

ARTICLE

Dopaminergic frontostriatal pathways in major depressive disorder and childhood sexual abuse: a multimodal neuroimaging investigation

Lauren R. Borchers^{1,2,9}, Rotem Dan^{1,2,9}, Emily L. Belleau^{1,2}, Roselinde H. Kaiser^{1,2}, Rachel Clegg¹, Franziska Goer¹, Pia Pechtel^{1,2}, Miranda Beltzer¹, Dustin Wooten^{4,5}, Georges El Fakhri^{6,7}, Marc D. Normandin⁶ and Diego A. Pizzagalli^{1,2,8}✉

© The Author(s), under exclusive licence to Springer Nature Limited 2025

Dysregulated dopaminergic signaling has been implicated in the pathophysiology of major depressive disorder (MDD) and childhood sexual abuse (CSA), but inconsistencies abound. In a multimodal PET-functional MRI study, harnessing the highly selective tracer [¹¹C]altropane, we investigated dopamine transporter availability (DAT) and resting-state functional connectivity (rsFC) within reward-related regions among 112 unmedicated individuals (MDD: $n = 37$, MDD/CSA: $n = 18$; CSA no MDD: $n = 14$; controls: $n = 43$). Striatal DAT and seed-based rsFC were assessed in the dorsal and ventral striatum and the ventral tegmental area. We found that MDD, CSA, and their co-occurrence were associated with region-specific DAT abnormalities, which were related to the number of lifetime MDD episodes and the duration of childhood maltreatment. CSA was further associated with lower frontostriatal rsFC. The findings provide compelling evidence of DA dysregulation in MDD and CSA, and highlight potential prevention and treatment targets.

Molecular Psychiatry (2026) 31:343–351; <https://doi.org/10.1038/s41380-025-03218-3>

INTRODUCTION

Early life stress (ELS) affects a range of domains including cognition [1] and reward circuitry functioning [2, 3], and has been linked to various forms of psychopathology [4]. Indeed, ELS is a significant predictor of both child- and adult-onset psychiatric disorders [5, 6]; in particular, exposure to ELS increases individuals' risk for developing MDD prior to adolescence more than two-fold [7] and in adulthood [8], especially for females with a history of childhood sexual abuse (CSA; [9]).

Both ELS [10, 11] and MDD [12–14] have been linked to blunted reward-related activation within mesolimbic dopaminergic pathways as well as lower reward processing – particularly in reinforcement learning or response bias tasks, which rely on dopaminergic signaling [10, 15, 16]. Further, MDD and ELS have been linked to altered resting-state functional connectivity (rsFC) patterns of the bilateral putamen [17], activation in the caudate [18, 19], activation in the nucleus accumbens (NAcc; [2, 20]), and activation and rsFC of the ventral tegmental area (VTA; [14]). Indeed, work by Cheng and colleagues [21] showed that greater prefrontal-striatal rsFC was associated with more severe anxiety and depressive symptoms.

Coupled with behavioral findings, these task-based and resting-state fMRI patterns have been interpreted as reflecting blunted dopaminergic (DA) signaling, particularly in the midbrain and striatum. However, direct evidence of lower DA signaling remains

scant. One possible marker of lower DA signaling is downregulated dopamine transporter (DAT) availability, which has been observed in various preclinical models [22]. Lower DAT availability has been interpreted as suggesting a secondary downregulation of the transporter owing to low levels of DA [13].

In line with this assumption, using the highly selective DAT tracer [¹¹C]altropane, Pizzagalli and colleagues [23] reported that MDD was characterized by lower DAT availability in the putamen and DAT availability was lower with increasing number of lifetime depressive episodes. Of note, in the same study, lower putamen DAT was confirmed in postmortem tissue of patients with MDD [23].

In spite of compelling preclinical evidence linking various rodent models relevant to depression to lower DAT along mesolimbic pathway [24] and our initial findings of lower striatal DAT availability [23], evidence for DAT reduction in MDD has been inconsistent (e.g., [25]). We have argued that a possible reason for such inconsistencies might stem from the use of SPECT tracers that are not particularly selective for DAT [23].

It is unclear whether similar abnormalities in DAT availability are seen in the context of CSA. Researchers highlight the neurobiological overlap of stress and reward processing, postulating that the reward network is a primary contributor to the association between ELS and subsequent psychopathology; blunted dopamine transmission is likely related to altered reward processing [10, 13, 26].

¹Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA. ²Department of Psychiatry, Harvard Medical School, Boston, MA, USA. ³Department of Psychology and Neuroscience, University of Colorado-Boulder, Boulder, CO, USA. ⁴Department of Radiology, Harvard Medical School, Boston, MA, USA. ⁵Massachusetts General Hospital, Boston, MA, USA. ⁶Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA. ⁷Department of Biomedical Informatics and Data Science, Yale University, New Haven, CT, USA. ⁸Noel Drury, M.D. Institute for Translational Depression Discoveries, Department of Psychiatry and Human Behavior & Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA. ⁹These authors contributed equally: Lauren R. Borchers, Rotem Dan. ✉email: dpizzaga@hs.uci.edu

Our prior study, which included 23 controls and 25 individuals with MDD, was the first to use the highly selective DAT PET tracer [^{11}C]alopane in MDD [23]. To our knowledge, no study has examined DAT availability and functional connectivity in participants with vs. without MDD and/or CSA in the same study. Accordingly, the goals of the current study were to: (1) replicate the earlier report of lower striatal DAT binding potential in MDD in a larger sample ($n = 46$ included in a previous study), hypothesizing that participants with MDD would demonstrate blunted DAT in the putamen [23]; (2) examine CSA-related differences in DAT, hypothesizing that CSA would be related to blunted DAT in all striatal regions of interest; and (3) probe rsFC within reward-related circuitry and possible relations to striatal DAT.

METHODS

Participants and study design

Adults (ages 18–45) across four groups: controls, MDD, CSA/no MDD, and MDD/CSA were recruited from the Boston metropolitan area between 2012–2016 for two separate studies. The objective of Study 1 ($n = 46$; 67% female) was to evaluate possible dopamine dysfunction in MDD and the objective of Study 2 ($n = 66$; 100% female) was to probe dopamine mechanisms after CSA and identify possible biomarkers of resilience to MDD. Therefore, only Study 2 examined CSA and ELS variables.

Across both studies, all participants were unmedicated and right-handed, had no contraindications for undergoing magnetic resonance imaging, had no neurological or medical illnesses, and had no lifetime substance dependence or substance abuse in the last year. Participants with MDD were not considered for the study if they were taking any psychotropic medications in the past 2 weeks (6 weeks for fluoxetine), had lifetime use of dopaminergic drugs, and had psychiatric comorbidities (with the exception of social anxiety disorder, generalized anxiety disorder, or specific phobia if MDD was the primary concern). More information regarding inclusion and exclusion criteria are summarized in the Supplement. 114 unmedicated participants completed: (i) a clinical assessment visit, (ii) an MRI session (approximately 2 weeks after the clinical visit), and (iii) a PET imaging visit (approximately 1 month after the clinical visit). One participant was excluded from PET analyses due to benzodiazepine use during the PET imaging visit and one participant was excluded from all analyses for unreliable reporting. In addition, one participant lacked fMRI data, and three participants were excluded from fMRI analyses due to in-scanner motion (Supplementary Methods). Thus, the final sample included 112 individuals with PET data and 109 individuals with rsfMRI data. We discovered that one control participant had a history of MDD; therefore, we conducted a sensitivity analysis excluding this participant.

The clinical assessment included a DSM-IV structured clinical interview [27] to confirm current diagnosis of, or absence of lifetime, MDD. In addition, participants completed a variety of clinical assessments: the Traumatic Antecedents Questionnaire [28], the Hamilton Rating Scale for Depression (HRSD; [29]), the Beck Depression Inventory (BDI-II; [30]), the Snaith Hamilton Pleasure Scale (SHAPS; [31]), their history of major depressive episodes (MDE; binned (see Supplementary Results) and continuously), and the Mood and Anxiety Symptom Questionnaire (MASQ; [32]), which are described in the Supplementary Methods. Study 2 included a pharmacological manipulation (a single 50 mg administration of the D2/3 antagonist amisulpride vs. placebo) during the fMRI visit; however, this manipulation was designed to affect later fMRI tasks and was previously shown not to influence rsFC measures [33] (Supplementary Methods). Drug administration (amisulpride, placebo, none) was controlled for within fMRI analyses (see below). In addition, we conducted sensitivity analyses excluding all participants receiving amisulpride.

Ethics approval and consent to participate

All study procedures were performed in accordance with the relevant guidelines and regulations and approved by the Partners Healthcare Institutional Review Board (reference numbers: 2009P001360 and 2012P002593). We obtained informed consent from all participants, and they were compensated for their participation.

PET

As reported in Pizzagalli and colleagues [23], participants were placed in the PET scanner with head alignment adjusted relative to the canthomeatal line.

A thermoplastic mask was used to reduce motion and a peripheral venous catheter was inserted for radiopharmaceutical injection of intravenous [^{11}C]alopane injection (~10 mCi delivered over 20–30 seconds). More information regarding the dose can be found in Supplementary Table S1. Scans were acquired over 60 min 39 frames of increasing duration using an ECAT EXACT HR + (CTI, Knoxville, TN) PET scanner. Images were reconstructed with corrections for scatter and attenuation, random coincidences, system deadtime, and detector inhomogeneity. Frames were motion-corrected and aligned to subject-specific MPRAGE in FSL (<http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/>). More information regarding FSL preprocessing can be found in the full article [23].

Our regions of interest included the left and right putamen, caudate, NAcc, and VTA. Regional binding potential (BP_{ND}) was estimated using the multilinear reference tissue model with the cerebellum (excluding the vermis) as reference region [34, 35]. Left and right striatal BP_{ND} was defined using the Harvard-Oxford Subcortical Probabilistic Atlas (50% threshold; [36, 37]. The VTA mask was manually traced based on established guidelines [38, 39] – mirroring and bisecting lateralized volumes of interest (visually checked to overlay the VTA on the MNI atlas). Each mask consisted of 81 voxels (with 2 mm isotropic dimensions).

MRI data acquisition and preprocessing

MRI datasets were collected at the McLean Imaging Center on a 3 T Siemens Tim Trio using a 32-channel head coil (Supplementary Methods). Resting-state fMRI data were preprocessed using fMRIprep [40] and additional denoising steps were conducted in CONN toolbox ([41]; Supplementary Methods).

