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ARTICLE INFO ABSTRACT

Keywords: Little is known about the acute effects of antidepressant treatments on brain glutamate and gamma-amino-
Depression butyric acid (GABA) levels, and their association with clinical response. Using proton magnetic resonance
SSRI spectroscopy ("H-MRS) we examined longitudinally the effects of citalopram on glutamine/glutamate ratios and
Glutamate GABA levels in the pregenual anterior cingulate cortex (pgACC) of individuals with major depressive disorder
GABA . (MDD). We acquired "H-MRS scans at baseline and at days 3, 7, and 42 of citalopram treatment in nineteen
Magnetlc resonance spectroscopy . . P . . . P

MRS unmedicated individuals with MDD. Ten age- and sex-matched non-depressed comparison individuals were

scanned once. The association between 1) baseline metabolites and 2) change in metabolites from baseline to
each time point and clinical response (change in Montgomery-Asberg Depression Rating Scale (MADRS) score
from baseline to day 42) was assessed by longitudinal regression analysis using generalized estimating equations.
Contrary to our hypotheses, no significant associations emerged between glutamate metabolites and clinical
response; however, greater increases (or smaller decreases) in pgACC GABA levels from baseline to days 3 and 7
of citalopram treatment were significantly associated with clinical response. These findings suggest that an acute
change in GABA levels in pgACC predicts, and possibly mediates, later clinical response to citalopram treatment
in individuals with MDD.

1. Introduction glutamatergic neurotransmission might represent a shared biological

pathway, as yet largely unexplored, amongst these mechanistically di-

Major depressive disorder (MDD) is common, disabling (Hasin et al.,
2005; Kessler et al., 2007), and sometimes refractory even to multiple
trials of antidepressant medication (Rush et al., 2006). Thus, it is im-
portant to better understand the biological mechanisms of action of
current treatments in order to identify early biomarkers that predict
later clinical response.

Substantial evidence implicates abnormal glutamatergic neuro-
transmission in MDD, and glutamate-modulating interventions show
promising antidepressant effects (Lener et al., 2016). Several classes of
antidepressant treatments, including selective serotonin reuptake in-
hibitors (SSRIs), tricyclic antidepressants, monoamine oxidase in-
hibitors, and electroconvulsive therapy (ECT), have been shown to af-
fect the glutamate system (Skolnick et al., 1996). Thus, modulation of
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verse antidepressant treatments (Skolnick, 1999).

Proton magnetic resonance spectroscopy (‘H-MRS) enables in vivo
measurement of brain glutamate levels, permitting longitudinal ex-
amination of changes in glutamatergic activity in individuals receiving
antidepressant treatment. Several studies have used 'H-MRS in this
context (Croarkin et al., 2016; Dubin et al., 2016; Godlewska et al.,
2015; Grimm et al., 2012; Jarnum et al., 2011; Luborzewski et al.,
2007; Merkl et al., 2011; Michael et al., 2003; Njau et al., 2016;
Pfleiderer et al., 2003; Taylor et al., 2012; Yang et al., 2014; Zhang
et al., 2013), but are characterized by important methodological lim-
itations. First, many of these studies measured Glx — a composite
measure containing both glutamate and glutamine — making them dif-
ficult to interpret. Second, with few exceptions (Njau et al., 2016;
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Taylor et al., 2012; Zhang et al., 2013), these studies acquired only pre-
and post-treatment scans after an extended course of treatment, pre-
cluding assessment of early glutamatergic changes that might herald
later clinical response. Third, few studies have used 'H-MRS sequences
capable of simultaneously quantifying glutamate and gamma-amino-
butyric acid (GABA) levels, which is critical given the close interplay of
these two reciprocal neurotransmitter systems.

To address these limitations, we assessed the acute and subchronic
effects of the SSRI citalopram on glutamatergic and GABAergic neuro-
transmission in patients with MDD. To this end, we used a combined
'H-MRS sequence employing two spectral editing techniques — 2-di-
mensional J-resolved 'H-MRS and MEGAPRESS - to measure levels of
glutamate-related compounds (glutamate and glutamine) and GABA,
respectively. We focused our investigation on the pregenual anterior
cingulate cortex (pgACC) given extensive evidence linking this brain
region to treatment response in MDD (Pizzagalli, 2011). In addition to
pre- and post-treatment "H-MRS scans, we performed scans at days 3
and 7 of treatment to probe acute, possibly transient, changes in pgACC
glutamate-related metabolites that might represent early biomarkers of
treatment response. For comparison, we also obtained single 'H-MRS
scans in healthy control individuals without MDD who did not receive
citalopram.

