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Abstract—Post-Traumatic Stress Disorder (PTSD) is a
psychiatric condition resulting from threatening or hor-
rifying events. We hypothesized that circadian rhythm
changes, measured by a wrist-worn research watch are
predictive of post-trauma outcomes. Approach: 1618 post-
trauma patients were enrolled after admission to emer-
gency departments (ED). Three standardized question-
naires were administered at week eight to measure post-
trauma outcomes related to PTSD, sleep disturbance, and
pain interference with daily life. Pulse activity and move-
ment data were captured from a research watch for eight
weeks. Standard and novel movement and cardiovascular
metrics that reflect circadian rhythms were derived using
this data. These features were used to train different classi-
fiers to predict the three outcomes derived from week-eight
surveys. Clinical surveys administered at ED were also
used as features in the baseline models. Results: The high-
est cross-validated performance of research watch-based
features was achieved for classifying participants with pain
interference by a logistic regression model, with an area
under the receiver operating characteristic curve (AUC) of
0.70. The ED survey-based model achieved an AUC of 0.77,
and the fusion of research watch and ED survey metrics im-
proved the AUC to 0.79. Significance: This work represents
the first attempt to predict and classify post-trauma symp-
toms from passive wearable data using machine learning
approaches that leverage the circadian desynchrony in a
potential PTSD population.
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I. INTRODUCTION

POST-TRAUMATIC stress disorder (PTSD) is a psychiatric
condition that can develop after exposure to threatening

or horrifying events. Significant symptoms consistent with the
eventual development of PTSD may manifest within days, weeks
or months, and more rarely, a year or two after the traumatic
event [1]. Symptoms may include persistent intrusive memories
of trauma, sleep disturbances, avoidance of stimuli related to
the trauma, hyperarousal, and negative changes in mood and
cognition. PTSD can result from events such as violent personal
assaults, natural or human-caused disasters, motor vehicle col-
lisions, combat, and other forms of violence [2]. It has been
shown that patients with PTSD experience sleep disturbance,
particularly in terms of nightmares and panicked awakenings
from sleep [3]. In addition, various studies suggest a significant
comorbidity of pain with PTSD [4]. Many models have been
developed to explain this co-occurrence of pain and PTSD,
including the mutual maintenance model [5]. According to this
model, pain acts as a reminder of the traumatic event and main-
tains PTSD symptoms. Then, these symptoms reduce the ability
to cope with pain effectively. Although approximately 90% of
all U.S. adults report exposure to at least one traumatic event in
their lifetime, most do not develop PTSD [6]. It has been shown
in previous studies that the majority of individuals experience
PTSD onset within the first three months after trauma, while
“delayed expression” PTSD (after six months) was observed on
average for 15.3% of the cases [7].
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Accurate prediction of PTSD in the early aftermath of trauma
would enable early preventive interventions [8]. Rothbaum
et al. [9] showed that trauma survivors receiving an early
modified prolonged exposure intervention reported significantly
less PTSD severity compared to the assessment group. It has
also been shown in a preliminary study that administering an
early single high-dose hydrocortisone could reduce the risk
of PTSD development [10]. Unfortunately, PTSD prediction
using standard survey data remains a challenge, since potential
risk factors (such as age, gender, previous trauma) did not
show a strong association with PTSD [10]–[12]. In a previous
study, Schultebraucks et al. [13] combined biomarker data with
clinical assessments from the emergency department (ED) to
build a cross-validated prediction algorithm. By fusing these two
modalities, the model’s AUC for classifying participants with
non-remitting PTSD symptoms from participants with resilient
trajectories was 0.83 on a validation dataset. They also tested the
use of electronic medical records alone and achieved an AUC
of 0.72, which outperformed the baseline classifier (AUC =
0.62). In another work, video and audio-based features were
used with a deep learning classifier and achieved an AUC of
0.90 for predicting PTSD one month after ED enrollment [14].

The exponential increase in consumer wearables, and in wear-
able technology generally, has created an exciting opportunity
to predict adverse mental health outcomes using wrist-wearable
data [15], [16]. Two key outputs of wrist-wearable data are
heart rate variability (HRV) and actigraphic data. Individual
differences in a various time- and frequency-domain HRV mea-
sures have been found to predict a range of mental and physical
health outcomes, including depression, anxiety, and poorer car-
diovascular health [17], [18]. On the other hand, individuals
with established PTSD have been shown to have HRV profiles
consistent with increased sympathetic nervous system activity
during sleep [19], [20]. In a previous pilot study, by using a
dataset of 23 subjects with current PTSD and 25 control subjects,
the authors found that HRV features derived from time periods
with the lowest heart rate in 24-hour periods classify PTSD with
an AUC of 0.86 [21]. Actigraphy data can be used to estimate
sleep disturbance using derived sleep/wake estimates and the
rest/activity patterns [22]. Many studies utilized actigraphy as an
objective tool to characterize disturbances in sleep and circadian
rhythm in PTSD [23], [24]. However, analyses were confined
to identifying statistically significant differences in populations
and cross-validated classification analysis was not performed.

In this study, the extent to which the PTSD outcome can be
predicted from circadian rhythm changes was investigated, using
longitudinal data passively collected from a research watch. A
novel approach to distinguishing between people that will and
will not develop PTSD after exposure to a trauma is presented.
At its core, the method is based on a classification algorithm fed
by a set of actigraphy-based features and HRV metrics.

Data were analyzed using cosinor-based rhythmometry
method [25] to completely automate the detection of rest/activity
periods without the need for subjective information such as
sleeping diaries or time zone information in the setting of
both complete and missing data (the latter resulting from non-
compliance or dead batteries). HRV metrics were extracted

TABLE I
FREEZE 2 DATASET PARTICIPANT DEMOGRAPHICS. P VALUES CALCULATED
USING WILCOXON RANK SUM TEST (AGE, BMI) OR FISHER EXACT TEST

(SEX, EMPLOYMENT) BETWEEN PCL-5 ≥ 31 AND PCL-5 < 31
PARTICIPANTS. AGE AND BMI ARE SHOWN AS MEAN (SD)

SD: Standard deviation

together with actigraphy features to quantify rest and activity
states and examined the effect of varying the duration of data
used to predict PTSD outcome. In this study, we passively
collected longitudinal data from a research watch, assessed
circadian rhythm changes, and trained a classifier to distinguish
people that develop PTSD after exposure to trauma from those
that do not develop PTSD.

II. METHODS

A. Participants and Overview of Data Collection

The AURORA dataset, used in this work, consisted of individ-
uals who present to participating emergency departments within
72 hours of a traumatic event. Traumatic events that qualified
automatically for study enrollment were motor vehicle collision,
physical assault, sexual assault, fall >10 feet, or mass casualty
incidents. The patients ranged in age from 18 to 75 years [26].
Although the AURORA study’s aim is to collect data from 5000
individuals, the data is being analyzed in a series of tranches
(or ‘freezes’) to report results to the scientific community. This
approach also allows future data to act as a truly independent
test set. For the current study, we present the analysis of the
first set of participants (N = 1618) enrolled between July 31,
2017, and July 31, 2019. There were 2312 subjects enrolled
until July 31, 2019. Participants who were deceased, those
who dropped, who were pregnant or incarcerated, or anyone
for whom the medical data extraction form was not available
were not included in the released analyzable cohort, making the
final dataset size 1618 participants. These 1618 participants are
referred to as ‘Freeze 2’ dataset. Demographics (age, sex, BMI,
and employment status) of the participants are shown in Table I.
The number of participants in the outcome classes depended
on compliance to the outcome surveys (administered at week
eight), research watch data, and the ED surveys as illustrated in
Fig. 1 and described in detail in Section II-B.