Functional connectivity within the reward circuit

Region of interest (ROI)-ROI functional connectivity analysis was conducted within the following nodes of the reward circuit [42]: right and left caudate, right and left putamen, right and left NAcc, anterior cingulate cortex (ACC), and the ventromedial prefrontal cortex (vmPFC). Subcortical regions and the ACC were parcelated using the Harvard-Oxford atlas [43]. The vmPFC ROI was defined as a 10 mm sphere centered on [6.98, 53.58, −4.78], using coordinates derived from a previous meta-analysis of reward processing [44] (see Supplementary Fig. S1 for a glass-brain image indicating ROIs used in the analysis). Functional connectivity between pairs of nodes was calculated by computing Pearson's correlations between the average BOLD time series from all pairs of nodes, followed by Fisher's transform.

Striatal DAT-functional connectivity associations

To examine relationships between DAT and rsFC, seed-based FC was computed in CONN for the following seeds (ROIs): the bilateral caudate, putamen, and NAcc. FC between the seed and every voxel in the brain was computed by Pearson's correlations between the seed's BOLD time series and each individual voxel BOLD time series. Last, Fisher's transform was applied to correlation values.

Statistical analyses

Clinical, demographic, and PET data were analyzed in R. Between-group differences in clinical and demographic variables were tested using ANOVAs and chi-squared tests. For PET data, we conducted one MANCOVA, to examine main effects of MDD, CSA, and MDD/CSA interaction on DAT availability in our bilateral regions of interest: the putamen, caudate, NAcc, and VTA, controlling for age at the PET scan (as age has been linked to reduction in DAT BP_{ND} [45, 46]) and a factor variable for "Study". Drug status (amisulpride, placebo, none) was controlled for in rsFC analyses. If groups differed on demographic characteristics or variables that could affect dopamine (e.g., smoking status, caffeine use), we conducted a sensitivity analysis to test if our findings were robust to additional covariates.

Statistical analyses of rsFC and DAT-FC association were conducted in CONN toolbox, controlling for age, study, and drug administration (amisulpride, placebo, none). For functional connectivity within the reward circuit, the main effects of MDD, CSA, and MDD x CSA interaction were tested using a general linear model (GLM). A Functional Network Connectivity (FNC; [47]) cluster-based inference was used, with a threshold of FDR-corrected cluster-level $p < 0.05$ (multivariate parametric omnibus test). Associations between DAT and seed-based FC across participants were tested using a GLM with FC as the dependent variable and DAT as the independent variable. A statistical threshold of voxel-level $p < 0.001$, FDR-corrected cluster-level $p < 0.05$ was applied.

When there was a main effect of group on DAT availability or rsFC, we examined the relation between these ROIs and clinical variables. We focused on the most relevant variables: number of lifetime depressive episodes in the presence of a main effect of MDD; duration of ELS in the presence of a main effect of CSA; and lifetime depressive episodes and duration of ELS in the presence of a MDD x CSA interaction.

RESULTS

Sample characteristics

Characteristics of groups are summarized in Table 1 and the Supplement. The CSA/no MDD and MDD/CSA group had a higher proportion of females compared to the controls and MDD participants, as was expected based on the study sources from which the sample was drawn (see Participants, above). Further, caffeine consumption in the last 24 h was highest in the MDD/CSA group ($n = 1$ consumed 1360 mgs of caffeine on the day of the PET scan; information regarding caffeine consumption estimation can be found in the Supplementary Methods). Age, race, education, average caffeine consumption, and the proportion of current smokers did not differ between groups.

Those with CSA, on average, were 7.81 years old ($SD = 3.14$) at the start of the abuse, experienced a 3.72 severity of abuse ($SD = 1.11$; with a 5 indicating the most severe), with an average duration of 4.06 years of abuse ($SD = 3.27$). Within the CSA group, there were no differences in age of sexual abuse onset ($t(30) = 1.84$, $p = 0.075$), sexual abuse severity ($t(30) = -1.67$, $p = 0.106$), or sexual abuse duration ($t(30) = -1.79$, $p = 0.084$) in those with MDD compared to those without MDD.

MDD and CSA effects on striatal DAT

When modeling all 8 ROIs simultaneously using a MANCOVA, significant main effects were observed for CSA ($F_{8,99} = 2.07$, $p = 0.045$) and age ($F_{8,99} = 3.57$, $p = 0.001$); MDD ($F_{8,99} = 1.94$, $p = 0.063$), the covariate 'Study' ($F_{8,99} = 1.76$, $p = 0.093$), and the MDD X CSA interaction ($F_{8,99} = 1.40$, $p = 0.205$) were not statistically significant in the overall multivariate model.

Follow-up univariate ANOVAs were conducted to examine these effects within each brain region. Individuals with MDD had lower DAT in the left putamen ($F_{1,106} = 7.10$, $p = 0.009$) (Fig. 1A). In contrast, individuals with CSA had significantly higher DAT in the left caudate ($F_{1,106} = 4.06$, $p = 0.047$; Fig. 1B) and right VTA ($F_{1,106} = 8.58$, $p = 0.004$; Fig. 1C). There was a significant MDD x CSA interaction in the right NAcc ($F_{1,106} = 4.00$, $p = 0.048$) (Fig. 1D) where individuals in the MDD/CSA group had the lowest DAT. There were also significant main effects of age in the left putamen ($F_{1,106} = 7.21$, $p = 0.008$), left caudate ($F_{1,106} = 7.54$, $p = 0.007$), and right caudate ($F_{1,106} = 15.18$, $p < 0.001$) with significantly lower DAT with age. There was a main effect of Study in the left NAcc ($F_{1,106} = 4.75$, $p = 0.032$); participants in Study 1 had significantly higher DAT (Study 1 $M = 1.99$, $SD = 0.54$; Study 2: $M = 1.83$, $SD = 0.60$). We obtained a similar pattern of findings when conducting a sensitivity analysis excluding the participant with MDD in the control group and adding additional covariates (smoking status, biological sex, and caffeine consumption in the last 24 h) that differed across our four groups (Supplementary Results).

Lower frontostriatal rsFC for individuals with CSA

A main effect of CSA was found for two clusters of rsFC within the reward circuit, indicating lower frontostriatal rsFC for individuals with CSA (Table 2 and Fig. 2). Specifically, in CSA, lower rsFC was found between the medial prefrontal cortex, comprising the vmPFC and ACC, and the bilateral putamen [cluster 1: $F_{2,100} = 7.35$, p FDR cluster-corrected = 0.010]; as well as the bilateral caudate [cluster 2: $F_{2,100} = 5.77$, p FDR cluster-corrected = 0.021]. Similar results were obtained after excluding participants receiving amisulpride (Supplementary Fig. S2).

DAT-rsFC associations in the striatum

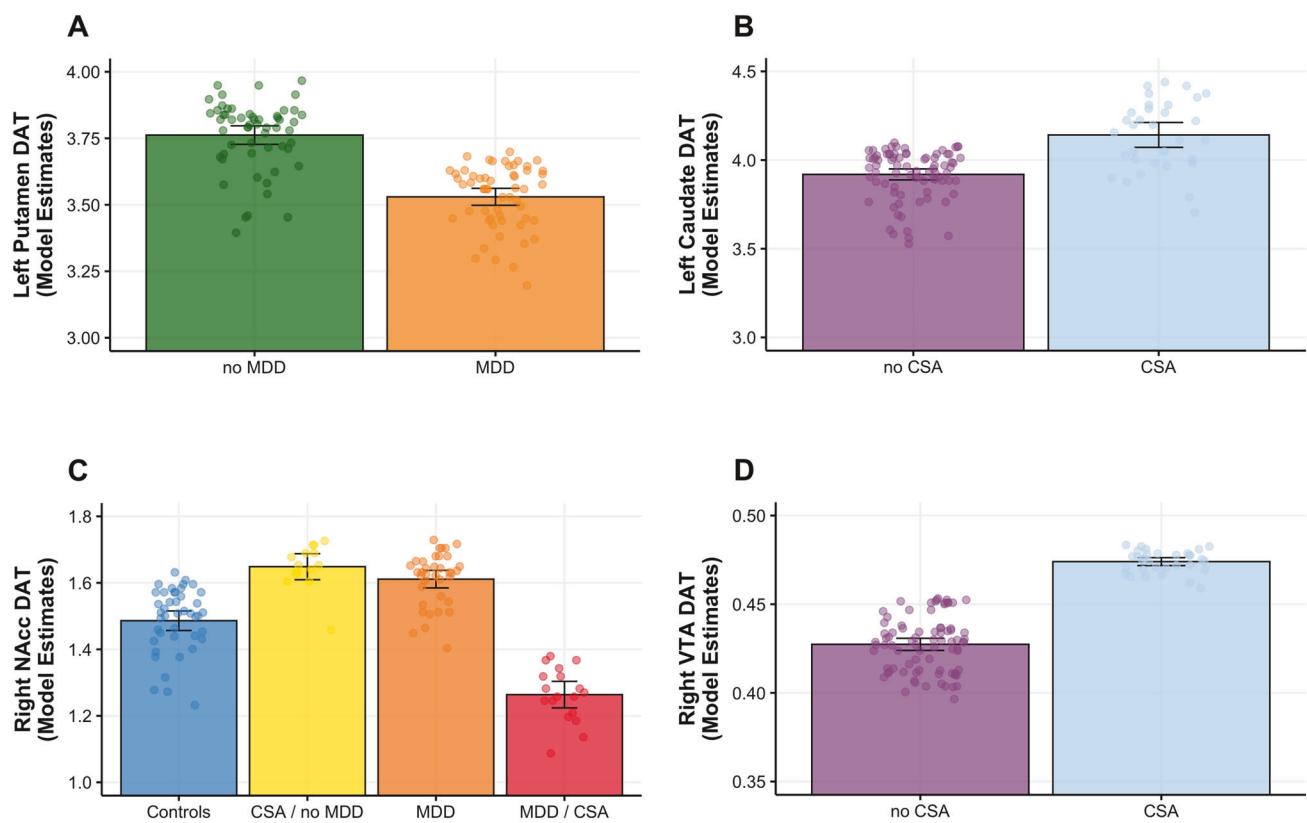
DAT in the left putamen was negatively associated with left putamen—left OFC rsFC (MNI: [-46 20 -8], cluster size: 261 voxels, $p = 3.7 \cdot 10^{-4}$ FDR cluster corrected) (Fig. 3A, B). Since a main effect of MDD on DAT was found in the left putamen, a post hoc analysis examined whether the DAT-rsFC relation was present and similar within MDD and non-MDD groups. DAT and rsFC were significantly associated in both groups (MDD: p DAT = 0.008; no MDD: p DAT = $7.9 \cdot 10^{-5}$; Fig. 3C, D).