Based on our prior work showing a potential association between
antidepressant response and an acute increase in the pgACC glutamate/
glutamine ratio (an index reflecting the balance of glutamate metabo-
lites) following treatment with the glutamate-modulating drug riluzole
(Brennan et al., 2010), we hypothesized that 1) citalopram treatment
would be associated with an acute increase in the pgACC glutamine/
glutamate ratio and 2) this increase would be associated with clinical
improvement on citalopram. Additionally, based on prior studies de-
monstrating increases in GABA following SSRIs and ECT (Bhagwagar
et al., 2004; Sanacora et al., 2003, 2002), we hypothesized that pgACC
GABA levels would also increase following citalopram treatment.

2. Methods
2.1. Participant selection

Depressed participants aged 18-65 years, meeting the DSM-IV cri-
teria for current MDD, and scoring = 18 on the 21-item Hamilton
Depression Rating Scale (HAM-D) (Hamilton, 1960) at screening and
baseline, were recruited from the community using radio, print, and
Internet advertising. Exclusion criteria included: history of schizo-
phrenia, bipolar disorder, or obsessive-compulsive disorder; active
psychosis; suicidal risk defined as a score of = 4 on question #10 on the
Montgomery- fo\sberg Depression Rating Scale (MADRS) (Montgomery
and Asberg, 1979) or as judged by the study physician (BPB or HGP);
alcohol or substance abuse or dependence (other than nicotine) within
3 months of enrollment; history of ECT treatment; positive urine drug
screen for substances of abuse; failure to respond to adequate trials of
> 2 antidepressants during the current episode; a prior adequate trial
of citalopram as judged by the Principal Investigator; current pregnancy
or lactation; history of seizure disorder or organic brain disease; clini-
cally significant medical disease; left-handedness or MRI contra-
indication. Participants were required to be off all psychiatric medica-
tions for at least 2 weeks prior to enrollment (5 weeks for fluoxetine),
and no new psychiatric medications were permitted during the study.
Right-handed, non-depressed, age- and sex-matched comparison parti-
cipants, with no lifetime DSM-IV diagnoses, no current psychiatric
medications, and no history of psychiatric illness amongst first-degree
relatives were recruited from the community.

2.2. Clinical and 'H-MRS evaluation

At a screening evaluation, participants signed informed consent as
approved by the McLean Hospital Institutional Review Board. We then
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obtained demographic information, medical/psychiatric history, the
Structured Clinical Interview for DSM-IV (SCID), the HAM-D, physical
examination, vital signs, electrocardiogram, clinical laboratory tests,
and our primary outcome measure, the MADRS. A study physician
unblinded to study design (BPB or HGP) obtained all clinical measures.

Eligible participants returned in ~ 1 week for a baseline visit
comprising HAM-D, MADRS, their first 'H-MRS scan, and initiation of a
6-week open-label course of citalopram, 20 mg daily. Citalopram could
be increased to 40 mg daily at day 14, and if not tolerated, could be
reduced back to a minimum of 20 mg daily prior to day 28. On day 3,
participants received another 'H-MRS scan after their morning dose of
citalopram, but received no depression ratings. On day 7, participants
received a third 'H-MRS scan and the MADRS. Participants again re-
ceived the MADRS at days 14, 21, 28, and 42. At day 42, participants
received the fourth 'H-MRS scan and could choose to continue or taper
off citalopram.

2.3. Image acquisition

Imaging was conducted on a Siemens Trio (Siemens Medical
Solutions USA Inc., Malvern, PA) with a 32 channel Trans-Imaging
Matrix (TIM)™ 3-Tesla (3 T) platform upgrade at the McLean Imaging
Center. All participants underwent a routine anatomic scan to screen for
structural abnormalities, which was evaluated by a board-certified
radiologist.