The AURORA study protocol was ethically approved by
the central Institutional Review Board (IRB #17-0703) at the
University of North Carolina Chapel Hill. Participants were
asked to wear a research watch (Verily Life Sciences, San
Francisco) at least 21 hours a day for the eight-week period and
at subsequent times that vary by the study participant, as shown
in Fig. 2. This research watch collected accelerometry and the
photoplethysmogram (PPG) data at 30 Hz for this period.
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Fig. 1. AURORA Freeze 2 Dataset overview and number of participants in each outcome group that is used in this research. Outcome surveys
applied at week eight (PCL-5, PSQIA-PanicSleep, and PROM-Pain4a) were used to create the outcome groups. ED surveys included PDI, MCEPS
and PCL-5 administrated at ED department following trauma. Top row of the tables indicates the number of participants that answered the outcome
surveys, which is the maximum number available for the analysis. The rows below the first row indicate if the participants shared other modalities in
addition to the outcome surveys.

Fig. 2. Percentage of hours with actigraphy and derived heart rate
(HR) data in the eight-week study period. If no samples are captured
in a given clock hour, that hour is marked as empty.

Fig. 3. Timeline of data collection and clinical surveys. In the bottom
plots, actigraphy and RR Interval data collected with the research watch
is illustrated.

B. Patient Class Labels and Survey Tools

Three clinical surveys were administrated in the ED – the
Peritraumatic Distress Inventory (PDI), PCL-5, and Michigan
Critical Events Perception Scale (MCEPS) [27], [28], as shown
in Fig. 3. The PCL-5 administered at the ED solicited informa-
tion on symptoms 30 days prior to the traumatic event. The raw
scores of these surveys were used as features to the models to
determine if prediction of the outcomes is feasible without using
the research watch data.

Three clinical surveys administered at the eighth week of the
study were used to create the binary outcome classes. These
outcomes could potentially be used to identify subjects who
require intervention to prevent or reduce the severity of PTSD.
Firstly, the PCL-5 survey scores were used to capture PTSD
symptoms outlined by DSM-5 criteria [2]. The score PCL-5 =

31 was used as the threshold, following the recommendation of
the developers of the PCL-5 survey [29].

Secondly, since patients with PTSD report sleep disturbance,
the PCL-5 questionnaire was combined with one item from
Pittsburgh Sleep Quality Index Addendum (PSQIA-PanicSleep)
in order to measure sleep anxiety and panic [23], [30], [31], [32].
The question and response categories were modified as follows
to assess the difficulty of staying asleep: “In the ‘reference
period’, how often did you awaken from sleep with severe anxiety
or panic¿’ so that 0 = “never”, 1 = “less than once a week”, 2
= “1-2 nights a week”, 3= “3-4 nights a week” and 4 = “every
or nearly every night”. The cut-off for the survey was selected
in order to separate participants with severe sleep disturbance.
In this outcome, participants with PSQIA-PanicSleep ≥ 3 and
PCL-5 ≥ 31 were assigned to the first class while PSQIA-
PanicSleep < 3 and PCL-5 < 31 were assigned to the second
class. This outcome is referred to as PTSD-Sleep Panic/Anx.
outcome.

It has been shown in previous studies that chronic pain could
accompany PTSD [5]. For the third outcome, the PCL-5 survey
was combined with PROMIS Pain Interference Short Form 4a
(PROM-Pain4a) [33]. In this survey, the participant was asked
to rate how much pain interfered with different areas of life on
a 5-point scale (1 = “not at all,” 2 = “a little,” 3 = “some,” 4
= “a lot,” and 5 = “extremely.”). The same scoring rules as the
PROMIS Pain Interference Short Form 4a scale was used; the
response values were summed and converted to a T-score. The
T-score rescales the raw score into a standardized score with a
mean of 50 and a standard deviation of 10. A higher PROMIS
T-score represents more of the concept being measured and the
T-scores help in interpreting the PROMIS scores in a clinically
meaningful way (More information about the T-scores could
be found in www.healthmeasures.net). By using the PROMIS
T-score guidelines, the cut-offs were selected for mild and severe
pain interference following the guidelines for T-score interpre-
tation. Participants with PROM-Pain4a ≥ 66.6 (corresponding
to a raw score of 16) and PCL-5 ≥ 31 were assigned to first
class while PROM-Pain4a < 55.6 (corresponding to a raw score
of 8) and PCL-5 < 31 were assigned to second. This outcome
is referred to as PTSD-Pain Int. outcome. Fig. 1 illustrates the
number of participants in each class, determined by week eight
outcome surveys.
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Fig. 4. Detection of rest and activity regions from actigraphy data.
Lighter colors indicate higher intensity movements. Deviations from the
typical pattern are seen on days 40-56 in this example participant.

C. Preprocessing of Research Watch Data

1) Cardiac Data Preprocessing: The cardiac activity of each
subject was captured from the photoplethysmogram (PPG) sig-
nal, a 30 Hz pulsatile waveform derived from the reflected light
on the back of the wrist in contact with the sensor. The PPG
was converted to a normal-to-normal (NN) sinus beat interval
time series using the PhysioNet Cardiovascular Signal Toolbox,
implemented in the MATLAB programming language [34], [35].
First, peak detection of each pulsatile beat was performed using
a previously described method based on gradient thresholding
[36]. The first difference of the times of each beat was used
to form the inter-beat interval time series. Then, non-sinus
intervals were detected and removed by measuring the rela-
tive change in the current inter-beat interval from the previous
inter-beat interval. Intervals that changed by more than 20%
were excluded. Inter-beat intervals outside of the physiologically
possible range were also removed. The NN beat interval time
series is commonly thought to reflect autonomic influences on
cardiac function [37].

2) Accelerometer Data Preprocessing: The accelerometer
data was converted to actigraphy counts before the feature
extraction step, using the Actigraphy Toolbox which was imple-
mented in the MATLAB programming language [38]. Borazio
et al. describe the conversion of the raw 3D accelerometer data
to activity counts [39]. Activity counts are the output format of
most commercial actigraphy devices; data are summarized over
30-second epochs or time intervals. This conversion reduces
required the memory for storing data and eliminates artifacts
and noise. Z-axis actigraphy data were bandpass filtered 0.25-11
Hz to eliminate extremely slow or fast movements [22]. The
maximum values inside 1-second windows were summed for
each 30-second epoch of data. These summations were scaled
to obtain activity counts for each epoch [40]. Actigraphy data are
commonly represented as a “double plot”, which shows activity
levels (measured via accelerometry in this case). Fig. 4 illustrates
this for one participant using eight weeks of actigraphy data.
Each column is created by stacking two consecutive days of data.
The first column shows activity levels on days 1-2, the second
column shows days 2-3, and so on. Darker colors indicate lower
levels of activity.