DAT in the right caudate was negatively associated with three rsFC patterns: (i) right caudate—left dorsolateral prefrontal cortex (dlPFC) (MNI: [-14 50 46], cluster size: 151 voxels, $p = 8.8 \cdot 10^{-3}$ FDR cluster corrected) (Fig. 4A, C); (ii) right caudate—right dlPFC (MNI: [14 52 42], cluster size: 127 voxels, $p = 0.021$ FDR cluster corrected) (Fig. 4A, D); (iii) right caudate—left OFC (MNI: [-52 26 -4], cluster size: 115 voxels, $p = 0.033$ FDR cluster corrected) (Fig. 4B, E). Findings remained when excluding participants receiving amisulpride (Supplementary Fig. S3).

Relation between DAT, rsFC, and clinical symptoms

A higher number of lifetime major depressive episodes were related to lower age-residualized DAT availability in the left putamen ($rs(99) = -0.23$, $p = 0.018$). When depressive episodes were considered along a continuum, as opposed to bins, we obtained a similar result, however it decreased to a trend-level ($rs(42) = -0.25$, $p = 0.099$). The duration of ELS was not related to DAT in the left caudate or right VTA (all $ps > 0.285$) and lifetime depressive episodes did not contribute to DAT in the right NAcc ($p = 0.790$). However, a longer duration of ELS was related to lower DAT availability in the right NAcc ($F_{1,46} = 4.97$, $p = 0.031$). For seed-based rsFC within the CSA groups, ELS duration was also positively related to rsFC of the left putamen—left OFC rsFC ($F_{1,42} = 5.24$, $p = 0.027$) and right caudate—left OFC ($F_{1,42} = 6.37$, $p = 0.016$).

DISCUSSION


Dopamine, which is highly correlated with DAT availability [22], has been hypothesized to play a critical role in the development and maintenance of depression [13, 48]. Further, individuals who experience CSA are more likely to develop depression [8]. Less is known, however, regarding mechanisms underlying depressive symptoms and DAT availability. Indeed, although we have different sources of evidence linking DAT availability to depression, and CSA to depression, prior research has failed to unite these in a single investigation or link DAT dysfunction to other neurobiological mechanisms. Further, PET imaging studies tend to have small sample sizes. Here, we examined the independent and compounding role of MDD and CSA on DAT availability in key striatal regions in a relatively large sample of unmedicated individuals involving four groups: MDD (absent, present) x CSA (present, absent).

Among 112 well-characterized adults, we found that DAT availability differed as a function of MDD and a history of CSA. Specifically, confirming our earlier report [23] in a larger sample, MDD was related to lower DAT availability in the putamen. Further, more depressive episodes were negatively associated with DAT availability in this region; however, these findings were not robust (i.e., similar effect sizes, but statistical trend) when restricting the analyses to participants with MDD and therefore should be interpreted provisionally. Notably, CSA was related to higher DAT availability in the left caudate and right VTA, though there were no associations with ELS duration. There was a significant interaction between MDD and CSA in DAT availability of the right NAcc; specifically, those with a history of CSA and MDD had the lowest DAT availability. We found that a longer duration of ELS was related to lower DAT availability in the right NAcc. CSA, but not MDD, was linked to lower frontostriatal rsFC.

Table 1. Demographic and clinical characteristics of the sample.

	Controls <i>n</i> = 43 <i>n</i> (%) or <i>M</i> (<i>SD</i>)	CSA no MDD <i>n</i> = 14 <i>n</i> (%) or <i>M</i> (<i>SD</i>)	MDD <i>n</i> = 37 <i>n</i> (%) or <i>M</i> (<i>SD</i>)	MDD / CSA <i>n</i> = 18 <i>n</i> (%) or <i>M</i> (<i>SD</i>)	Statistic
Female	33 (76.7%)	14 (100%)	32 (86.5%)	18 (100%)	$\chi^2(3) = 8.55, p = 0.036$
Age	26.80 (6.97)	25.36 (5.57)	25.99 (5.71)	29.50 (6.60)	$F(3 108) = 1.53, p = 0.212$
White (<i>n</i> = 3 missing data)	27 (62.79%)	6 (42.86%)	28 (75.68%)	9 (50.00%)	$\chi^2(3) = 6.60, p = 0.086$
Education (<i>n</i> = 1 missing data)	15.61 (2.84)	15.79 (1.72)	16.30 (2.45)	15.13 (2.00)	$F(3 107) = 1.01, p = 0.390$
Average caffeine consumption (<i>n</i> = 1 missing data)	107.92 (79.73)	57.14 (54.73)	113.47 (90.77)	132.11 (93.57)	$F(3 107) = 2.29, p = 0.083$
Caffeine 24 h before PET (<i>n</i> = 2 missing data)	91.93 (110.23)	52.93 (69.33)	91.57 (81.82)	224.78 (303.24)	$F(3 106) = 4.63, p = 0.004$
Current smokers (<i>n</i> = 2 missing data)	3 (7%)	0 (0%)	3 (8.1%)	0 (0%)	$\chi^2(3) = 2.63, p = 0.453$
Income (<i>n</i> = 2 missing data)					
<\$10,000	2	NA	3	3	$\chi^2(15) = 14.93, p = 0.457$
\$10,000–\$25,000	13	3	13	4	
\$25,000–\$50,000	11	5	9	7	
\$50,000–\$75,000	9	5	3	1	
\$75,000–\$100,000	4	NA	5	2	
>\$100,000	4	1	2	1	
Lifetime MDE (<i>n</i> = 11 missing data)					
1 MDE	NA	NA	6 (16.2%)	3 (16.7%)	NA
2–3 MDEs	1 (2.3%)	NA	13 (35.1%)	6 (33.3%)	
≥5 MDEs	NA	NA	12 (32.4%)	4 (22.2%)	
HRSD (<i>n</i> = 5 missing data)	1.10 (2.30)	1.79 (2.61)	15.85 (4.71)	15.29 (3.20)	$F(3 103) = 158.3, p < 0.001$
BDI-II (<i>n</i> = 4 missing data)	1.50 (4.00)	2.29 (3.05)	28.11 (8.98)	28.15 (10.17)	$F(3 104) = 122.60, p < 0.001$
SHAPS (<i>n</i> = 4 missing data)	21.32 (7.14)	22.00 (5.91)	32.91 (5.80)	30.94 (5.89)	$F(3 104) = 26.21, p < 0.001$
MASQ GDA (<i>n</i> = 4 missing data)	12.56 (1.80)	13.50 (2.71)	22.38 (7.27)	25.09 (7.27)	$F(3 104) = 36.48, p < 0.001$

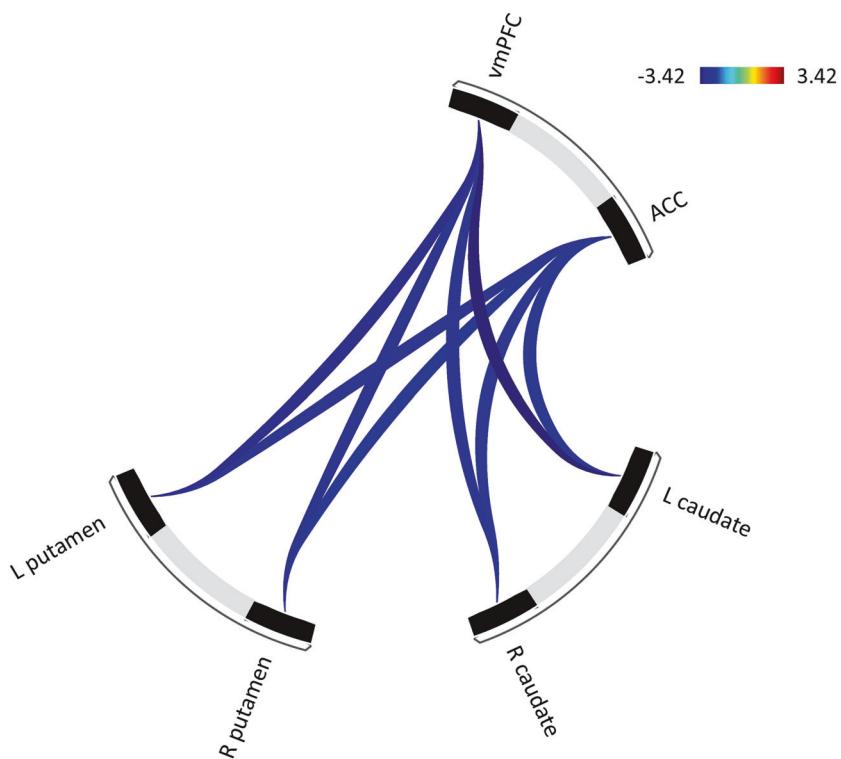
(MDD) Major depressive disorder, (CSA) childhood sexual abuse, (PET) positron emission tomography, (MDE) major depressive episodes, (HRSD) Hamilton Rating Scale for Depression, (BDI) Beck Depression Inventory II, (SHAPS) Snaith Hamilton Pleasure Scale, (MASQ GDA) Mood and Anxiety Symptom Questionnaire General Distress: Anxious Symptoms.

Fig. 1 Main effects and interactions of MDD and CSA on DAT BP_{nd}. DAT dopamine transporter, NAcc nucleus accumbens, VTA ventral tegmental area, MDD major depressive disorder, CSA childhood sexual abuse. **A** left putamen, **B** left caudate, **C** right NAcc, **D** right VTA.