'H-MRS acquisition used a modified protocol similar to that de-
scribed in our previous studies (Brennan et al., 2010, 2016, 2015;
Jensen et al., 2009). Briefly, a 2 X 2 X 2 cm voxel was placed on the
PgACC midsagittally, anterior to the genu of the corpus callosum
(Fig. 1). Shimming of the voxel was done using a machine automated
shimming routine. Following automated optimization of water-sup-
pression, carrier-frequency, tip angles and coil tuning, a modified J-
resolved protocol (2D-JPRESS) — which was recently found to have
good test-retest reliability (Jensen et al., 2017) — was used. The 2D-
JPRESS sequence collected 22 TE-stepped spectra with the echo-time
ranging from 35 ms to 350 ms in 15 ms increments (TR = 2, fl ac-
quisition bandwidth = 67 Hz, spectral bandwidth = 2 kHz, readout
duration = 512 ms, NEX = 16/TE-step, approximate scan duration =
12 min) providing enough J-resolved bandwidth (67 Hz) to resolve
glutamate and glutamine (Figs. 1 and 2). Additionally, a GABA-opti-
mized difference-edited MEGAPRESS sequence was used immediately
following the 2D-JPRESS acquisition with most acquisition parameters
being common between both sequences. The MEGAPRESS sequence
collected 68 ms spectral pairs with both an “ON” and “OFF” GABA-
editing pulse which allows for optimal GABA-edited spectra in the
difference spectrum (Fig. 1). This MEGAPRESS sequence collected 256
pairs of “ON” and “OFF” spectra at a TR = 2 s and a spectral bandwidth
of 1.2 kHz and the scan duration = 8.5 min. Since the acquisition op-
timization was already complete after the 2D-JPRESS, no additional
time was needed to optimize for MEGAPRESS.

2.4. 'H-MRS data processing and quantification

To quantify glutamate and glutamine with the JPRESS data, the 22
TE-stepped free-induction decay series (FIDS) was zero-filled out to 64
points, Gaussian-filtered, and Fourier-Transformed using GAMMA-si-
mulated J-resolved basis sets modeled for 2.89 T. Every J-resolved
spectral extraction within a bandwidth of 67 Hz was fit with the spec-
tral-fitting package LCModel (Provencher, 1993) and its theoretically-
correct template. The integrated area under the entire 2D surface for
each metabolite was calculated by summing the raw peak areas across
all 64 J-resolved extractions for each metabolite as in our prior pub-
lications (Brennan et al., 2010, 2016, 2015; Jensen et al., 2009). Our
primary 'H-MRS measure, glutamine/glutamate, is expressed as a ratio,
while glutamate, glutamine, and GABA levels are expressed as a ratio to
total creatine (tCr) — a widely used approach to reduce subject-specific
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Fig. 1. Sagittal MRI showing placement of magnetic resonance spectroscopy (MRS) voxel in the pregenual anterior cingulate cortex and sample 3 T proton MRS spectra from the
pregenual anterior cingulate cortex at baseline (scan 1), day 3 (scan 2), day 7 (scan 3), and day 42 (scan 4) using J-PRESS (extracted from J = 0.0 Hz) and MEGAPRESS sequences.
Spectra are displayed with LCModel fit and residual. Cho, choline; Cr, creatine; GABA, gamma-amino-butyric acid; Glu, glutamate; ml, myo-inositol; NAA, N-acetylaspartate.
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Fig. 2. Two-dimensional spectral plot from the pregenual anterior cingulate cortex
showing the J-coupling patterns of the coupled metabolites across J-space. Cho, choline;
Cr, creatine; Gln, glutamine; Glu, glutamate; GSH, glutathione; ml, myo-inositol; NAA, N-
acetylaspartate.

variance intrinsic to 'H-MRS data (Ongur et al., 2009). To examine
potential between-group differences in tCr, we compared the tCr/total
signal ratio between groups where total signal is the summation of all
fitted raw metabolite peak integrals.

The MEGAPRESS data were first converted into Siemens RDA
format and the 68 ms “OFF” subspectrum fitted with a phantom-derived
LCModel template acquired under the same in vivo conditions, allowing
for quantitation of 68 ms tCr. The difference-edited GABA spectra were
fitted with a separate phantom-acquired LCModel difference-edited
template allowing for the quantitation of the edited GABA doublet at
3.00 ppm.

For voxel tissue segmentation, 3D mpRAGE axial image data sets
were first converted into NIFTI binary image file format using FSL
(FMRIB). FMRIB's Automated Segmentation Tool (FAST; Oxford, UK)
was used for tissue-segmentation of the T1-weighted image sets into
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF).
Partial tissue fractions were then derived and expressed as a percentage
of total tissue contribution for the pgACC voxel using in-house software.

2.5. Statistical analyses

For the primary analysis of 1) change over time in "H-MRS measures
(glutamine/glutamate, glutamate/tCr, glutamine/tCr, GABA/tCr,) and
MADRS scores, and 2) the association of change in 1H-MRS measures
with change in MADRS, we performed longitudinal analysis with
random regression models, which allowed inclusion of all observed data
and accounted for the correlation of observations within individuals
(Diggle et al., 1994; Fitzmaurice et al., 2004; Gibbons et al., 1993).