3) Cosinor-based Rest and Activity Region Identification:
Single-component cosinor models were used to detect 24-hour
rest and activity regions without any time-zone or sleep diary

information [25]. Actigraphy data of each participant were split
into 48-hour windows with an overlap of 24-hours. The cosinor
model with the following form was then fit to the data

Y (t) = M +K cos

(
2πt

τ
+ ϕ

)
(1)

where M is known as the mesor, K is the amplitude, and ϕ is
the phase of the circadian rhythm. By identifying the times at
which the cosine fit crossed the mesor baseline, the start and end
of rest and active segments of the day were determined. Each of
these segments were 12-hour length.

D. Feature Extraction From Research Watch Data

After preprocessing, the actigraphy signal in each 30-second
epoch, together with the NN interval time series of each partic-
ipant, was used for feature extraction. Table II describes the
features extracted from these preprocessed signals. Features
derived from actigraphy included Interdaily Stability (IS), In-
tradaily Variability (IV), the mean and standard deviation of
movement in the detected rest and activity regions, and cosinor-
based rhythmometry metrics (Mesor, Amplitude, Phase) [25]. IS
quantifies invariability between days while IV quantifies within
24-hour day fragmentation [41]. Cosinor-based rhythmometry
metrics can provide information about the participants’ circa-
dian rest-activity cycle. IS and IV were extracted from rest
and activity regions by concatenating the days in the window,
as indicated by the subscripts. CRS, RSI, and cosinor-based
rhythmometry metrics were extracted from each day within
the window and then the mean and standard deviation of the
metric were calculated. Similarly, for MV metrics, the mean and
standard deviation of 12-hour rest and activity regions across the
window were extracted.

The HRV feature set was derived using PhysioNet Cardio-
vascular Signal Toolbox and included time domain, frequency
domain and entropy metrics [34]. More details about the HRV
features used can be found in Table 2. All HRV metrics were
calculated in 5-minute segments with a 30-second overlap using
the toolbox. Then 5-minute segments from the rest regions,
detected by the cosinor method were selected in order to obtain
the segments with the fewest movement artifacts and highest
signal quality. The mean and standard deviation across the
windows were calculated and used as features. Feature ex-
traction was performed on a virtual computer in AWS, (48
vCPUs, 3.6 GHz, 96 GiB memory) and it took about three
days for processing monthly data (∼700 participant’s data on
average).

E. Data Organization for Model Training

As the first step in the pipeline, the data were adjusted by
randomly undersampling the majority class in order to address
the problem of class imbalance. This imbalance can be seen for
PTSD-Sleep Panic/Anx. outcome, where the number of partici-
pants was 153 for the first class (PanicSleep≥3 and PCL-5week-8

≥ 31) and was 613 for the second class (PSQIA-PanicSleep <
3 and PCL-5week-8 < 31). Specifically, all participants from the
minority class were used, and the same number of participants
from majority class were randomly selected to obtain balanced
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TABLE II
FEATURE SET

rest, act: Label indicating feature calculated during rest or activity periods. IQR: Interquartile range.
µ, σ: Mean and standard deviation across the days analyzed.

classes. Undersampling of majority class subjects was repeated
in an external cross-validation fold, where n1 was defined as the
number of majority class participants and n2 was the number
of minority class participants. The external repeats were imple-
mented n1/n2 times, and this ratio was rounded to the nearest
integer.

F. Machine Learning Models

The mapping of the data or derived features into outcome
classes is a supervised binary classification problem. All the

models were written in the Python 3 language and the pro-
gramming code is based on Scikit-learn [42]. Three different
binary classifiers were trained for each experiment category as
follows:

1) Support Vector Machine (SVM): An SVM is a super-
vised model that is designed to find the optimal sepa-
rating hyperplane with the maximum margin within the
classes. Linear and radial basis function kernels were
used.

2) Logistic Regression: A logistic regression classifier uses
a logistic function to model the probabilities of the
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TABLE III
AUC COMPARISON OF DIFFERENT CLASSIFIERS USING ED SURVEYS AS

FEATURES FOR EIGHT-WEEK OUTCOME PREDICTION. RESULTS ARE
REPORTED AS MEAN ± STANDARD DEVIATION

outcomes. L2 regularization was used with the logistic
regression classifier to achieve a robust model, minimize
overfitting and reduce any effect of codependences with-
out reducing the number of features. The regularization
strength was set to the default level (1) of the Scikit-Learn
logistic regression classifier.

3) Multilayer Perceptron: A multilayer perceptron (MLP)
is a type of supervised classifier with a feedforward
architecture, with one or more hidden layers between
input and the output. A one-layer MLP with 100
neurons and L2 regularization was used, and these
parameters were set at the default values for the Scikit
classifier.

A five-fold cross-validation procedure was used for parameter
tuning and model assessment and the class prevalence was
adjusted to be identical in each fold. The model was trained
on the data from all participants except one held-out fold, and
the participants in the remaining fold were then used as the
test data. This process was repeated to ensure testing on all
participants. Performance metrics were calculated for each test
fold, and the mean and standard deviation of each metric were
calculated across the five folds. After extracting the features, the
training phase of the classifier took an average of 0.57 seconds
on a 2.3 GHz i5 intel chipset.

G. Overview of Experiments

Three categories of experiments were performed as follows
and all models were tested for the full dataset and for the subset
of participants whose PTSD outcome at week eight is different
from baseline PTSD status assessed in the ED (ex: PCL-5ED <
31 and PCL-5week-8 ≥ 31):

Experiment 1 (survey model): Prediction of eight-week out-
come from ED survey data. The PCL-5ED solicits information
on symptoms 30 days prior to the traumatic event. The raw scores
of these surveys were used as features to the models.

Experiment 2 (research watch model): Prediction of eight-
week outcome from the data. HRV and actigraphy features
described in the previous sections were combined to obtain a
feature matrix of 50 columns and models were trained to predict
or classify the single corresponding eight-week outcome:

a) Using all participants and using a 56-day window.
b) Prediction of eight-week outcome using 7, 14, …, 56 days

of HRV and actigraphy features, using participants who
contributed data on all days. When an analysis window

TABLE IV
PERFORMANCE OF LOGISTIC REGRESSION MODEL USING ED SURVEYS AS
FEATURES FOR EIGHT-WEEK OUTCOME PREDICTION (N = 739 FOR PTSD
OUTCOME ANALYSIS, N = 468 FOR PTSD-SLEEP ANX./PANIC OUTCOME
ANALYSIS, N = 326 FOR PTSD-PAIN INT. OUTCOME ANALYSIS). RESULTS

ARE REPORTED AS MEAN ± STANDARD DEVIATION

shorter than 49 days was used, the classifier was “predict-
ing” the outcome at day 56 “ahead-of-time”. However,
when the analysis window size was 56 days for example,
it reduced to a “classification” task.

c) Analysis of feature trajectories (daily averages of each
feature in the 56-day window): Participants who report
as non-PTSD (PCL-5ED < 31) in ED were isolated. Two
subgroups were then created by looking at week eight
surveys; participants who develop new-onset PTSD and
those who remain non-PTSD. Then, the significance of
each feature for these subgroups was tested using the
Wilcoxon rank sum test.