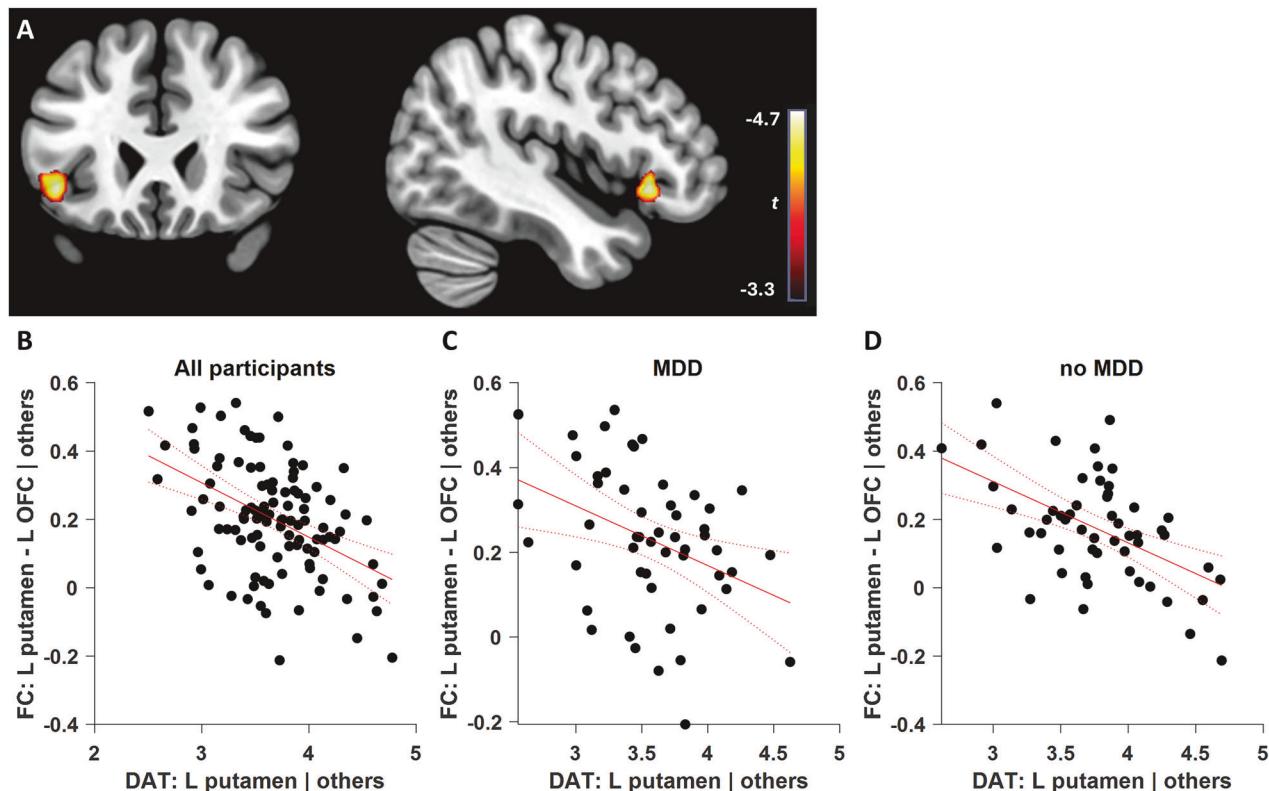
Table 2. Main effect of CSA on resting-state functional connectivity within the reward circuit.

ROI-ROI functional connection	Statistics	P uncorrected	P FDR corrected
Cluster 1	F_{2,100} = 7.35	0.001050	0.010499
L putamen – vmPFC	t(101) = -3.14	0.002242	0.013897
L putamen – ACC	t(101) = -2.95	0.003970	0.013897
R putamen – vmPFC	t(101) = -3.06	0.002871	0.020099
R putamen – ACC	t(101) = -2.42	0.017375	0.060811
Cluster 2	F_{2,100} = 5.77	0.004264	0.021320
L caudate – vmPFC	t(101) = -3.42	0.000897	0.006278
R caudate – vmPFC	t(101) = -2.92	0.004269	0.029881
L caudate – ACC	t(101) = -2.61	0.010363	0.036270
R caudate – ACC	t(101) = -2.27	0.025543	0.089402

ACC anterior cingulate cortex, L left, R right, vmPFC ventromedial prefrontal cortex.


Specifically, individuals with a history of CSA, whether currently experiencing MDD or no psychopathology, showed weaker rsFC between the medial prefrontal cortex and the bilateral striatum.

The current findings linking MDD to lower DAT availability are consistent with and extend previous work. For example, a meta-analysis examining 43 studies found that DAT availability was lower in individuals with MDD compared to controls [49]. More specifically, individuals with MDD were characterized by lower DAT in the putamen [23, 50] and VTA [23]. Finally, lower DAT in the putamen was also observed in postmortem tissue. Additional work examining geriatric patients found that those with MDD have lower DAT in the NAcc and putamen compared to controls [51].


Previous findings relating early life stress to dopamine functioning in humans are mixed [52]. While some studies have reported positive associations between childhood trauma and

dopamine release (e.g., [53]), others have observed negative associations (e.g., [54]). This may be due to varying definitions and measurements of stress, clinical groups, and sample characteristics. One study found that participants exposed to severe physical or sexual abuse had higher dopamine synthesis capacity in the striatum [55]. We extended these findings by identifying higher DAT in the left caudate and right VTA related to CSA.

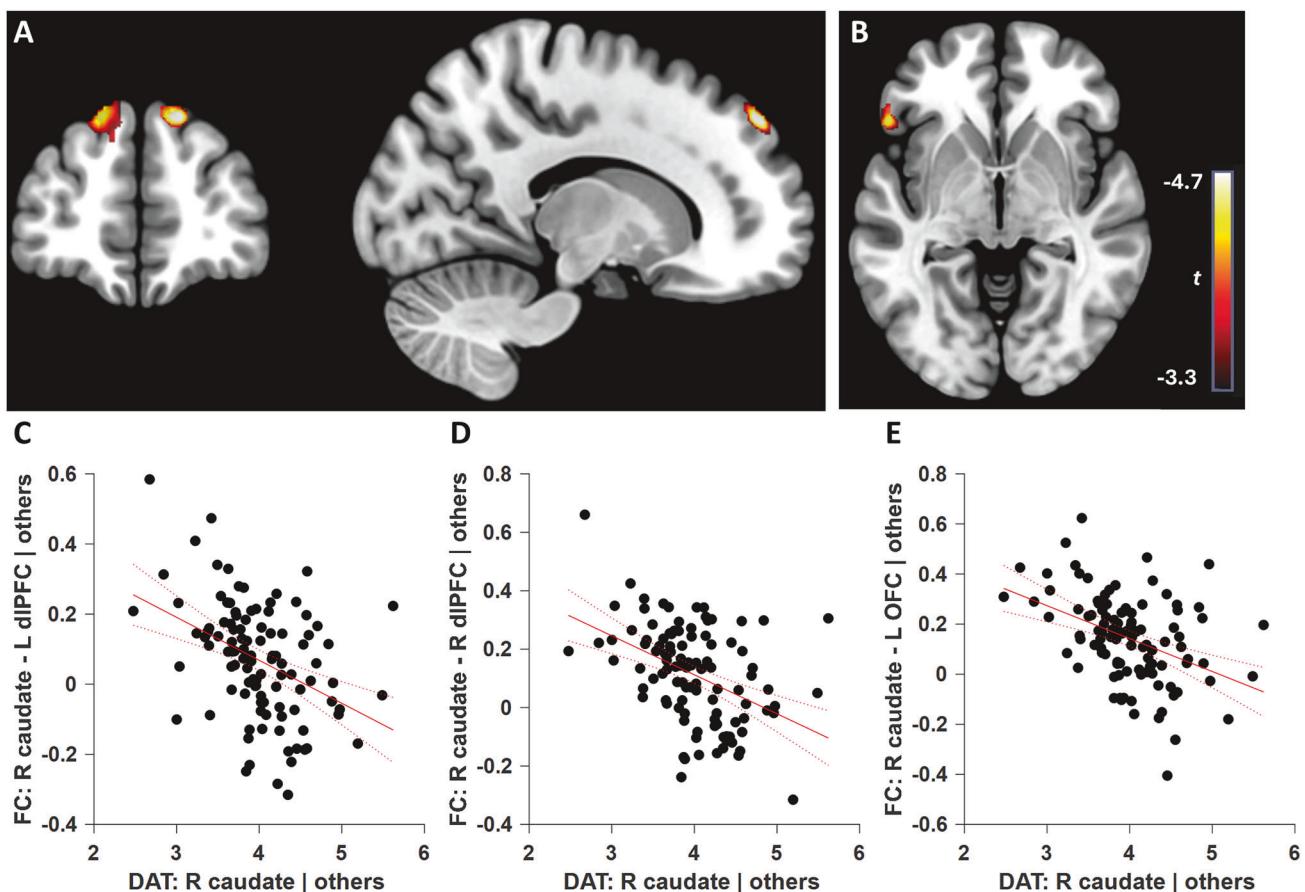

However, consistent with the literature, we found associations in the opposite direction as well. Specifically, the MDD x CSA interaction was related to the lowest DAT availability, and longer ELS duration was negatively associated with DAT in the right NAcc. Our findings suggest that experiences of MDD and CSA reflect distinct neural profiles, which is consistent with prior work [56]. The significant MDD x CSA interaction suggests that depression in the context of CSA is the most impactful on DAT

Fig. 2 Main effect of childhood sexual abuse (CSA) on resting-state functional connectivity within the reward circuit. Individuals with a history of CSA exhibited lower resting-state functional connectivity between (i) the medial prefrontal cortex (vmPFC and ACC) and the bilateral putamen [cluster 1: $F_{2,100} = 7.35$, p FDR cluster-corrected = 0.010]; and between (ii) the medial prefrontal cortex (vmPFC and ACC) and the bilateral caudate [cluster 2: $F_{2,100} = 5.77$, p FDR cluster-corrected = 0.021].

Fig. 3 Left putamen DAT – rsFC association. **A** DAT in the left putamen was negatively associated with rsFC between the left putamen and left OFC. The level of DAT- rsFC association is shown by the colorbar. **B** Partial regression plot indicating the relationship between left putamen DAT (x axis) and left putamen—left OFC rsFC (y axis), while controlling for age, study, and drug administration (amisulpride, placebo, none). A follow-up analysis showed that DAT-rsFC association was found in both **C** MDD (p DAT = 0.008) and **D** non-MDD (p DAT = $7.9 \cdot 10^{-5}$) groups.

Fig. 4 Right putamen DAT – rsFC association. DAT in the right caudate was negatively associated with: **A** rsFC between right caudate and left and right dorsolateral prefrontal cortices (dlPFC); **B** rsFC between right caudate and left OFC. The colorbar shows the level of DAT- rsFC association. **C-E** Partial regression plots indicating the relationship between right caudate DAT (x axis) and right caudate rsFC (y axis), while controlling for age, study, and drug administration (amisulpride, placebo, none).

availability in the right NAcc, which may account for differences in reward sensitivity and symptoms. Participants with a history of CSA but no MDD did not have blunted DAT availability; which may reflect a compensatory or resilient response. This idea is broadly consistent with models of stress resilience proposed by Charney and colleagues [57], who hypothesized that adaptive dopamine function in mesolimbic regions may underlie individual differences in vulnerability to trauma. Supporting this, preclinical work by Krishnan and colleagues [58] using a social defeat paradigm has shown that gene expression patterns differ between “Susceptible” and “Unsusceptible” mice, and that experimentally reducing brain-derived neurotrophic factor release from the VTA to NAcc, or blocking such signaling, can promote resilience. Though speculative, the current findings may reflect a similar mechanism in humans. More research is needed to understand the relation between ELS, CSA, and dopamine functioning in humans.

CSA, across MDD and no MDD status, was associated with weaker rsFC between the bilateral striatum and medial prefrontal cortex. This finding aligns with a previous report of lower rsFC within the reward circuit for adults with moderate to severe childhood ELS, irrespective of MDD diagnosis [59]. Weaker reward circuit rsFC in individuals with childhood ELS adds to previous literature that mostly focused on limbic regions (e.g., amygdala, hippocampus) and has identified lower FC within frontal-limbic networks [60, 61], although findings have been mixed [62].