For change in MADRS over time, the model included MADRS as the
outcome and time (modeled as a continuous variable). The coefficient
for the time term in this model quantifies the rate of clinical im-
provement, which we expressed as the estimated change in the measure
at day 42.

For change in 'H-MRS measures over time, our model included the
'H-MRS measure as the outcome and time (modeled as unordered ca-
tegories) adjusted for age and sex. For the association between change
in 'H-MRS measures and change in MADRS, our model included the 'H-
MRS measure as the outcome, the day 42 MADRS score, time, and
change-by-time interaction adjusted for age, sex, and pre-treatment
MADRS score. The coefficient for the interaction term in this model
quantifies the association between 'H-MRS measure and day 42 MADRS
at the respective time point.

To address the issue of multiple comparisons, we controlled for the
false discovery rate (FDR) (Benjamini and Hochberg, 1995) after des-
ignating 17 main outcomes of interest. The first of these was decrease in
MADRS scores from baseline to week 6 in the citalopram group. Then,
for each of the 2 primary metabolites of interest (glutamine/glutamate
ratio and GABA/tCr), there were 8 outcomes of interest: 1) the baseline
difference between the MDD and the comparison group; 2-4) the
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change from baseline to each of the 3 post-baseline time points within
the citalopram group; 5) the association of clinical response at week 6
with levels of the metabolite at baseline; and 6-8) the 3 post-baseline
time points within the citalopram group. Comparisons that were not
included among these 17 main outcomes were analyzed descriptively
and not inferentially (that is, results given as estimated mean difference
and standard error, without calculation of p-values).

All analyses were performed using Stata 9.2 software. Alpha was set
at 0.05, 2-tailed.

3. Results
3.1. Participants

Thirty-three depressed participants signed informed consent for the
study between April 3, 2012 and September 11, 2014. Of these, 13 were
withdrawn before receiving treatment (potential MRI contraindications
[N = 3], withdrew consent [N = 2], history of bipolar disorder [N =
2], positive drug screens [N = 2], lost to follow-up [N = 1], abnormal
laboratory results [N = 1], did not meet criteria for current major
depressive episode [N = 1], and left-handed [N = 1]). All 20 eligible
MDD participants completed at least one post-treatment clinical eva-
luation. Of these, 17 completed 6 weeks of treatment and 3 withdrew
due to adverse effects from citalopram. One participant was diagnosed
with frontotemporal dementia over a year after completing the study;
we excluded this participant's data from analysis. Ten matched non-
MDD comparison participants were also included.

Within the MDD group, one participant was taking tramadol and
hydrocodone and one participant was taking acetaminophen/hydro-
codone for pain secondary to degenerative disc disease. One of these
participants was also taking zolpidem as needed for insomnia. Both
participants agreed to discontinue use of these medications during the
study. One participant with hypothyroidism was taking levothyroxine
and had been on a stable dose for 10 years prior to enrollment and one
participant was taking omeprazole for gastroesophageal reflux disease.
Within the non-MDD group, one participant was taking hydro-
chlorothiazide and nifedipine for well-controlled hypertension.

Of the 19 MDD participants analyzed, 15 were titrated to 40 mg of
citalopram daily; of these, 4 subsequently resumed 20 mg daily because
of adverse events at 40 mg. The mean (SD) dose at endpoint was 33.8
(9.6) mg daily. Pre-treatment clinical features are presented in Table 1.

3.2. 'H-MRS

In the MDD group, one participant lacked a day 3 scan, one lacked a
day 7 scan (only JPRESS data acquired), and 4 participants lacked a day
42 scan. Additionally, one pre-treatment scan, one day 3 scan, and one
day 7 scan were corrupted during data transfer and could not be re-
covered. After visual inspection of the spectra, one participant's base-
line, day 3, and day 42 scans and one participant's day 7 scan
(MEGAPRESS data only) were judged unusable due to poor spectral
quality and excluded from analysis. Thus, the final sample size for 'H-
MRS analyses included 17, 16, 18 (2 participants with JPRESS data
only), and 14 MDD participants at baseline, day 3, day 7, and day 42,
respectively (Table 2). Of the 10 baseline 'H-MRS scans in non-MDD
comparison participants, one was excluded for MEGAPRESS data
judged unusable due to poor spectral quality.

