222 
group – CD -0.222 -0.163 -0.131 -0.100 -0.038 

Note: Model includes random effect of site. Mu represents the grand mean.   
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Table S16: Bayesian model comparison for cognition CV1.   

Model no. Equality constraint Bayes Factor 
1 LRH = HRH = RD = CD 1 
2 LRH ≠ HRH = RD = CD 0.87 × 100     ± 0.25% 
3 LRH = HRH ≠ RD = CD 4.54 × 103     ± 0.43% 
4 LRH = HRH = RD ≠ CD 1.54 × 102     ± 0.62% 
5 LRH ≠ HRH ≠ RD = CD 6.58 × 102     ± 0.38% 
6 LRH ≠ HRH = RD ≠ CD 8.25 × 100     ± 0.36% 
7 LRH = HRH ≠ RD ≠ CD 5.83 × 103     ± 0.32% 
8 LRH ≠ HRH ≠ RD ≠ CD 9.34 × 102     ± 0.27% 

Note: All models include random effect of site.  
 
 
Table S17: Posterior distributions of the parameter estimates of best model for cognition 
CV1 (Model 7). 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.307 -0.199 -0.146 -0.092 0.018 
group – LRH/HRH 0.120 0.169 0.196 0.221 0.271 
group - RD -0.083 -0.023 0.009 0.040 0.102 
group - CD -0.340 -0.250 -0.203 -0.158 -0.071 

Note: Model includes random effect of site. Mu represents the grand mean.   
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Table S18: Bayesian model comparison accounting for parental history of depression in 
remitted and currently depressed children.   

Term Bayes Factor 
Language and reasoning 
Group  1 
Group + Parental Depression 0.462    ± 0.88% 
Group + Parental Depression + Group*Parental Depression  0.457    ± 1.74% 
Cognitive Flexibility 
Group 1 
Group + Parental Depression 0.137    ± 0.74% 
Group + Parental Depression + Group*Parental Depression  0.029    ± 1.45% 
Memory Recall 
Group 1 
Group + Parental Depression 0.353    ± 1.07% 
Group + Parental Depression + Group*Parental Depression  0.063    ± 1.61% 
Brain CV1 
Group 1 
Group + Parental Depression 0.506    ± 1.14% 
Group + Parental Depression + Group*Parental Depression  0.091    ± 0.75% 
Cognition CV1 
Group 1 
Group + Parental Depression 0.136    ± 0.94% 
Group + Parental Depression + Group*Parental Depression  0.035    ± 2.25% 

Note: All models include random effect of site.  
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Table S19: Bayesian model comparison testing for potential gender effects in cognitive 
factors and canonical variates. 

Term Bayes Factor 
Language and reasoning 
Group (LRH = HRH ≠ RD ≠ CD; Model 7 in Table S1) 1 
Group + Gender 0.236    ± 1.87% 
Group + Gender + Group*Gender  0.009    ± 1.98% 
Cognitive Flexibility 
Group (LRH = HRH = RD = CD; Model 1 in Table S9) 1 
Group + Gender  0.035    ± 0.92% 
Memory Recall 
Group (LRH = HRH = RD ≠ CD; Model 4 in Table S11) 1 
Group + Gender 6.09 × 1012   ± 1.92% 
Group + Gender + Group*Gender  9.38 × 1011   ± 1.79% 
Brain CV1 
Group (LRH = HRH = RD ≠ CD; Model 4 in Table S14) 1 
Group + Gender 0.047    ± 1.91% 
Group + Gender + Group*Gender  0.008    ± 1.93% 
Cognition CV1 
Group (LRH = HRH ≠ RD ≠ CD; Model 7 in Table S16) 1 
Group + Gender 0.129    ± 1.05% 
Group + Gender + Group*Gender  0.003    ± 0.95% 

Note: All models include random effect of site.  
 
 
Table S20: Posterior distributions of the parameter estimates for gender differences in 
memory recall. 

Parameter 2.5% 25% 50% 75% 97.5% 
mu -0.231 -0.140 -0.096 -0.050 0.040 
gender – F 0.079 0.096 0.104 0.113 0.129 
gender – M -0.129 -0.113 -0.104 -0.096 -0.079 
group – LRH/HRH/RD 0.008 0.063 0.091 0.120 0.176 
group - CD -0.176 -0.120 -0.091 -0.063 -0.008 

Note: Model includes random effect of site. Mu represents the grand mean.   
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Supplemental Figures 

   

Figure S1. Intercorrelations between cognitive variables. Evidently, some cognitive 

variables are correlated with a group of other metrics, but not with measures outside 

that group. This suggests that more general, underlying cognitive factors might be 

present. RAVLT = Rey Auditory Verbal Learning Test. Refer to Methods for descriptions 

of tasks and associated variables of interest.  
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Figure S2. (A) Group comparison of the Achenbach Child Behavior Checklist (CBCL) 

internalizing subscale. Bayesian model comparison found that model 6 

(LRH≠HRH=RD≠CD) outperformed all other hypotheses, indicating the presence of a 

non-specific vulnerability/trait, as well as a specific state, effect. (B) For CBCL 

externalizing, Models 6 (LRH≠HRH=RD≠CD) and 8 (LRH≠HRH≠RD≠CD) provided the 

most parsimonious account of the data. Thus, a specific state effect exists, but more 

data are required to determine whether these reflect a non-specific vulnerability/trait 

impairment, or unique vulnerability and trait effects. Models included a random effect of 

site. Vertical lines indicate lower and upper bound of the 95% highest posterior density. 

Abbreviations: LRH = low-risk healthy, HRH = high-risk healthy, RD = remitted 

depressed, CD = currently depressed.        
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Figure S3. Null distribution of the first canonical pair from canonical correlation analysis 

on 20,000 permutations of the dataset. The red vertical line indicates the original 

correlation value.   
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Figure S4. Bayesian correlation coefficients between CBCL depressive syndromes and 

cognitive factors.  
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Figure S5. Bayesian correlation coefficients between CBCL DSM-oriented scales and 

language and reasoning.  
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