DAT in the left putamen and right caudate was negatively associated with rsFC with the left OFC and bilateral dlPFC. Namely, higher striatal DAT availability was associated with weaker striatal-

lateral prefrontal rsFC. To our knowledge, this is the first study to investigate DAT-rsFC patterns across the brain in MDD or ELS. Notably, elevated DAT levels lead to higher dopamine clearance and lower dopamine signaling, consistent with our finding of an inverse association between DAT and rsFC. Of relevance, previous work has shown that striatal DAT was negatively associated with deactivation of the DMN during a visual attention task [63]. In addition, DAT values were found to map to a second-order functional connectivity gradient within the striatum [64].

Limitations

Though this study has a number of notable strengths including a large PET imaging sample size, a focus on only unmedicated participants, and multimodal neuroimaging, we should note four limitations. First, this work is not experimental, therefore, we cannot make inferences as to whether the observed differences preceded the development of MDD or were a consequence of MDD and or CSA. Second, although we controlled for this in the rsfMRI analyses and the main findings remained when excluding the 46 participants receiving a single low dose of amisulpride before the rsfMRI scan, this study design for ~42% of our sample (46/109) potentially limits the generalizability of our findings. Third, due to its focus on CSA, Study 2 only included women; therefore, we could not assess resilience or the interaction of MDD x CSA in male participants. Finally, some of our effect sizes were small (particularly the MDD x CSA interaction with the right NAcc) and additional work examining these effects will strengthen our understanding of the interplay between clinical groups, dopamine, and symptoms.

CONCLUSIONS

By utilizing a multimodal PET-fMRI investigation, our findings unveiled and clarified the differential and compounding impacts of MDD and CSA on the reward circuit. Ultimately, these results suggest distinct neurobiological markers of MDD and early life stress, and highlight promising targets for prevention and treatment.

DATA AVAILABILITY

De-identified datasets will be shared upon reasonable request to the corresponding author.

REFERENCES

1. Pechtel P, Pizzagalli DA. Effects of early life stress on cognitive and affective function: an integrated review of human literature. *Psychopharmacology (Berl)*. 2011;214:55–70.
2. Novick AM, Levandowski ML, Laumann LE, Philip NS, Price LH, Tyrka AR. The effects of early life stress on reward processing. *J Psychiatr Res*. 2018;101:80–103.
3. Ng TH, Alloy LB, Smith DV. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. *Transl Psychiatry*. 2019;9:1–10.
4. Kalin NH. Early-life environmental factors impacting the development of psychopathology. *Am J Psychiatry*. 2020;177:1–3.
5. McLaughlin KA, Greif Green J, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC. Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. *Arch Gen Psychiatry*. 2012;69:1151–60.
6. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. *Arch Gen Psychiatry*. 2010;67:113–23.
7. LeMoult J, Humphreys KL, Tracy A, Hoffmeister JA, Ip E, Gotlib IH. Meta-analysis: exposure to early life stress and risk for depression in childhood and adolescence. *J Am Acad Child Adolesc Psychiatry*. 2020;59:842–55.
8. Maniglio R. Child sexual abuse in the etiology of depression: a systematic review of reviews. *Depress Anxiety*. 2010;27:631–42.
9. Weiss EL, Longhurst JG, Mazure CM. Childhood sexual abuse as a risk factor for depression in women: psychosocial and neurobiological correlates. *Am J Psychiatry*. 1999;156:816–28.
10. Hanson JL, Williams AV, Bangasser DA, Peña CJ. Impact of early life stress on reward circuit function and regulation. *Front Psychiatry*. 2021;12:744690.
11. Pechtel P, Pizzagalli DA. Disrupted reinforcement learning and maladaptive behavior in women with a history of childhood sexual abuse: a high-density Event-Related Potential Study. *JAMA Psychiatry*. 2013;70:499–507.
12. Halahakoon DC, Kieslich K, O'Driscoll C, Nair A, Lewis G, Roiser JP. Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. *JAMA Psychiatry*. 2020;77:1286–95.
13. Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. *Annu Rev Clin Psychol*. 2014;10:393–423.
14. Kumar P, Goer F, Murray L, Dillon DG, Beltz ML, Cohen AL, et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. *Neuropsychopharmacology*. 2018;43:1581–8.
15. Herzberg MP, Gunnar MR. Early life stress and brain function: activity and connectivity associated with processing emotion and reward. *NeuroImage*. 2020;209:116493.
16. Simon M, Nagy S, Kurtös Z, Perlaki G, Gálber M, Czéh B. MDD patients with early life stress deactivate the frontostriatal network during facial emotion recognition paradigm: a functional MRI study. *Eur Psychiatry*. 2022;65:578–9.
17. Wang L, Li F, Mitchell PB, Wang CY, Si TM. Striatal resting-state connectivity abnormalities associated with different clinical stages of major depressive disorder. *J Clin Psychiatry*. 2020;81:4265.
18. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, et al. Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. *Am J Psychiatry*. 2009;166:702–10.
19. Zhang J, Wu X, Si Y, Liu Y, Wang X, Geng Y, et al. Abnormal caudate nucleus activity in patients with depressive disorder: meta-analysis of task-based functional magnetic resonance imaging studies with behavioral domain. *Psychiatry Res Neuroimaging*. 2024;338:111769.
20. Borchers LR, Yuan JP, Leong JK, Jo B, Chahal R, Ryu J, et al. Sex-specific vulnerability to externalizing problems: sensitivity to early stress and nucleus accumbens activation over adolescence. *Biol Psychiatry*. 2025;97:73–80.
21. Cheng B, Zhou Y, Kwok VP, Li Y, Wang S, Zhao Y, et al. Altered functional connectivity density and couplings in postpartum depression with and without anxiety. *Social Cognitive and Affective Neuroscience*. 2022;17:756–66.
22. Gordon I, Weizman R, Rehavi M. Modulatory effect of agents active in the pre-synaptic dopaminergic system on the striatal dopamine transporter. *Eur J Pharmacol*. 1996;298:27–30.
23. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. Assessment of striatal dopamine transporter binding in individuals with major depressive disorder: in vivo positron emission tomography and postmortem evidence. *JAMA Psychiatry*. 2019;76:854–61.
24. Pryce CR, Rüedi-Bettchen D, Dettling AC, Weston A, Russig H, Ferger B, et al. Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. *Neurosci Biobehav Rev*. 2005;29:649–74.
25. Camardese G, Di Giuda D, Di Nicola M, Coccilillo F, Giordano A, Janiri L, et al. Imaging studies on dopamine transporter and depression: a review of literature and suggestions for future research. *J Psychiatr Res*. 2014;51:7–18.
26. Dillon DG, Holmes AJ, Birk JL, Brooks N, Lyons-Ruth K, Pizzagalli DA. Childhood adversity is associated with left basal ganglia dysfunction during reward anticipation in adulthood. *Biol Psychiatry*. 2009;66:206–13.
27. First MB, Spitzer RL, Gibbon M, Williams JB. Structure clinical interview for DSM-IV-TR axis I disorders-non-patient edition (SCID-I/NP, 11/2002 revision). New York, NY: Biometric Research Department, New York State Psychiatric Institute; 2002.
28. Herman JL, Van der Kolk B. Traumatic antecedents questionnaire. Cambridge: Mass, Cambridge Hospital; 1990.
29. Hamilton M. A Rating scale for depression. *J Neurol Neurosurg Psychiatry*. 1960;23:56–62.
30. Shahid A, Wilkinson K, Marcu S, Shapiro CM. Beck depression inventory. In: Shahid A, Wilkinson K, Marcu S, Shapiro CM, editors. *STOP, THAT and one hundred other sleep scales [Internet]*. New York, NY: Springer; 2012 [cited 2025 Jan 15]. p. 63–4. Available from: https://doi.org/10.1007/978-1-4419-9893-4_8.
31. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A scale for the assessment of hedonic tone the snaith-hamilton pleasure scale. *Br J Psychiatry*. 1995;167:99–103.
32. Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. *J Abnorm Psychol*. 1995;104:3–14.
33. Belleau EL, Bolton TAW, Kaiser RH, Clegg R, Cárdenas E, Goer F, et al. Resting state brain dynamics: associations with childhood sexual abuse and major depressive disorder. *NeuroImage Clin*. 2022;36:103164.
34. Alpert NM, Yuan F. A general method of Bayesian estimation for parametric imaging of the brain. *NeuroImage*. 2009;45:1183–9.
35. Dean Fang YH, El Fakhr G, Becker JA, Alpert NM. Parametric imaging with bayesian priors: a validation study with 11C-Altropine PET. *NeuroImage*. 2012;61:131–8.
36. Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, et al. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. *Cereb Cortex*. 2014;24:1165–77.
37. Tziortzi AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M, et al. Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. *NeuroImage*. 2011;54:264–77.
38. Carter RM, MacInnes JJ, Huettel SA, Adcock RA. Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. *Front Behav Neurosci*. 2009;3:714.
39. Adcock RA, Thangavel A, Whitfield-Gabrieli S, Knutson B, Gabrieli JDE. Reward-motivated learning: mesolimbic activation precedes memory formation. *Neuron*. 2006;50:507–17.
40. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIprep: a robust preprocessing pipeline for functional MRI. *Nat Methods*. 2019;16:111–6.
41. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. *Brain Connect*. 2012;2:125–41.
42. Höflich A, Michenthaler P, Kasper S, Lanzenberger R. Circuit mechanisms of reward, anhedonia, and depression. *Int J Neuropsychopharmacol*. 2019;22:105–18.
43. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *NeuroImage*. 2006;31:968–80.
44. Bartra O, McGuire JT, Kable JW. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. *NeuroImage*. 2013;76:412–27.
45. Volkow ND, Fowler JS, Wang GJ, Logan J, Schlyer D, MacGregor R, et al. Decreased dopamine transporters with age in healthy human subjects. *Ann Neurol*. 1994;36:237–9.
46. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. *Neurobiol Aging*. 2017;57:36–46.

47. Jafri MJ, Pearson GD, Stevens M, Calhoun VD. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. *NeuroImage*. 2008;39:1666–81.

48. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. *Arch Gen Psychiatry*. 2007;64:327–37.

49. Mizuno Y, Ashok AH, Bhat BB, Jauhar S, Howes OD. Dopamine in major depressive disorder: a systematic review and meta-analysis of in vivo imaging studies. *J Psychopharmacol (Oxf)*. 2023;37:1058–69.

50. D'Onofrio AM, Pizzuto DA, Batir R, Perrone E, Coccilillo F, Cavallo F, et al. Dopaminergic dysfunction in the left putamen of patients with major depressive disorder. *J Affect Disord*. 2024;357:107–15.