Cramer-Rao Lower Bounds (CRLBs) for the final sample ranged from
3% to 11% (glutamate), 5-19% (glutamine), and 4-14% (GABA), and
the overall means (SD) did not significantly differ between the groups:
glutamate [MDD: 5.6 (1.7), non-MDD: 5.1 (0.7); t(73) = —1.0,p =
0.33], glutamine [MDD: 12.4 (3.2), non-MDD: 12.5 (2.3); t(73) = 0.08,
p = 0.94], GABA [MDD: 6.7 (2.3), non-MDD: 6 (3.2); t(70) = —0.8,p
= 0.45]. Given the generally accepted upper limit on CRLBs of 20% for
reliable fitting using LCModel (Provencher, 2016; Schulte and Boesiger,
2006), we did not exclude any additional "H-MRS data points on the



B.P. Brennan et al.

Table 1
Pre-treatment demographic and clinical characteristics.

Characteristic Participants with Participants P
MDD (N = 19) without MDD (N =
10)
Age, years, mean (SD) 38.5 (12.2) 38.4 (14.1) 0.98*
Range 20-56 22-56
Sex, N (%) 0.71°
Male 11 (58) 5 (50)
Female 8 (42) 5 (50)
Montgomery-Asberg 26.8 (2.9) 0
Depression Rating
Scale, mean (SD)
21-Item Hamilton 21.1 (2.8) 0
Depression Rating
Scale, mean (SD)
Subtype of depression, N
(%)
Atypical 2(11) —
Melancholic 9 (47) —
No subtype 8 (42) —
DSM-IV comorbidity at time
of study, N (%)
None 12 (63) —
Dysthymic disorder 4 (21) —
Social anxiety disorder 1(5) —_
Attention-deficit 1(5) —
hyperactivity disorder®
Binge-eating disorder 1(5) —
Number of antidepressant
trials, lifetime, N (%)
None 11 (58) —
1 4 (21) —
=2 4 (21) —
Duration of MDD, months, 116.5 (139.0) —
mean (SD)
Range 3-396 —

Duration of current episode,
months, mean (SD)
Range 3-26 —
Number of prior depressive
episodes, N (%)

7.6 (5.7) —

0 7 (37)

1-5 5 (26) —
6-10 2(11) —
11-20 1(5) —

Too many to quantify 4 (21) —

MDD, major depressive disorder.
2 By t-test (two-tailed).
b By Fisher's exact test (two-tailed).
¢ As per participant report.

Table 2
Mean (SD) metabolite levels in individuals with and without MDD,

Non-MDD MDD

Baseline Baseline Day 3 Day 7 Day 42

(N = 10) N =17) (N = 16) (N =18) N =14)
Gln/Glu 0.27 (0.04)  0.31 (0.08) 0.33(0.10) 0.31 (0.12)  0.27 (0.10)
Glu/tCr 0.98 (0.14)  0.89 (0.11) 0.88(0.17) 0.92(0.15) 0.91 (0.16)
Gln/tCr 0.27 (0.05)  0.27 (0.05)  0.28 (0.08) 0.27 (0.09)  0.23 (0.06)
GABA/tCr  0.036 0.049 0.034 0.047 0.039

(0.010)" (0.022) (0.013) (0.020)° (0.014)

GABA, gamma-amino-butyric acid; Gln, glutamine; Glu, glutamate; MDD, major depres-
sive disorder; tCr, total creatine.

@ Metabolite levels expressed in arbitrary units.

PN =09

¢N = 16.

basis of CRLBs.
The mean (SD) percentages of GM, WM, and CSF in the pgACC voxel
at pre-treatment were 49%(7%), 32%(7%), and 19%(4%) in the non-
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Fig. 3. The mean scores on the Montgomery»/?\sberg Depression Rating Scale (MADRS)
over 6 weeks of citalopram treatment. Error bars represent 95% confidence interval.

MDD group and 50%(5%), 29%(8%), and 21%(7%) in the MDD group,
respectively. These values showed no significant between-group dif-
ferences. We found no significant baseline difference in tCr/total signal
ratio, t(25) = 1.2, p = 0.26, between groups. In the MDD group, the
percentage of GM in the pgACC was 51%(5%), 50%(4%), and 52%(5%)
for day 3, day 7, and day 42, respectively; the percentage of WM was
29%(5%), 28%(7%), and 28%(8%); and CSF was 20%(4%), 22%(8%),
and 20%(9%). There were no between-scan differences.