Experiment 3 (fusion model): Fusion of research watch and
survey models by concatenating the feature sets. Experiment
3 was implemented on participants who contributed both the
research watch data and the ED survey data. Survey model
and research watch model from previous experiments were also
trained on this subset of participants to ensure results are directly
comparable and the contribution of fusing modalities could be
tested accurately.

III. EXPERIMENTAL RESULTS

A. Results of Experiment 1

The cross-validation performance of different types of clas-
sification models using ED survey-based features is shown in
Table III. Logistic regression classifier has achieved the highest
AUC for all outcome types. Table IV shows all metrics includ-
ing accuracy, TPR, TNR, and PPV for the logistic regression
classifier. Models showed high performance for all outcome
types; 0.67, 0.70, and 0.70 accuracies for PTSD, PTSD-Sleep
Anx./Panic, and PTSD-Pain Int. outcomes respectively.

The performance was evaluated for the participants for whom
PTSD outcome changed from admission to week eight (N =
270 for PTSD outcome, N = 150 for PTSD-Sleep Anx./Panic
outcome, N= 110 for PTSD-Pain Int. outcome) without retrain-
ing the model. For these subsets of the participants, accuracies
of 0.33, 0.32, and 0.34 was achieved for PTSD, PTSD-Sleep
Anx./Panic, and PTSD-Pain Int. outcomes respectively.

B. Results of Experiment 2

Table V shows the performance of different classifiers when
HRV and actigraphy features were used. It can be seen that
similar to Exp. 1, logistic regression classifier performed the
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TABLE V
AUC COMPARISON OF DIFFERENT CLASSIFIERS USING HRV AND

ACTIGRAPHY FEATURES FOR EIGHT-WEEK OUTCOME PREDICTION.
RESULTS ARE REPORTED AS MEAN ± STANDARD DEVIATION

TABLE VI
PERFORMANCE OF LOGISTIC REGRESSION MODEL USING HRV AND
ACTIGRAPHY FEATURES FOR EIGHT-WEEK OUTCOME PREDICTION.

RESULTS ARE REPORTED AS MEAN ± STANDARD DEVIATION

Fig. 5. Feature importance for logistic regression models (window
size=56 days). Highest five average absolute feature coefficients across
folds are illustrated for each outcome.

best for all outcome types. Models achieved the highest AUC of
0.70 and accuracy of 0.65 when the outcome is PTSD-Pain Int.
However, the performance was lower for other outcome types;
accuracy was 0.56 for PTSD outcome and 0.58 for PTSD-Sleep
Anx./Panic. Table VI shows the logistic regression classifier
performance in detail for the research watch models. The model
performance was similar for participants undergoing a change
in the clinical status. The accuracies were 0.55, 0.59, 0.64 for
PTSD, PTSD-Sleep Anx./Panic, and PTSD-Pain Int. outcomes
respectively for this subset. For each outcome type, Fig. 5 shows
the feature importance determined by the absolute value of
the logistic regression coefficients, averaged over folds. Fig. 6
illustrates the AUC from each window size when participants
with data contribution from all 56 days are considered. The best
performance was achieved when all 56 days were used as the
analysis window.

For the HRV and actigraphy features, the feature trajectories
were also investigated. RMSSD, HF and pnn50 features were
significantly different between the groups for the highest number
of days (N > 19) among all features. Fig. 7 illustrates the
trajectory of these features over the window.

Fig. 6. AUC of the logistic regression models with different window size
selection. Subplot (a) shows the AUC for the PTSD outcome, subplot (b)
shows PTSD-Panic Sleep/Anx. outcome, and subplot (c) shows PTSD-
Pain. Int. outcome over the days.

Fig. 7. Trajectories of pnn50, HF, and RMSSD features for participants
who develop PTSD and who do not, as determined by PCL-5 survey
at week eight. Mean of features are shown with solid lines and 95%
confidence intervals are shown with the shaded regions.

C. Results of Experiment 3

For comparison with the fusion models, experiments were
repeated on the participants who contributed both research watch
and survey data. The AUC was improved for participants whose
PTSD status has changed, in all outcome types compared to the
ED survey only models. For PTSD outcome AUC improvement
was two percentage points. For PTSD-Sleep Panic/Anxiety out-
come, improvement was six percentage points, and for PTSD-
Pain Int. outcome improvement was 26 percentage points. The
AUC of the overall model (including all participants) was also
improved to 0.79 for PTSD-Pain Int. outcome type as shown in
Table VII. However, for all outcome types, AUC of survey and
fusion models were not significantly different as determined by
Hanley and McNeil two-tailed test.
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TABLE VII
AUC COMPARISON OF DIFFERENT MODEL TYPES. RESULTS ARE REPORTED

AS MEAN ± STANDARD DEVIATION.

IV. DISCUSSION

In this work, features and patterns related to circadian rhyth-
micity derived from data recorded on a research watch were
used to predict or detect post-trauma outcomes. Patients with
PTSD have previously reported sleep disturbance symptoms
including insomnia and nightmares [23]. It has also been shown
in previous studies that PTSD has a high co-occurrence with
chronic pain, which could interfere with patients’ daily lives
[4], [5]. Moreover, PTSD could also result in decreased interest
in activities, as stated by the DSM-5 criteria [2]. Therefore, we
hypothesized that PTSD may lead to changes in the circadian
rhythm that could be captured by the actigraphy and HRV data.

As a baseline, three clinical surveys administered in the
ED were used as features to train a logistic regression model
to predict eight-week PTSD. By using these ED surveys, the
models achieved AUCs of 0.73 for PTSD outcome, 0.79 for
PTSD-Panic Sleep/Anx. outcome, and 0.77 for PTSD-Pain. Int.
outcome. These results indicate that previous PTSD status and
stress experienced immediately following the traumatic event
are a significant predictor of PTSD in the following months.
However, in general, these models simply predicted that the
PTSD status is unlikely to change.

Then, the use of various types of machine learning models
with HRV and actigraphy features was investigated. The logistic
regression model achieved the highest cross-validated accuracy
for predicting the PTSD label at week eight post-trauma when
the data from the enrollment until the end of week eight was
considered. The weights of the logistic regression model were
analyzed to identify the contribution of each feature (Fig. 5).
NNiqrσ , avgSQIµ, LFµ and LFHFµ had the highest relative
importance amongst the HRV features. LF power, in particular,
was lower in the population with eight-week PTSD (a mean of
1178 ms2 vs 1562 ms2). Since the LF power is dominantly as-
sociated with baroreflex activity, it can be interpreted as blunted
baroreflex activity over this period [37], which is consistent
with the literature on PTSD [43]. Previous studies have also
shown that LF power is significantly different in stressful condi-
tions compared to the resting conditions [44, 45]. Therefore,
this metric could be reflecting the stress the participants are
experiencing following the traumatic event. From the actigraphy
based metrics, the movement during the rest and the active parts
of the day, IVact, ISrest, ISact and CRSσ , metrics were the
most important. IV measures the fragmentation of rest/activity
rhythm and the transitions between rest and activity and IVact

shows irregular activity during the daytime. IS is a measure of

variability between days [41]. ISrest and ISact were informative
when the outcome is PTSD-Sleep Anx./Panic. This could indi-
cate that anxiety resulting from trauma could lead to decoupling
from zeitgebers in both rest and activity regions. The feature
trajectories over time could help to identify the individuals that
may benefit from specialized interventions such as biofeedback
therapies for HRV. Fig. 7 shows a significant difference for the
mean values of pnn50, HF, and RMSSD between participants
who developed PTSD and those who did not.