51. Moriya H, Tiger M, Tateno A, Sakayori T, Masuoka T, Kim W, et al. Low dopamine transporter binding in the nucleus accumbens in geriatric patients with severe depression. *Psychiatry Clin Neurosci*. 2020;74:424–30.

52. Schalbroeck R, van Hooijdonk CFM, Bos DPA, Booij J, Selten JP. Chronic social stressors and striatal dopamine functioning in humans: a systematic review of SPECT and PET studies. *Mol Psychiatry*. 2024;29:3841–56.

53. Oswald LM, Wand GS, Kuwabara H, Wong DF, Zhu S, Brasic JR. History of childhood adversity is positively associated with ventral striatal dopamine responses to amphetamine. *Psychopharmacology (Berl)*. 2014;231:2417–33.

54. Dahoun T, Nour MM, McCutcheon RA, Adams RA, Bloomfield MAP, Howes OD. The relationship between childhood trauma, dopamine release and dexamphetamine-induced positive psychotic symptoms: a [¹¹C]-(-)-PHNO PET study. *Transl Psychiatry*. 2019;9:1–12.

55. Egerton A, Valmaggia LR, Howes OD, Day F, Chaddock CA, Allen P, et al. Adversity in childhood linked to elevated striatal dopamine function in adulthood. *Schizophr Res*. 2016;176:171–6.

56. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. *Nat Rev Neurosci*. 2016;17:652–66.

57. Charney DS. Psychobiological mechanisms of resilience and vulnerability: implications for successful adaptation to extreme stress. *Am J Psychiatry*. 2004;161:195–216.

58. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. *Cell*. 2007;131:391–404.

59. Fan J, Liu W, Xia J, Li S, Gao F, Zhu J, et al. Childhood trauma is associated with elevated anhedonia and altered core reward circuitry in major depression patients and controls. *Hum Brain Mapp*. 2021;42:286–97.

60. Birn RM, Patriat R, Phillips ML, Germain A, Herringa RJ. Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity. *Depress Anxiety*. 2014;31:880–92.

61. van der Werff SJ, Pannekoek JN, Veer IM, van Tol MJ, Aleman A, Veltman DJ, et al. Resting-state functional connectivity in adults with childhood emotional maltreatment. *Psychol Med*. 2013;43:1825–36.

62. Goltermann J, Winter NR, Meinert S, Sindermann L, Lemke H, Leehr EJ, et al. Resting-state functional connectivity patterns associated with childhood maltreatment in a large bicentric cohort of adults with and without major depression. *Psychol Med*. 2023;53:4720–31.

63. Tomasi D, Volkow ND, Wang R, Telang F, Wang GJ, Chang L, et al. Dopamine transporters in striatum correlate with deactivation in the default mode network during visuospatial attention. *PLOS ONE*. 2009;4:e6102.

64. Oldehinkel M, Llera A, Faber M, Huertas I, Buitelaar JK, Bloem BR, et al. Mapping dopaminergic projections in the human brain with resting-state fMRI. *eLife*. 11:e71846.

ACKNOWLEDGEMENTS

We thank the participants for their involvement in this study. We also thank Madeline (Lynn) Alexander, Ph.D., Laurie A. Scott, A.M., and Harlyn Aizley, Ed.M. for conducting

clinical interviews to establish study eligibility and Monica Landi, M.S.W., for her help establishing diagnostic reliability. These studies were supported by NIMH grants MH068376 and MH095809 awarded to DAP. This work was presented as an oral presentation at the Society for Biological Psychiatry in Toronto, Canada April 24th–26th, 2025.

AUTHOR CONTRIBUTIONS

LRB: Conceptualization; Formal analysis; Investigation; Methodology; Resources; Visualization; Writing – Original draft; Writing – Review & Editing. RD: Conceptualization; Formal analysis; Investigation; Methodology; Resources; Visualization; Writing – Original draft; Writing – Review & Editing. ELB: Investigation; Project administration; Resources; Writing – Review & Editing. RHK: Investigation; Project administration; Resources; Writing – Review & Editing. RC: Investigation; Project administration; Resources; Writing – Review & Editing. FG: Investigation; Project administration; Resources; Writing – Review & Editing. PP: Investigation; Project administration; Resources; Writing – Review & Editing. MB: Investigation; Project administration; Resources; Writing – Review & Editing. DW: Investigation; Project administration; Resources; Writing – Review & Editing. GEF: Investigation; Project administration; Resources; Writing – Review & Editing. MDN: Conceptualization; Investigation; Methodology; Project administration; Resources; Supervision; Writing – Review & Editing. DAP: Conceptualization; Funding acquisition; Methodology; Resources; Supervision; Writing – Review & Editing.

COMPETING INTERESTS

Over the past 3 years, DAP has received consulting fees from Arrowhead Pharmaceuticals, Boehringer Ingelheim, Circular Genomics, Compass Pathways, Engrail Therapeutics, Neumora Therapeutics, Neurocrine Biosciences, Neuroscience Software, and Takeda; he has received honoraria from the American Psychological Association, Psychonomic Society and Springer (for editorial work) as well as Alkermes; he has received research funding from the BIRD Foundation, Brain and Behavior Research Foundation, Dana Foundation, Millennium Pharmaceuticals, National Institute Mental Health, and Wellcome Leap; he has received stock options from Ceretyp Neuromedicine, Compass Pathways, Engrail Therapeutics, Neumora Therapeutics, and Neuroscience Software. MB is employed by Lyra Health and Lyra Clinical Associates, receives income from Lyra Health and Lyra Clinical Associates, and has been granted equity in Lyra Health. All other authors report no financial relationships with commercial interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at <https://doi.org/10.1038/s41380-025-03218-3>.

Correspondence and requests for materials should be addressed to Diego A. Pizzagalli.

Reprints and permission information is available at <http://www.nature.com/reprints>

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Dopaminergic Frontostriatal Pathways in Major Depressive Disorder and Childhood Sexual Abuse: A Multimodal Neuroimaging Investigation

Supplemental Information

Supplementary Methods

- Assessments of early life stress
- Assessments of depression and anxiety
- Inclusion/exclusion criteria
- Pharmacological manipulation during MRI visit
- MRI data acquisition
- MRI data preprocessing
- fMRI data denoising
- Supplementary Figure S1. Glass-brain image indicating ROIs

Supplementary Results

- Sample characteristics
- Rationale for Binning Number of Major Depressive Episodes
- Continuous analysis of major depressive episodes
- Caffeine consumption estimation
- Sensitivity analyses for PET data
- Supplementary Table S1. PET doses
- Supplementary Figure S2. Sensitivity analysis for resting-state functional connectivity (rsFC)
- Supplementary Figure S3. Sensitivity analysis for dopamine transporter availability (DAT)-rsFC associations

Supplementary Methods

Assessments of early life stress

Participants in Study 2 completed the Traumatic Antecedents Questionnaire (1) which indexes a variety of stressors. Participants indicated the severity of each stressor on a scale of 1 to 5 (1 indicating that the stressor experienced was “not at all” upsetting, 5 indicating that the stressor experienced was “extremely” upsetting). We calculated the duration of ELS based on the total number of years that participants’ experienced limited caretaking, was verbally bullied, physically bullied, had alcohol or substance abuse problems in the family, heard verbal aggression between parents, witnessed physical aggression between parents, was involved in an abusive relationship with a significant other, experienced verbal abuse, experienced spanking with an object, experienced physical abuse (slapping, hitting/beating, other), experienced sexual abuse, and experienced sexual aggression, from ages 0 to 18.

Assessments of depression and anxiety

The Hamilton Rating Scale for Depression (HRSD; (2)), Beck Depression Inventory (BDI-II; (3)), and Snaith Hamilton Pleasure Scale (SHAPS; (4)) are widely used measures of depression and anhedonia and have good psychometric properties. The HRSD was administered by a clinician to assess the severity of depression and consisted of 17 items; the BDI-II provides a self-reported measure of depression severity and consists of 21 items, and the SHAPS assesses anhedonia and consists of 14 items; we used the total score for all depressive measures. We also measured the number of lifetime major depressive episodes (MDE; $n=11$ with missing data). In line with Pizzagalli

and colleagues (5) and given the distribution of the data, we binned the sample into 0 MDEs ($n=56$), 1 MDEs ($n=9$), 2-4 MDEs ($n=20$), and ≥ 5 MDEs ($n=16$). [See also *Rationale for Binning Number of Major Depressive Episodes in the Supplementary Results*]. The Mood and Anxiety Symptom Questionnaire (MASQ; (6)) is a widely used instrument that measures symptoms of depression, anxiety and general distress and consists of 62 items; given our other assessments examining anxiety, we focused on the General Distress: Anxious Symptoms (GDA) subscale.

Inclusion/exclusion criteria

Participants in the control group were excluded if they had a history of psychiatric disorders, if they had a family history of mood disorders or psychosis, or ever took psychotropic medication. In Study 2, participants were also excluded if they reported their first maltreatment or abuse occurring between age 13 to 18 on the Traumatic Antecedents Questionnaire (1), had a lifetime history of mania, anorexia, bulimia or posttraumatic stress disorder in the last 2 years, or a head injury, or cognitive or language impairments that interfered with their ability to participate.

Pharmacological manipulation during MRI visit

Study 2 involved a pharmacological manipulation in a double-blind placebo-controlled design, where participants received a single dose of 50 mg amisulpride (hypothesized to increase dopaminergic signaling via autoreceptor blockade) or a placebo (see (7)). The drug was administered before the fMRI scan, such that the peak plasma concentration of amisulpride (i.e., 1 hour after administration) coincided with the

beginning of the monetary incentive delay task, which followed the resting-state scan. Notably, previously published work showed that this pharmacological manipulation did not impact resting-state functional connectivity measures (8). Please note that amisulpride was administered only once during the fMRI session; thus, the PET data were not affected.

MRI data acquisition

Resting-state fMRI data were acquired using a single-band gradient-echo echo-planar imaging (GE-EPI) sequence with the following parameters: TR=3 sec, TE=30 ms, image matrix=72x72, in-plane field of view=216x216 mm, flip angle=85°, voxel size=3x3x3 mm, 47 interleaved slices, with a total of 124 measurements. Anatomical images were acquired using a high-resolution T1-weighted multi-echo MPRAGE sequence with TR=2.2 sec, TE= 1.54, 3.36, 5.18, 7ms, in-plane field of view=230x230 mm, voxel size=1.2x1.2x1.2 mm, 144 slices. The T1-weighted images were acquired for coregistration and normalization of the functional MRI and PET images.