3.3. Calculation of FDR

For the 17 outcomes of interest, the threshold for a 5% FDR was
calculated to be 0.015, which yielded 5 p-values that were considered
statistically significant on this basis (see results in Sections 3.4 and 3.5).

3.4. Clinical measures

In the MDD group, citalopram was associated with significantly
decreased MADRS depression scores (estimated mean [SE] change from
baseline —13.6 [1.7]; p < 0.001; Fig. 3). Eleven of 19 (58%) MDD
participants met criteria for response (= 50% reduction in MADRS
score) (Nierenberg and DeCecco, 2001) and seven of 19 (37%) met
criteria for remission (total MADRS score of < 10) (Zimmerman et al.,
2004) at day 42 of citalopram treatment.

3.5. 'H-MRS analyses

3.5.1. Between-group analyses

At baseline, there were no significant baseline between-group dif-
ferences in glutamine/glutamate or GABA/tCr (p = 0.10 and 0.15,
respectively) (Table 3).

3.5.2. Longitudinal analyses

3.5.2.1. Glutamate-related measures. Contrary to our first hypothesis,
we found no significant change in glutamine/glutamate over time with
citalopram treatment (Table 3). With regard to our second hypothesis,
although the increase in glutamine/glutamate from baseline to day 7
was associated with a numerical decrease from baseline to day 42 in
MADRS ( = 0.0094 (0.0047), p = 0.046; Table 4), this association
failed to be significant upon correction using FDR.

3.5.2.2. GABA/tCr. We found a significant decrease in GABA/tCr levels
from baseline to day 3 of citalopram treatment (Table 3). We also
observed a significant association between clinical improvement
(decrease in MADRS) from baseline to day 42 and increase (or lesser
decrease) in GABA/tCr levels from baseline to day 3 and from baseline
to day 7. Additionally, lower baseline GABA/tCr levels were associated
with greater clinical improvement (Table 4). Although there was an
association between clinical improvement at day 42 and increase in
GABA/tCr levels from baseline to day 42 (f = 0.0021 (0.00099), p =
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Table 3
Baseline between-group mean differences in metabolite levels for MDD vs. non-MDD groups and mean differences from baseline to post-baseline time points in metabolite levels within
MDD group®.
MDD vs. non-MDD group Within MDD group, Difference from baseline
Baseline Baseline to Day 3 Baseline to Day 7 Baseline to Day 42
Difference” (SE) P B° (SE) P B¢ (SE) P B° (SE) P
Gln/Glu 0.039 (0.024) 0.14 0.015 (0.032) 0.64 —0.0025 (0.031) 0.94 —0.039 (0.034) 0.25
Glu/tCr —0.98 (0.045) - —0.0059 (0.047) - 0.029 (0.046) - 0.0098 (0.049) -
Gln/tCr 0.00061 (0.020) - 0.010 (0.024) - 0.0017 (0.024) - —0.034 (0.025) -
GABA/tCr 0.013 (0.0074) 0.10 —0.015 (0.0058) 0.0100 —0.0023 (0.0058) 0.70 —0.011 (0.0060) 0.078

GABA, gamma-amino-butyric acid; Gln, glutamine; Glu, glutamate; MDD, major depressive disorder; tCr, total creatine.
2 Results that remained statistically significant following control for false discovery rate are bolded (i.e., p < 0.015; see Section 3.3 for details).
b Estimated mean difference (MDD minus non-MDD), adjusted for age and sex, by linear regression.
¢ Estimated mean difference (post-baseline time point minus baseline), adjusted for age and sex, by random regression, using generalized estimating equations to account for the

correlation of observations within individuals (see text).

4 No p-values are reported for Glu/tCr and Gln/tCr because these were secondary measures of glutamate and not part of the set of 17 main outcomes of interest.

0.030; Table 4), this association failed to be significant upon correction
using FDR.

We noted upon inspection that 2 MDD participants had much higher
pre-treatment pgACC GABA/tCr values (0.10 and 0.096) than the rest of
the group (N = 15; median [interquartertile range] 0.041
[0.033-0.0571, with highest value of 0.063). The CRLBs for the outlying
GABA measurements were 6% and 8% — well within the generally ac-
cepted 20% range for validity for CRLB (Provencher, 2016; Schulte and
Boesiger, 2006). Nevertheless, as a sensitivity analysis, we repeated
analyses using ranked GABA/tCr data as the outcome. The p-values for
the 4 previously identified significant p-values were somewhat in-
creased, rising to 0.013, 0.010, 0.031, and 0.056 (for the decrease in
GABA/tCr from baseline to day 3, and for the 3 associations of GABA/
tCr with clinical improvement). Although these differences would not
be considered significant using the FDR (which for this analysis is
0.0059), the fact that a clear trend in favor of this set of differences
remained intact using this less powerful sensitivity analysis suggests
that the findings identified as significant by FDR in the original analysis
using non-ranked data are probably not unduly influenced by the 2 high
pre-treatment GABA/tCr values in the MDD group.