It is debatable whether collecting data from surveys or a
wearable (such as our research watch) represent a lower burden
for subjects who develop PTSD. Wearable technologies such
as smartwatches (and even mobile phones) are now common-
place and provide the opportunity to collect data without user
intervention, while survey-based assessments are active data
collection techniques requiring effort and input from the user.
However, wearables also require frequent device charging at
regular intervals, which is unsustainable in the long term unless
a user already is in the habit of doing so. It may not be an
either/or proposition though, and these two approaches could
complement each other. For example, participants who were not
able or willing to fill in the survey at admission could benefit
from passive data collection. In our study N = 533 participants
did not fill the ED surveys, but they wore research watches.
For these participants, watch-based models could become the
prime monitoring method. However, compliance could also be
affected by diagnostic status. Research watch data compliance
was calculated as the hours with data divided by total hours
in the eight-week window, and it was significantly different
in PTSD-Sleep Panic/Anx. groups as determined by Wilcoxon
rank sum test. Average compliance was 83% for the first group
(PanicSleep ≥ 3 and PCL-5week-8 ≥ 31) and was 86% for the
second group (PSQIA-PanicSleep < 3 and PCL-5week-8 < 31).
The compliance to ED surveys (PDI, MCEPS, PCL-5ED) was
higher for PCL-5week-8 ≥ 31 group (69%) compared to PCL-
5week-8 < 31 group (48%), and this difference was statistically
significant as determined by the Fisher exact test. The research
watch models could be more useful for participants undergoing a
change in clinical status since the data analysis is windowed and
can provide a daily or weekly output which may be interpreted as
the severity of illness. This could facilitate evaluation of response
to intervention, for example. Therefore, watch-based models
have potential for passive monitoring over long study periods.

We note several limitations to our study. First, the outcomes
(PTSD status at week eight) may reflect the appearance of PTSD
at any time over the intervening eight weeks. The high variability
in the speed of development of PTSD is likely to create high class
confusion in any machine learning paradigm. Moreover, there is
the potential for individuals’ PTSD symptoms to wax and wane
over the eight-week period, further confusing any algorithm
trained on such data. Second, due to the use of self-report surveys
from week eight for constructing outcome classes, our cohort
is a subset of the original AURORA Freeze 2 dataset, albeit
a rather large cohort. As more data are collected in the AU-
RORA study in the coming years, we will address this limitation
by re-evaluating the methods with more participants. Lastly,
time zone information was not available for our participants.
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Circadian (mis)alignment may have provided additional infor-
mation for adjusting features. While the cosinor-based rest-
activity detection might compensate for this lack of information,
it cannot fully address the issue.

Despite these limitations, the methods for classifying or pre-
dicting outcomes (for window sizes smaller than 49 days) could
be useful in passively monitoring changes in symptom severity
in large populations and in low-resource settings. Without the
prior knowledge of which patients to administer treatment,
smartwatch-based monitoring could be used to identify the
subset of patients to prioritize. By using 56 days of data, an
AUC of 0.56 for PTSD, 0.61 for PTSD-Panic Sleep/Anx., and
0.70 for PTSD-Pain. Int was achieved. Notably, the model for
participants with a combined PTSD and pain outcome combined
provides the highest performance. Identifying and treating these
particular types of individuals is extremely important. Previous
studies report that patients with both chronic pain and PTSD
combined use healthcare services more than the patients with
PTSD or chronic pain alone, increasing healthcare costs [5].
Moreover, PTSD treatment for these patients could be more
beneficial than for other groups, since they also report a reduction
in pain symptoms after treatment [46].

The cosinor method described in this work for determining
the rest and activity regions could be useful for the studies in
which participants cross different time zones, and in situations
when obtaining sleep diary and time zone information would be
highly burdensome for the participant. Addressing adherence
and wearability of the device is likely to boost performance of
the approach described here in the complete dataset yet to be
collected (another 3000 patients). Also, additional features re-
lated to sleep may enhance the model performance. In particular,
it is possible to estimate the sleep periods within the detected
rest regions by adapting sleep staging algorithms from pulse and
activity metrics, for the research watch used in this study and
this will be implemented in our future work [47], [48].

V. CONCLUSION

As far as we are aware, this research represents the first
attempt to predict outcomes following a traumatic event from a
wearable (or more specifically, a watch). We both classified and
predicted outcomes using non-invasive physiological features
derived from a research quality watch, using a logistic regression
model. We also developed a method to automatically detect rest
and activity periods of the day using the cosinor analysis.

ACKNOWLEDGMENT

Verily Life Sciences and Mindstrong Health provided some of
the hardware and software used to perform study assessments.

Disclosure: In the past three years Dr. Clifford has received
research support from Otsuka and unrestricted donations from
AliveCor Inc. Dr. Clifford is CTO of Mindchild Medical Inc and
has financial interest in the company. He is also Chief Scientific
Officer of LifeBell AI Inc. and has financial interest in the com-
pany. Dr. Clifford is a consultant to AliveCor Inc and has finan-
cial interest in the company. No funding, technology owned or
licensed by these companies was used in this research. Over the
past three years, Dr. Pizzagalli has received consulting fees from

Akili Interactive Labs, BlackThorn Therapeutics, Boehringer
Ingelheim, Compass Pathway, Otsuka Pharmaceuticals, and
Takeda Pharmaceuticals; one honorarium from Alkermes, and
research funding from NIMH, Dana Foundation, Brain and
Behavior Research Foundation, Millennium Pharmaceuticals.
In addition, he has received stock options from BlackThorn
Therapeutics. No funding from these entities was used to support
the current work, and all views expressed are solely those of the
authors. In the past three years, Dr. Kessler received support
for his epidemiological studies from Sanofi Aventis; was a
consultant for Datastat, Inc., Sage Pharmaceuticals, and Takeda.
Dr. Jones reports no direct conflicts related to this paper, and
no ongoing conflicts. Dr. Jones has been an investigator on
studies funded by Roche Diagnostics, AstraZeneca, Janssen, and
Hologic Inc. Dr. Sheikh has received funding from the Florida
Medical Malpractice Joint Underwriter’s Association.

Authors’ Affiliations:

Ayse S. Cakmak is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: acakmak3@
gatech.edu).