MRI data preprocessing

Preprocessing of MRI data (anatomical, resting-state) was done in fMRIprep 20.2.1 (9). The following description of the preprocessing steps was taken from the custom language generated by fMRIprep, which is recommended for use in publications and has been released under the CC0 license. *Anatomical data preprocessing:* The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison *et al.* 2010), distributed with ANTs 2.3.3 (Avants *et al.*

2008), and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTS as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, Zhang, Brady, and Smith 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, Dale, Fischl, and Sereno 1999), and the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (Klein *et al.* 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The following templates were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov *et al.* (2009), TemplateFlow ID: MNI152NLin2009cAsym], FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans *et al.* (2012), TemplateFlow ID: MNI152NLin6Asym].

Functional data preprocessing: First, a reference volume and its skull-stripped version were generated by aligning and averaging 1 single-band references (SBRefs). A deformation field to correct for susceptibility distortions was estimated based on fMRIprep's fieldmap-less approach. The deformation field is that resulting from co-registering the BOLD reference to the same-subject T1w-reference with its intensity inverted (Wang *et al.* 2017; Huntenburg 2014). Registration is performed with antsRegistration (ANTs 2.3.3), and the process regularized by constraining deformation

to be nonzero only along the phase-encoding direction and modulated with an average fieldmap template (Treiber et al. 2016). Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-motion parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997). First, a reference volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction nomenclature): fsaverage. The BOLD time-series (including slice-timing correction when applied) were resampled onto their original, native space by applying a single, composite transform to correct for head-motion and susceptibility distortions. The BOLD time-series were resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space.

fMRI data denoising

Further denoising of the resting-state fMRI data was conducted in CONN toolbox (10). Confounds were regressed out utilizing the anatomical component-based noise correction (aCompCor; 11). These included: (i) Outlier scans, identified based on the amount of subject in-scanner motion as measured by the framewise displacement (FD)

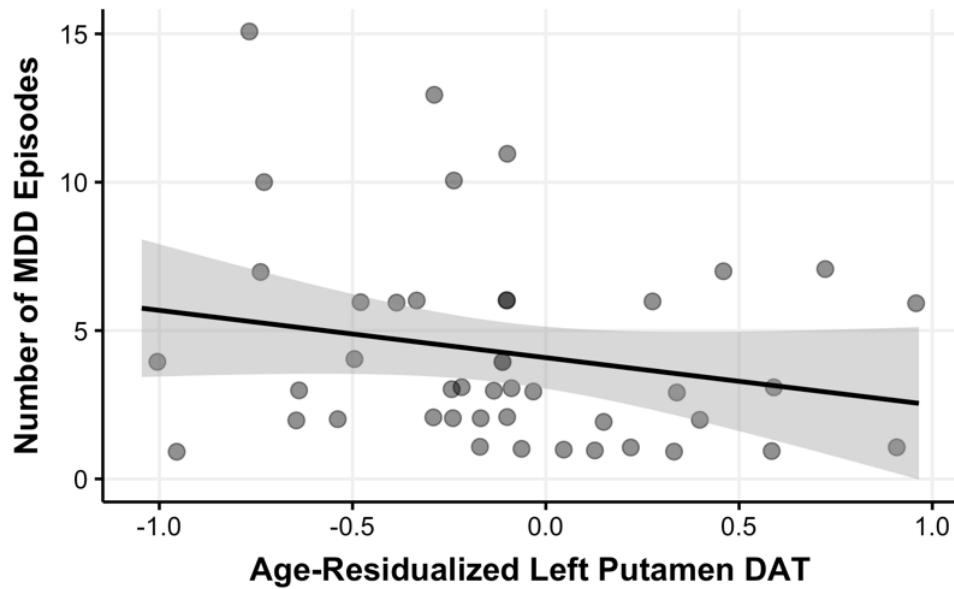
and global BOLD signal. Acquisitions with $FD > 0.9\text{mm}$ or global BOLD signal changes > 5 standard deviations were considered outliers and removed by regression. (ii) First 5 principal components (PCAs) of the CSF and white matter signals: regressed out to minimize the effects of physiological non-neuronal signals such as cardiac and respiratory signals. (iii) Estimated subject-motion parameters and their first-order derivatives (a total of 12 parameters). (iv) Session effects: A step function convolved with the hemodynamic response function was used to remove potential effects of the beginning of the session. In addition, the linear BOLD signal trend was regressed out. Note that global signal regression was not performed. After regression of all potential confounding effects, temporal band-pass filtering (0.008-0.09 Hz) was performed.

Three participants were excluded from fMRI analyses due to in-scanner motion, i.e., $>20\%$ outlier volumes.

Supplementary Results

Sample characteristics

As expected, MDD and MDD/CSA groups had higher scores on depression (HRSD; BDI), anhedonia (SHAPS), and anxiety (MASQ) measures relative to control participants and individuals with CSA who did not develop psychopathology (statistics reported in Table 1). The sample was racially and ethnically diverse, with 34.82% reporting as non-white. Annual income ranged from less than \$10,000 to more than \$100,000, and education ranged from 7-24 years. The average age of onset of CSA was 8.09 years old ($SD=3.48$; range 1-17) with a mean severity=3.70 ($SD=1.10$; range 1-5).


Rationale for binning number of major depressive episodes

As in prior studies from our laboratory, we binned number of lifetime major depressive episodes for conceptual and methodological reasons. Conceptually, our prior studies using this strategy demonstrated significant morphological/structural and molecular differences. For example, Treadway et al (12) identified morphometric changes in the dentate gyrus and medial prefrontal cortex associated with 1, 2-4 or more than 5 lifetime MDEs, and Pizzagalli and colleagues (5) found that the same binning (0, 1, 2-4 or >5) was inversely associated with dopamine transporter binding potential in the putamen and ventral tegmental area. In our prior studies, we had conceptualized that having zero, a single lifetime MDE or more than five likely captured clinically salient subgroups (i.e., individuals who never developed MDD, individuals who avoid recurrence after a single episode vs. those who have multiple recurrences through their life); the 2-4 lifetime MDEs subgroup was selected to be an intermediary group.

Moreover, Monroe & Harkness (13) provide compelling commentary regarding the nature of recurrent depression specifically supporting that “recurrence” is not met with a second episode, rather it should be thought of as a positively skewed distribution for individuals who are not prone to depression and a bimodal distribution for individuals who are recurrence prone (see Figure 1 from that paper). More work is needed to understand what factors distinguish individuals with depression who are and are not recurrence prone, supporting grouping in this way. There is also an inherent logic related to the frequency of recurrence of depression at the point of data collection to this grouping strategy. That is, a person with 0 or 1 MDEs has no recurrence at that time, while a person with 2-4 MDEs has some recurrence, and a person with 5+ MDEs has substantial recurrences. From a methodological perspective, many individuals in the “more than 5 MDEs” reported that they had had “too many episodes to know for sure”. In light of this, in the current and our prior work, we felt it was more conservative and parsimonious to use this 4-bin subgroups.

Continuous analysis of major depressive episodes

We provide the scatterplot for the continuous analysis of MDE below.

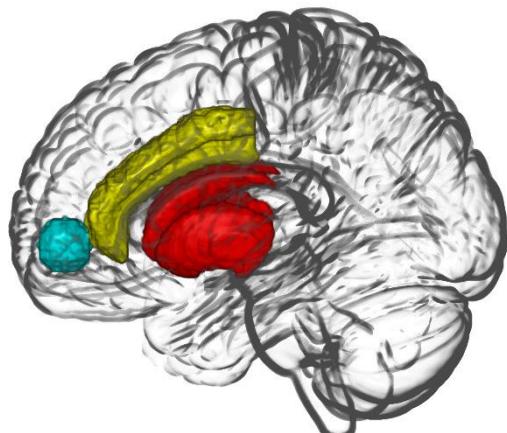
Note. One participant was 3 SDs above the mean and had ~2.5X more depressive episodes (35 MDEs) than the next highest participant (15 MDEs) and was therefore excluded from this analysis).

Caffeine consumption estimation

For each subject, the amount of caffeine consumed regularly and on the day before the session was be assessed. For caffeine, the Nutrition Data System (14) was be used to estimate the milligrams of caffeine in different drinks.

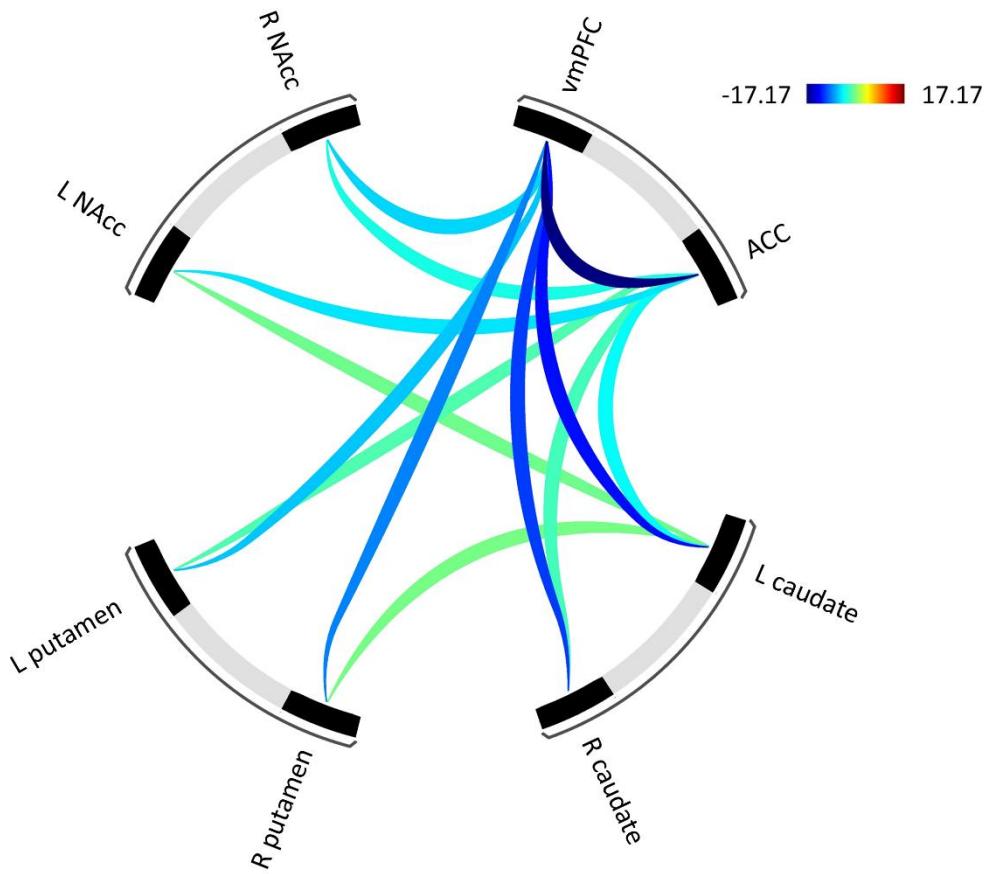
Sensitivity analyses for PET data

We conducted sensitivity analyses excluding one control participant with a history of MDD, and controlling for smoking status, biological sex, and caffeine consumption in the last 24 hours, in addition to our original covariates of study and age. We obtained a similar pattern of findings (left hemisphere: main effect of MDD: $F_{4,97}=2.52$, $p=.046$; main effect of CSA: $F_{4,97}=2.83$, $p=.029$; main effect of age: $F_{4,97}=4.11$, $p=.004$; right hemisphere: main effect of CSA: $F_{4,97}=2.73$, $p=.034$; main effect of age: $F_{4,97}=5.29$, $p<.001$; interaction of MDD x CSA: $F_{4,97}=1.96$, $p=.106$). Smoking status, biological sex, and caffeine consumption in the last 24 hours did not contribute unique variance to DAT values in the left (all $p>.628$) or right hemisphere (all $p>.205$).