4. Discussion

The current study revealed several findings. Contrary to our first
hypothesis concerning glutamatergic effects, we did not find an acute
increase in glutamine/glutamate ratios with citalopram treatment. With
regard to our second hypothesis, we found a tentative association be-
tween acute increases in glutamine/glutamate ratios (from baseline to
day 7 of citalopram treatment) and clinical response at day 42 in the
MDD group (nominal p-value of 0.046) — but this finding did not survive
correction for multiple comparisons using FDR. However, though not

Table 4

hypothesized a priori, we observed significant associations between day
42 clinical response in the MDD group and 1) lower GABA/tCr levels at
baseline; 2) greater increase (or lesser decrease) in GABA/tCr levels
from baseline to day 3 of citalopram treatment; and 3) greater increase
(or lesser decrease) in GABA/tCr levels from baseline to day 7 of cita-
lopram treatment.

To our knowledge, this is the first study to use 'H-MRS to in-
vestigate both acute and subchronic changes in brain levels of gluta-
mate and glutamine following SSRI treatment in individuals with MDD
and to examine their association with clinical response. One prior study
examined differences in pgACC Glx and glutamate levels between in-
dividuals with MDD who had received one week of treatment with ei-
ther escitalopram or placebo and a group of non-MDD individuals and
found no between-group differences (Taylor et al., 2012). However, this
study did not continue escitalopram treatment beyond one week and
therefore could not examine the relationship with clinical response nor
did it examine pre-treatment between-group differences in Glx or glu-
tamate. Three other longitudinal studies using 'H-MRS failed to detect
longer-term changes in glutamate or Glx in MDD individuals following
extended antidepressant treatment (Godlewska et al., 2015; Grimm
et al., 2012; Jarnum et al., 2011). However, one found an association
between clinical response and increased post-treatment glutamate le-
vels in dorsolateral prefrontal cortex (DLPFC) (Grimm et al., 2012). By
contrast, increased glutamate and Glx levels in multiple brain regions
including pgACC and DLPFC have been associated with response fol-
lowing extended courses of both ECT (Michael et al., 2003; Njau et al.,
2016; Pfleiderer et al., 2003; Zhang et al., 2013) and repetitive tran-
scranial magnetic stimulation (rTMS) (Luborzewski et al., 2007; Yang
et al., 2014), with two exceptions (Dubin et al., 2016; Merkl et al.,
2011). Notably, ECT failed to show acute glutamatergic effects after
only two sessions (Njau et al., 2016; Zhang et al., 2013), which may

Association of Metabolite Levels at Baseline or Change in Metabolite Levels from Baseline to Time Point with Clinical Improvement at Day 42°.

Baseline Baseline to Day 3 Baseline to Day 7 Baseline to Day 42

B (SE) P B (SE) P B (SE) P B (SE) P
Gln/Glu —0.0043 (0.0037) 0.25 0.0036 (0.0049) 0.47 0.0094 (0.0047) 0.046 —0.0040 (0.0057) 0.48
Glu/tCr —0.00078 (0.0057) = 0.0035 (0.0075) - —0.0052 (0.0073) - 0.0042 (0.0088) -
Gln/tCr —0.0037 (0.0028) - 0.0032 (0.0037) - 0.0062 (0.0036) - —0.0019 (0.0043) -
GABA/tCr —0.0021 (0.00064) < 0.001 0.0024 (0.00085) 0.004 0.0033 (0.00096) < 0.001 0.0021 (0.00099) 0.030

GABA, gamma-amino-butyric acid; Gln, glutamine; Glu, glutamate; MDD, major depressive disorder; tCr, total creatine.

@ Results that remained statistically significant following control for false discovery rate are bolded (i.e., p < 0.015; see Section 3.3 for details).

b Estimated mean increase in baseline metabolite level or change in metabolite level for each unit of clinical improvement (specifically, each 1-point decrease in value of day 42
MADRS minus baseline MADRS), adjusted for age and sex, by random regression, using generalized estimating equations to account for the correlation of observations within individuals

(see text).