Erick A. Perez Alday, Ali Bahrami Rad, Qiao Li and Gari D. Clif-
ford are with the Department of Biomedical Informatics, Emory University
School of Medicine, Atlanta, GA 30322 USA (e-mail: erick@dbmi.emory.edu,
abahramir@gmail.com, qiaoli@dbmi.emory.edu, gari@alum.mit.edu).

Giulia Da Poian is with the Department of Health Sciences & Technology,
8092 Zurich, Switzerland (e-mail: giulia.dap@gmail.com).

Thomas J. Metzler and Thomas C. Neylan are with the Department of
Psychiatry, University of California, San Francisco, CA 92093 USA (e-mail:
thomas.metzler@va.gov, thomas.neylan@ucsf.edu).

Stacey L. House is with the Department of Emergency Medicine, Wash-
ington University School of Medicine, St. Louis, MO 63110 USA (e-mail:
staceyhouse@wustl.edu).

Francesca L. Beaudoin is with the Department of Emergency Medicine &
Health Services, Policy, and Practice, The Alpert Medical School of Brown
University Providence, RI 02903 USA 02903 (e-mail: francesca_beaudoin@
brown.edu).

Xinming An, Sarah D. Linnstaedt, and Samuel A. Mclean are with the Insti-
tute for Trauma Recovery, Department of Anesthesiology, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599-7010 USA (e-mail:xinming_
an@med.unc.edu, sarah_linnstaedt@med.unc.edu samuel_mclean@med.unc.
edu).

Jennifer S. Stevens is with the Department of Psychiatry and Behavioral
Sciences, Emory University School of Medicine, Atlanta, GA 30329 USA (e-
mail: jennifer.stevens@emory.edu).

Donglin Zeng is with the Department of Biostatistics, Gillings School of
Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7400
USA (e-mail: dzeng@email.unc.edu).

Tanja Jovanovic is with the Department of Psychiatry and Behavioral Neuro-
sciences, Wayne State University, Detroit, MI 48201 USA (e-mail: tjovanovic@
med.wayne.edu).

Laura Germine is with the Institute for Technology in Psychiatry, McLean
Hospital, Belmont MA 02478 USA (e-mail: lgermine@mclean.harvard.edu

Kenneth A. Bollen is with the Department of Psychology and Neuroscience,
University of North Carolina, Chapel Hill, NC 27599-3270 USA (e-mail:
bollen@email.unc.edu).

Scott L. Rauch is with the Department of Psychiatry, McLean Hospital,
Belmont, MA 02478 USA (e-mail: srauch@partners.org).

Christopher A. Lewandowski is with the Department of Emergency
Medicine, Henry Ford Health System, Detroit, MI 48202 USA (e-mail:
clewand1@hfhs.org).

Phyllis L. Hendry and Sophia Sheikh are with the Department of Emergency
Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville,
FL 32209 USA (e-mail: phyllis.hendry@jax.ufl.edu, sophia.sheikh@jax.ufl.
edu).

Alan B. Storrow is with the Department of Emergency Medicine, Vanderbilt
University Medical Center, Nashville, TN 37232 USA (e-mail: alan.storrow@
vumc.org).

Paul I. Musey, Jr. is with the Department of Emergency Medicine, Indiana
University School of Medicine, Indianapolis, IN 46202 USA (e-mail: pmusey@
iu.edu).

acakmak3@gatech.edu
erick@dbmi.emory.edu
abahramir@gmail.com
qiaoli@dbmi.emory.edu
gari@alum.mit.edu
giulia.dap@gmail.com
thomas.metzler@va.gov
thomas.neylan@ucsf.edu
staceyhouse@wustl.edu
francesca_beaudoin@brown.edu
xinming_an@med.unc.edu
sarah_linnstaedt@med.unc.edu
samuel_mclean@med.unc.edu
jennifer.stevens@emory.edu
dzeng@email.unc.edu
tjovanovic@med.wayne.edu
lgermine@mclean.harvard.edu
bollen@email.unc.edu
srauch@partners.org
clewand1@hfhs.org
phyllis.hendry@jax.ufl.edu
sophia.sheikh@jax.ufl.edu
alan.storrow@vumc.org
pmusey@iu.edu


CAKMAK et al.: CLASSIFICATION AND PREDICTION OF POST-TRAUMA OUTCOMES RELATED TO PTSD 2875

John P. Haran is with the Department of Emergency Medicine, University
of Massachusetts Medical School, Worcester, MA 01655 USA (e-mail: john.
haran@umassmed.edu).

Christopher W. Jones is with the Department of Emergency Medicine,
Cooper Medical School of Rowan University, Camden, NJ 08103 USA (e-mail:
jones-christopher@cooperhealth.edu).

Brittany E. Punche is with the Department of Emergency Medicine, Univer-
sity of Cincinnati College of Medicine, Cincinnati, OH 45267 USA (e-mail:
murrisbe@ucmail.uc.edu).

Robert A. Swor is with the Department of Emergency Medicine, Oakland
University William Beaumont School of Medicine, Rochester Hills, MI 48309
USA (e-mail: robert.swor@beaumont.edu).

Nina T. Gentile is with the Department of Emergency Medicine, Lewis Katz
School of Medicine at Temple University, Philadelphia, PA 19140 USA (e-mail:
ngentile@temple.edu).

Meghan E. McGrath is with the Department of Emergency Medicine, Boston
Medical Center, Boston, MA 02118 USA (e-mail: meghan.mcgrath@bmc.org).

Mark J. Seamon is with the Division of Traumatology, Surgical Critical Care
and Emergency Surgery, University of Pennsylvania, Philadelphia, PA 800-789-
7366 USA (e-mail: mark.seamon@pennmedicine.upenn.edu).

Kamran Mohiuddin is with the Department of Emergency Medicine/Internal
Medicine, Einstein Medical Center, Philadelphia, PA 19141 USA (e-mail:
mohiuddk@einstein.edu).

Anna M. Chang is with the Department of Emergency Medicine, Jefferson
University Hospitals, Philadelphia, PA 19107 USA (e-mail: annamarie.chang@
jefferson.edu).

Claire Pearson and Brian J. O’Neil are with the Department of Emergency
Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI
48201 USA (e-mail: cpearson@med.wayne.edu, boneil@med.wayne.edu).

Robert M. Domeier is with the Department of Emergency Medicine, Saint
Joseph Mercy Hospital, Ann Arbor, MI 48197 USA (e-mail: rdomeier@epmg.
com).

Steven E. Bruce is with the Department of Psychological Sciences, University
of Missouri – St. Louis, St. Louis, MO 63121-4400 USA (e-mail: brucese@umsl.
edu).

Niels K. Rathlev is with the Department of Emergency Medicine, University
of Massachusetts Medical School-Baystate, Springfield, MA 01199 USA (e-
mail: niels.rathlev@baystatehealth.org).

Leon D. Sanchez is with the Department of Emergency Medicine, Beth Israel
Deaconess Medical Center, Boston, MA 02215 USA (e-mail: lsanche1@bidmc.
harvard.edu).

Robert H. Pietrzak is with the Yale School of Medicine, New Haven, CT
06510 USA (e-mail: robert.pietrzak@yale.edu).