Supplementary Table S1: PET doses

	Controls <i>n</i> =43 <i>M</i> (<i>SD</i>)	CSA no MDD <i>n</i> =14 <i>M</i> (<i>SD</i>)	MDD <i>n</i> =37 <i>M</i> (<i>SD</i>)	MDD / CSA <i>n</i> =18 <i>M</i> (<i>SD</i>)	Statistics
Injected Activity (MBq)	348.34 (22.18)	344.54 (69.71)	339.77 (21.60)	351.55 (25.59)	F(3,106)=0.73, <i>p</i> =.536
Specific Activity at TOI (GBq/μmol)	113.95 (93.01)	86.70 (20.57)	112.29 (91.43)	88.14 (17.70)	F(3,106)=0.76, <i>p</i> =.521
Injected Mass (nmol)	4.45 (3.27)	4.11 (0.86)	4.81 (5.58)	4.14 (0.89)	F(3,106)=0.17, <i>p</i> =.915

Note. Data missing for 2 participants (*n*=1 CSA no MDD; *n*=1 MDD/CSA).

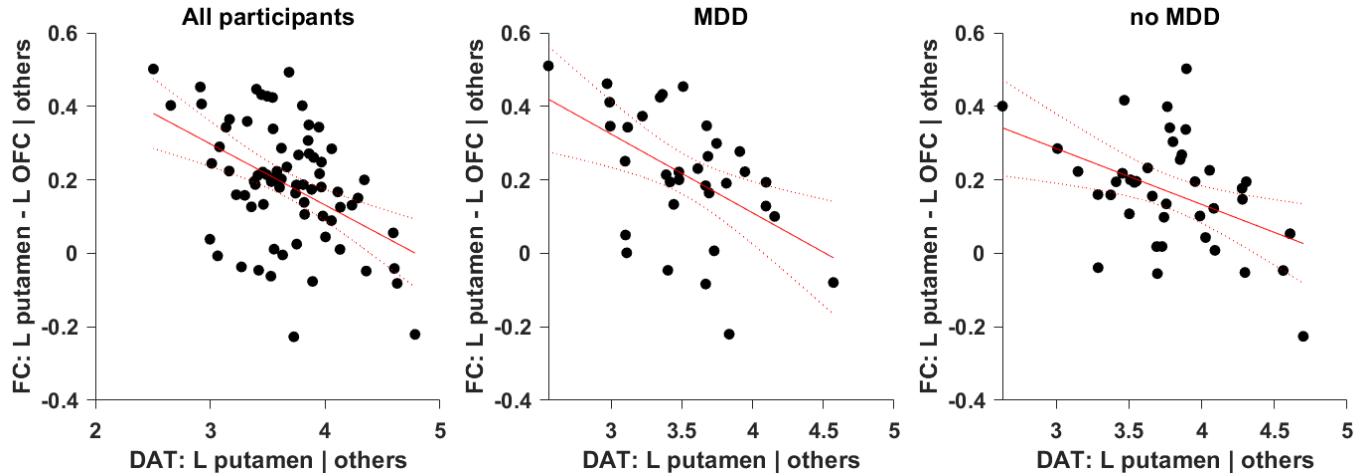

MBq=megabecquerels; GBq=gigabecquerels per micromole; TOI=Time of Injection;

nmol=nanomoles

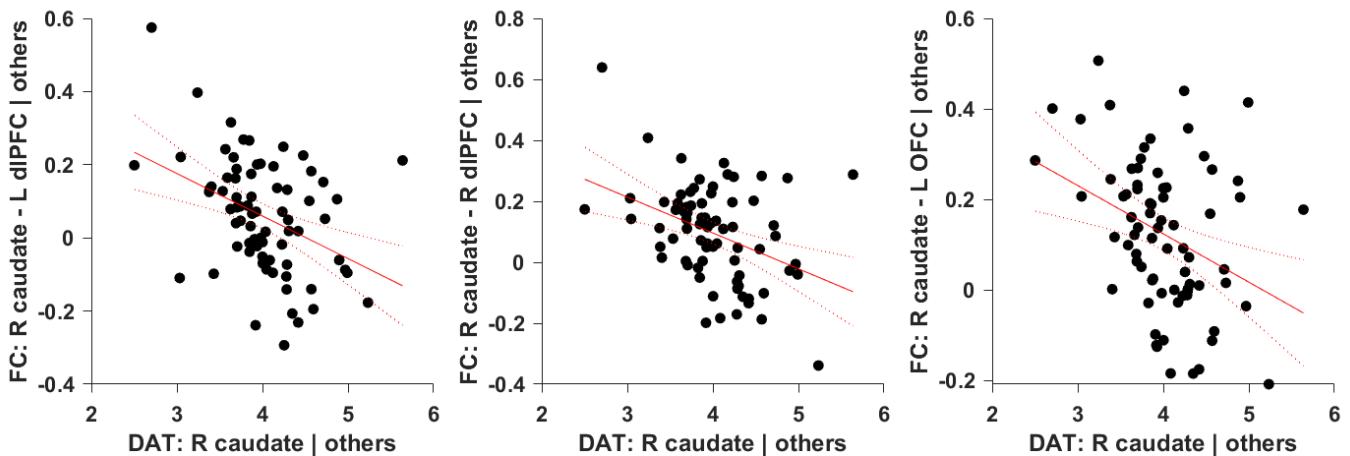
Supplementary Figure S1. Glass-brain image indicating ROIs

The caudate, putamen, and nucleus accumbens are indicated in red; the anterior cingulate cortex (ACC) is presented in yellow; and the ventromedial prefrontal cortex (vmPFC) is indicated in light blue.

Supplementary Figure S2. Sensitivity analysis for resting-state functional connectivity (rsFC)



Sensitivity analysis was carried out on the sample after excluding individuals who received amisulpride prior to the MRI scan, resulting in a total sample of 74 individuals. Similar findings were obtained. Specifically, individuals with a history of CSA exhibited reduced resting-state functional connectivity between the medial prefrontal cortex, comprising the vmPFC and ACC, and the striatum (putamen, caudate, NAcc). In addition, the functional connectivity between the vmPFC and ACC was also reduced for individuals with CSA.


Note, that a non-parametric cluster-level inference was used due to the smaller sample size: Threshold Free Cluster Enhancement (TFCE; 15), which thresholds ROI-to-ROI parametric maps while appropriately controlling the family-wise error rate, using a p FWE-corrected <0.05 connection-level threshold. This is a standard setting for cluster-based inferences available within CONN toolbox.

Supplementary Figure S3. Sensitivity analysis for dopamine transporter availability (DAT)-rsFC associations

Left putamen:

Right caudate:

DAT-rsFC analyses were repeated after excluding individuals who received amisulpride prior to the MRI scan, resulting in a total sample of 74 individuals.

For all clusters previously identified, DAT remained a significant predictor of rsFC:

Top row:

Left putamen – left OFC:

(left) all individuals: p DAT = $4.9 \cdot 10^{-5}$

(middle) MDD only: p DAT = 0.003

(right) non-MDD only: p DAT = 0.006

Bottom row:

(left) Right caudate – left dlPFC: p DAT = $5.0 \cdot 10^{-4}$

(middle) Right caudate – right dlPFC: p DAT = $6.8 \cdot 10^{-4}$

(right) Right caudate – left OFC: p DAT = 0.002

References

1. Herman JL, Van der Kolk B. Traumatic antecedents questionnaire. Cambridge, Mass, Cambridge Hospital; 1990.
2. Hamilton M. A rating scale for depression. *J Neurol Neurosurg Psychiatry*. 1960 Feb;23(1):56–62.
3. Shahid A, Wilkinson K, Marcu S, Shapiro CM. Beck Depression Inventory. In: Shahid A, Wilkinson K, Marcu S, Shapiro CM, editors. New York, NY: Springer; 2012. p. 63–4.
4. Snaith RP, Hamilton M, Morley S, Humayan A, Hargreaves D, Trigwell P. A Scale for the Assessment of Hedonic Tone the Snaith–Hamilton Pleasure Scale. *Br J Psychiatry*. 1995 Jul;167(1):99–103.
5. Pizzagalli DA, Berretta S, Wooten D, Goer F, Pilobello KT, Kumar P, et al. Assessment of Striatal Dopamine Transporter Binding in Individuals With Major Depressive Disorder: In Vivo Positron Emission Tomography and Postmortem Evidence. *JAMA Psychiatry*. 2019 Aug 1;76(8):854–61.
6. Watson D, Weber K, Assenheimer JS, Clark LA, Strauss ME, McCormick RA. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. *J Abnorm Psychol*. 1995;104(1):3–14.
7. Admon R, Kaiser RH, Dillon DG, Beltzer M, Goer F, Olson DP, et al. Dopaminergic Enhancement of Striatal Response to Reward in Major Depression. *Am J Psychiatry*. 2017 Apr;174(4):378–86.
8. Belleau EL, Bolton TAW, Kaiser RH, Clegg R, Cárdenas E, Goer F, et al. Resting state brain dynamics: Associations with childhood sexual abuse and major depressive disorder. *NeuroImage Clin*. 2022 Jan 1;36:103164.
9. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIprep: a robust preprocessing pipeline for functional MRI. *Nat Methods*. 2019 Jan;16(1):111–6.
10. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. *Brain Connect*. 2012;2(3):125–41.
11. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. *Neuroimage*. 2007;37:90–101
12. Treadway MT, Waskom ML, Dillon DG, Holmes AJ, Park MTM, Chakravarty MM, et al. Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression. *Biol Psychiatry*. 2015;77(3):285–294.

13. Monroe SM, Harkness KL. Major depression and its recurrences: life course matters. *Annu Rev Clin Psychol.* 2022;18(1):329–357.
14. Schakel SF, Sievert YA, Buzzard IM. Sources of data for developing and maintaining a nutrient database. *J Am Diet Assoc.* 1988; 88:1268-1271.
15. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. *Neuroimage* 2009; 44(1):83-98.