¢ No p-values are reported for Glu/tCr and Gln/tCr because these were secondary measures of glutamate and not part of the set of 17 main outcomes of interest.
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have been too early to see effects.

Our study failed to support our hypotheses regarding associations
between glutamine/glutamate ratios and citalopram treatment or re-
sponse. Nonetheless, we believe that further studies should still pursue
the possibility that a perturbation of the glutamate system in brain
regions critically implicated in MDD and treatment changes (Pizzagalli,
2011) may be an essential mechanistic step in antidepressant response
across treatment modalities. However, the timing of this perturbation
may differ between treatments. Specifically, clinical response to SSRIs
may depend on a rapid change in the balance of glutamate metabolites
in the pgACC within the first week of treatment. In contrast, response to
ECT and rTMS (which are typically administered to more severe and
treatment-refractory patients) has largely been associated with sub-
chronic increases in glutamate and Glx following several weeks of
treatment perhaps due to the pulsed nature of ECT and rTMS, which
may result in more potent cumulative effects on the glutamate system
that are detectable weeks after initiation of treatment. Conversely, daily
medication administration may result in a less potent initial glutama-
tergic effect that subsides over time — a phenomenon we have demon-
strated previously (Brennan et al., 2010).

Although not hypothesized a priori, we found several significant
associations between GABA/tCr levels and clinical response to citalo-
pram treatment, as noted above. These findings are consistent with
existing evidence of reduced cerebral GABA levels in MDD individuals,
which normalizes following treatment with SSRIs and ECT (Sanacora,
2010; Sanacora et al., 2003, 2002) — and even after a single intravenous
dose of citalopram (Bhagwagar et al., 2004). We did not find evidence
of reduced baseline GABA/tCr levels in our MDD group overall when
compared to non-MDD individuals. However, while several groups have
demonstrated reduced occipital cortex GABA levels in MDD (Price
et al., 2009; Sanacora et al., 2004), studies examining GABA levels
specifically in the pgACC of individuals with, compared to individuals
without, MDD have found either no difference (Hasler et al., 2007) or
deficits only in a treatment-resistant subgroup (Price et al., 2009)
suggesting region- and/or subgroup-specificity. Overall, our finding of
response-specific increases in GABA/tCr levels in the pgACC after one
week of citalopram treatment is consistent with a study demonstrating
acute increases in GABA and Glx levels in a similar brain region in MDD
patients following ketamine infusion (Milak et al., 2016), suggesting a
common mechanistic link between these two distinct antidepressant
treatments.

We acknowledge several study limitations. First, our sample size
was modest due to participant attrition and the cost and logistical
challenges of the study design (which involved four scans per subject),
thus limiting statistical power. Second, our open-label design leaves
open the possibility of a placebo effect, making it difficult to distinguish
biological effects of citalopram from nonspecific effects influencing
clinical improvement. Third, we did not assess the menstrual cycle
status in female participants, although this has been shown to impact
glutamate and GABA levels (Batra et al., 2008; De Bondt et al., 2015).
Fourth, with the exception of our primary MRS measure, the gluta-
mine/glutamate ratio, we expressed metabolite levels as ratios to tCr —a
method that assumes no between-group differences in tCr (Ongur et al.,
2009). However, given the within-subject longitudinal design of this
study, and the fact that we found no differences in the tCr/total signal
ratio in our MDD and non-MDD groups, this assumption seems rea-
sonable. Fifth, while J-resolved techniques have been shown to improve
the specificity of glutamate and glutamine measures in vivo at higher
field strength (Jensen et al., 2009), this approach has not been pre-
viously demonstrated at 3 T. Therefore, the reduced spectral separation
of these complex resonance structures at lower field strength needs to
be factored into the interpretation of our findings.

In summary, this study found that clinical response to SSRI treat-
ment in MDD is associated with early changes in GABAergic, but ap-
parently not glutamatergic, activity in the pgACC within the first week
of treatment. We believe our findings provide support for: 1) the theory
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that an acute enhancement of GABAergic activity is a common me-
chanistic pathway across diverse antidepressant agents; and 2) further
investigation of acute increases in glutamine/glutamate ratios and
GABA levels in pgACC as potential early biomarkers of response to SSRI
treatment in MDD. Overall, this study adds to the existing functional
neuroimaging literature (Di Simplicio et al., 2012; Godlewska et al.,
2016; Harmer et al., 2009) demonstrating changes in the brain early in
antidepressant treatment that may mediate later clinical response —
findings that may ultimately be valuable in developing novel depression
treatments and informing clinical decision-making.
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