Jutta Joormann is with the Department of Psychology, Yale University, New
Haven, CT 06511 USA (e-mail: jutta.joormann@yale.edu).

Deanna M. Barch is with the Department of Psychological & Brain Sciences,
College of Arts & Sciences, Washington University in St. Louis, St. Louis, MO
63130 USA (e-mail: dbarch@wustl.edu).

Diego A. Pizzagalli and Kerry J. Ressler are with the Department of Psychi-
atry, Harvard Medical School, Boston, MA 02215 USA (e-mail: dap@mclean.
harvard.edu, kessler@hcp.med.harvard.edu).

Steven E. Harte is with the University of Michigan Medical School, Ann
Arbor, MI 48109 USA (e-mail: seharte@med.umich.edu).

James M. Elliott is with the Feinberg School of Medicine, Northwestern
University, Chicago, IL 60611 USA (e-mail: jim.elliott@sydney.edu.au).

Ronald C. Kessler is with the Department of Health Care Policy, Harvard
Medical School, Boston, MA 02115 USA (e-mail: kessler@hcp.med.harvard.
edu).

Karestan C. Koenen is with the Department of Epidemiology, Harvard T.H.
Chan School of Public Health, Boston, MA 02115 USA (e-mail: kkoenen@
hsph.harvard.edu).

REFERENCES

[1] I. J. Bisson, “Post-traumatic stress disorder,” BMJ, vol. 334, no. 7597,
pp. 789–793, 2007.

[2] American Psychiatric Association and Others, Diagnostic and Statistical
Manual of Mental Disorders DSM-5. American Psychiatric Pub, 2013.

[3] A. Richards, J. C. Kanady, and T. C. Neylan, “Sleep disturbance in PTSD
and other anxiety-related disorders: An updated review of clinical fea-
tures, physiological characteristics, and psychological and neurobiological
mechanisms,” Neuropsychopharmacology, vol. 45, no. 1, pp. 55–73, 2020.

[4] T. J. Sharp and A. G. Harvey, “Chronic pain and posttraumatic stress
disorder: Mutual maintenance?,” Clin. Psychol. Rev., vol. 21, no. 6,
pp. 857–877, 2001.

[5] D. A. Fishbain, A. Pulikal, J. E. Lewis, and J. Gao, “Chronic pain types
differ in their reported prevalence of post-traumatic stress disorder (PTSD)
and there is consistent evidence that chronic pain is associated with PTSD:
An evidence-based structured systematic review,” Pain Med., vol. 18, no. 4,
pp. 711–735, 2017.

[6] D. G. Kilpatrick, H. S. Resnick, M. E. Milanak, M. W. Miller, K. M. Keyes,
and M. J. Friedman, “National estimates of exposure to traumatic events
and PTSD prevalence using DSM-IV and DSM-5 criteria,” J. Traum.
Stress, vol. 26, no. 5, pp. 537–547, 2013.

[7] B. Andrews, C. R. Brewin, R. Philpott, and L. Stewart, “Delayed-onset
posttraumatic stress disorder: A systematic review of the evidence,” Amer.
J. Psychiatry, vol. 164, no. 9, pp. 1319–1326, 2007.

[8] M. C. Kearns, K. J. Ressler, D. Zatzick, and B. O. Rothbaum, “Early
interventions for PTSD: A review,” Depression Anxiety, vol. 29, no. 10,
pp. 833–842, 2012.

[9] B. O. Rothbaum et al., “Early intervention may prevent the development of
posttraumatic stress disorder: A randomized pilot civilian study with mod-
ified prolonged exposure,” Biol. Psychiatry, vol. 72, no. 11, pp. 957–963,
2012.

[10] E. J. Ozer, S. R. Best, T. L. Lipsey, and D. S. Weiss, “Predictors of
posttraumatic stress disorder and symptoms in adults: A meta-analysis.,”
Psychol. Bull., vol. 129, no. 1, pp. 52, 2003.

[11] National Collaborating Centre for Mental Health (U.K. and others). “Pre-
dictors of PTSD and screening for the disorder,” in Post-Traumatic Stress
Disorder: The Management of PTSD in Adults and Children in Primary
and Secondary Care. Gaskell, 2005.

[12] C. R. Brewin, B. Andrews, and J. D. Valentine, “Meta-analysis of risk
factors for posttraumatic stress disorder in trauma-exposed adults,” J.
Consult. Clin. Psychol., vol. 68, no. 5, pp. 748, 2000.

[13] K. Schultebraucks et al., “A validated predictive algorithm of post-
traumatic stress course following emergency department admission after
a traumatic stressor,” Nature Med., vol. 26, no. 7, pp. 1084–1088, 2020.

[14] K. Schultebraucks, V. Yadav, A. Y. Shalev, G. A. Bonnano, and I. R.
Galatzer-Levy, “Deep learning-based classification of posttraumatic stress
disorder and depression following trauma utilizing visual and auditory
markers of arousal and mood,” Psychol. Med., pp. 1–11, 2020.

[15] E. Reinertsen and G. D. Clifford, “A review of physiological and be-
havioral monitoring with digital sensors for neuropsychiatric illnesses,”
Physiol. Meas., vol. 39, no. 5, 2018.

[16] G. Valenza et al., “Wearable monitoring for mood recognition in bipo-
lar disorder based on history-dependent long-term heart rate variability
analysis,” IEEE J. Biomed. Health Inform., vol. 18, no. 5, pp. 1625–1635,
Sep. 2014.

[17] R. M. Carney et al., “Heart rate variability and markers of inflammation
and coagulation in depressed patients with coronary heart disease,” J.
Psychosom. Res., vol. 62, no. 4, pp. 463–467, 2007.

[18] J. M. Dekker et al., “Low heart rate variability in a 2-minute rhythm strip
predicts risk of coronary heart disease and mortality from several causes:
The ARIC study,” Circulation, vol. 102, no. 11, pp. 1239–1244, 2000.

[19] T. A. Mellman, B. R. Knorr, W. R. Pigeon, J. Leiter, and M. Akay, “Heart
rate variability during sleep and the early development of posttraumatic
stress disorder,” Biol. Psychiatry, vol. 55, no. 9, pp. 953–956, 2004.

[20] G. J. van Boxtel et al., “Heart rate variability, sleep, and the early detection
of post-traumatic stress disorder,” in Sleep and Combat-Related Post
Traumatic Stress Disorder, Springer, 2018, pp. 253–263.

[21] E. Reinertsen et al., “Heart rate-based window segmentation improves
accuracy of classifying posttraumatic stress disorder using heart rate
variability measures,” Physiol. Meas., vol. 38, no. 6, 2017, Art. no. 1061.

[22] S. Ancoli-Israel, R. Cole, C. Alessi, M. Chambers, W. Moorcroft, and
C. P. Pollak, “The role of actigraphy in the study of sleep and circadian
rhythms,” SLEEP, vol. 26, no. 3, pp. 342–392, 2003.

[23] D. J. Inman, S. M. Silver, and K. Doghramji, “Sleep disturbance in post-
traumatic stress disorder: A comparison with non-PTSD insomnia,” J.
Traum. Stress, vol. 3, no. 3, pp. 429–437, 1990.

[24] I. S. Khajawa, J. J. Westermeyer, and T. D. Hurwitz, “Actigraphy and
PTSD,” in Sleep and Combat-Related Post Traumatic Stress Disorder.
Springer, 2018, pp. 209–213.

[25] G. Cornelissen, “Cosinor-based rhythmometry,” Theor. Biol. Med. Modell.,
vol. 11, no. 1, pp. 16, 2014.

[26] S. A. McLean et al., “The AURORA study: A longitudinal, multimodal
library of brain biology and function after traumatic stress exposure,” Mol.
Psychiatry, pp. 1–14, 2019.

[27] A. Michaels, C. Michaels, C. Moon, M. A. Zimmerman, C. Peterson, and
J. L. Rodriguez, “Psychosocial factors limit outcomes after trauma,” J.
Trauma Acute Care Surg., vol. 44, no. 4, pp. 644–648, 1998.

john.haran@umassmed.edu
jones-christopher@cooperhealth.edu
http://murrisbe@ucmail.uc.edu
robert.swor@beaumont.edu
ngentile@temple.edu
meghan.mcgrath@bmc.org
mark.seamon@pennmedicine.upenn.edu
mohiuddk@einstein.edu
annamarie.chang@jefferson.edu
cpearson@med.wayne.edu
boneil@med.wayne.edu
rdomeier@epmg.com
brucese@umsl.edu
niels.rathlev@baystatehealth.org
lsanche1@bidmc.harvard.edu
robert.pietrzak@yale.edu
jutta.joormann@yale.edu
dbarch@wustl.edu
dap@mclean.harvard.edu
kessler@hcp.med.harvard.edu
seharte@med.umich.edu
jim.elliott@sydney.edu.au
kessler@hcp.med.harvard.edu
kkoenen@hsph.harvard.edu


2876 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 25, NO. 8, AUGUST 2021

[28] A. Brunet et al., “The peritraumatic distress inventory: A proposed measure
of PTSD criterion A2,” Amer. J. Psychiatry, vol. 158, no. 9, pp. 1480–1485,
2001.

[29] M. J. Bovin et al., “Psychometric properties of the PTSD checklist for
diagnostic and statistical manual of mental disorders–fifth edition (PCL-5)
in veterans.,” Psychol. Assessment, vol. 28, no. 11, 2016, Art. no. 1379.

[30] F. W. Weathers, B. T. Litz, T. M. Keana, P. A. Palmieri, B. P. Marx,
and P. P. Schnurr, “The PTSD checklist for DSM-5 (PCL-5),” Scale
available from the National Center for PTSD at www. ptsd.va.gov, vol. 10,
p. 2013.

[31] A. Germain, M. Hall, B. Krakow, K. M. Shear, and D. J. Buysse, “A
brief sleep scale for posttraumatic stress disorder: Pittsburgh sleep quality
index addendum for PTSD,” J. Anxiety Disord., vol. 19, no. 2, pp. 233–244,
2005.

[32] S. P. Insana, M. Hall, D. J. Buysse, and A. Germain, “Validation of the
pittsburgh sleep quality index addendum for posttraumatic stress disorder
(PSQI-A) in US male military veterans,” J. Traum. Stress, vol. 26, no. 2,
pp. 192–200, 2013.

[33] A. J. Teresi et al., “Measurement equivalence of the patient reported
outcomes measurement information system (PROMIS) pain interference
short form items: Application to ethnically diverse cancer and palliative
care populations,” Psychol. Test Assessment Model., vol. 58, no. 2, pp. 309,
2016.

[34] A. N. Vest et al., “An open source benchmarked toolbox for cardiovascular
waveform and interval analysis,” Physiol. Meas., vol. 39, no. 10, p. 105004,
2018.

[35] A. N. Vest et al., PhysioNet Cardiovascular Signal Toolbox, 2018. [On-
line]. Available: https://doi.org/10.5281/ zenodo.1243111

[36] Q. Li and G. D. Clifford, “Dynamic time warping and machine learning
for signal quality assessment of pulsatile signals,” Physiol. Meas., vol. 33,
no. 9, 2012, Art. no. 1491.

[37] S. Akselrod, D. Gordon, A. F. Ubel, D. C. Shannon, A. Berger, and R. J.
Cohen, “Power spectrum analysis of heart rate fluctuation: A quantitative
probe of beat-to-beat cardiovascular control,” Science, vol. 213, no. 4504,
pp. 220–222, 1981.

[38] A. S. Cakmak, P. B. Suresha, and G. D. Clifford, Open Source Actigraphy
Toolbox, 2020, doi: https://doi.org/10.5281/zenodo.4287769.

[39] M. Borazio, E. Berlin, N. Kucukyildiz, P. Scholl, and K. Van Laerhoven,
“Towards benchmarked sleep detection with wrist-worn sensing units,” in
Proc. IEEE Int. Conf. Healthcare Inform., 2014, pp. 125–134.

[40] J. Virkkala, “Using accelerometers as actographs,” J. Sleep Res., vol. 21,
no. 1, pp. 198–199, 2012.

[41] E. J. Van Someren, D. F. Swaab, C. C. Colenda, W. Cohen, W. V. McCall,
and P. B. Rosenquist, “Bright light therapy: Improved sensitivity to its
effects on rest-activity rhythms in Alzheimer patients by application of
nonparametric methods,” Chronobiol. Int., vol. 16, no. 4, pp. 505–518,
1999.

[42] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

[43] P. A. Dennis et al., “osttraumatic stress, heart-rate variability, and the
mediating role of behavioral health risks,” Psychosom. Med., vol. 76, no. 8,
pp. 629, 2014.

[44] D. McDuff, S. Gontarek, and R. Picard, “Remote measurement of cognitive
stress via heart rate variability,” in Proc. 36th Annu. Int. Conf. IEEE Eng.
Med. Biol. Soc., 2014, pp. 2957–2960.

[45] A. Hernando et al., “Inclusion of respiratory frequency information in heart
rate variability analysis for stress assessment,” IEEE J. Biomed. Health
Inform., vol. 20, no. 4, pp. 1016–1025, Jul. 2016.

[46] J. C. Shipherd et al., “Veterans seeking treatment for posttraumatic stress
disorder: What about comorbid chronic pain?,” J. Rehabil. Res. Develop.,
vol. 44, no. 2, 2007.

[47] Q. Li, L. Qichen, C. Liu, S. P. Shashikumar, S. Nemati, and G. D. Clifford,
“Deep learning in the cross-time frequency domain for sleep staging from
a single-lead electrocardiogram,” Physiol. Meas., vol. 39, no. 12, 2018,
Art. no. 124005.

[48] A. S. Cakmak et al., “An unbiased, efficient sleep–wake detection al-
gorithm for a population with sleep disorders: Change point decoder,”
SLEEP, vol. 43, no. 8, Aug. 2020, Art. no. zsaa011.

https://doi.org/10.5281/ ignorespaces zenodo.1243111
https://dx.doi.org/https://doi.org/10.5281/zenodo.4287769


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


