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Peripheral immune cell reactivity and neural response to
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Increased levels of peripheral cytokines have been previously associated with depression in preclinical and clinical research.
Although the precise nature of peripheral immune dysfunction in depression remains unclear, evidence from animal studies points
towards a dysregulated response of peripheral leukocytes as a risk factor for stress susceptibility. This study examined dynamic
release of inflammatory blood factors from peripheral blood mononuclear cells (PBMC) in depressed patients and associations with
neural and behavioral measures of reward processing. Thirty unmedicated patients meeting criteria for unipolar depressive disorder
and 21 healthy control volunteers were enrolled. PBMCs were isolated from whole blood and stimulated ex vivo with
lipopolysaccharide (LPS). Olink multiplex assay was used to analyze a large panel of inflammatory proteins. Participants completed
functional magnetic resonance imaging with an incentive flanker task to probe neural responses to reward anticipation, as well as
clinical measures of anhedonia and pleasure including the Temporal Experience of Pleasure Scale (TEPS) and the Snaith-Hamilton
Pleasure Scale (SHAPS). LPS stimulation revealed larger increases in immune factors in depressed compared to healthy subjects
using an aggregate immune score (t49= 2.83, p= 0.007). Higher peripheral immune score was associated with reduced neural
responses to reward anticipation within the ventral striatum (VS) (r=−0.39, p= 0.01), and with reduced anticipation of pleasure as
measured with the TEPS anticipatory sub-score (r=−0.318, p= 0.023). Our study provides new evidence suggesting that dynamic
hyper-reactivity of peripheral leukocytes in depressed patients is associated with blunted activation of the brain reward system and
lower subjective anticipation of pleasure.
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INTRODUCTION
Major depressive disorder (MDD) is a common, chronic and
debilitating condition characterized by affective, cognitive, and
behavioral symptoms [1, 2]. Despite its large health impact, the
neurobiological mechanisms underlying this disorder are still
largely unknown. Anhedonia, the reduced ability to experience
pleasure, is a core symptom of this disorder and is associated with
reduced neural response to reward, poor response to antidepres-
sant medication, and increased risk for suicide [3–5].
Convergent lines of research suggest a dysfunctional immune

response in the context of clinical depression [6–9], more
specifically linked to anhedonia [10, 11]. Over one-third of patients
treated with interferon alpha develop significant depressive
symptoms and anhedonia [12, 13] and several studies and
meta-analyses have reported an association between depression
and increased circulating levels of pro-inflammatory cytokines,
most consistently interleukin-6 (IL-6) and tumor necrosis factor

alpha (TNF-alpha) [14–16]. Further, there is evidence that child-
hood adversity, a well-established risk factor for depression [17], is
associated with long-term inflammation [18, 19].
Recent work has also connected peripheral immune dysfunc-

tion to brain systems that mediate key aspects of depression, such
as reward processing [20, 21]. Despite this evidence, the current
data appears heterogenous and the precise nature of inflamma-
tory dysregulation in the context of depression remains unclear.
Preclinical data show that levels of peripheral cytokines predict
the development of anhedonic-like behavior [10]. Repeated
exposures to social defeat stress (a well-validated animal model
of depression) in rodents causes anhedonia-like behavior char-
acterized by social avoidance and reduced interest in reward in a
subset of mice (‘susceptible’ mice); in contrast, ‘resilient’ mice do
not develop such behavior. In this model, cytokine profiles 20 min
following the first exposure to the stressor (an aggressor mouse)
showed that IL-6 was significantly elevated in animals that later
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exhibited the susceptible phenotype compared with control and
resilient mice. Leukocytes collected prior to stress exposure from
animals that later developed a susceptible phenotype revealed a
significant increase in IL-6 in response to ex vivo stimulation with
the bacterial endotoxin lipopolysaccharide (LPS) compared to
animals that showed a resilient phenotype [10]. LPS is a major
constituent of the membrane of gram-negative bacteria and
strongly stimulates innate immunity in diverse species, including
humans [22]. LPS, acting as an agonist on Toll-like receptors (TLR)-
4 localized on the surface of myeloid cells, induces a dynamic
response leading to the production of inflammatory cytokines and
chemokines. While previous studies have shown that LPS
administration is capable of inducing depressive-like symptoms
[23] in healthy subjects, the specific question of leukocyte cell
reactivity to an immune challenge in depressed subjects has been
understudied. Interestingly, in vitro lymphocytic activity has been
previously explored in the context of depression with depressed
subjects showing a decrease in vitro lymphocyte activity [24].
Building on these data, the current study aimed to translate

preclinical findings into humans by investigating a large panel of
peripheral immune factors in subjects with depression from
peripheral blood mononuclear cells (PBMC) stimulated ex vivo
with LPS. To test specific immune-behavior relationships with
anhedonia, subjects with unipolar depression and healthy
volunteers completed a multilevel assessment of anhedonia using
rating scales, a computer-based task [probabilistic reward task
(PRT) [25, 26]], and a task-based functional magnetic resonance
imaging (fMRI) measure of reward anticipation (incentive flanker
task, IFT) [27–29], with a particular focus on the ventral striatum
(VS). We examined if LPS stimulation revealed larger increases in
immune factors in depressed subjects compared to healthy
volunteers. We further explored whether LPS-stimulated immune
factors were associated with objective and self-reported measures
of anhedonia and neural reactivity to reward anticipation.

MATERIALS AND METHODS
Study participants and design
The study was conducted at the Icahn School of Medicine at Mount Sinai
(ISMMS) in New York City wherein participants were recruited between
September 2016 and August 2018. The institutional review board at ISMMS
approved the study, and written informed consent was obtained prior to
any study procedure. Participants were between the ages of 18 and 55 and
met DSM-5 criteria for a primary diagnosis of major depressive disorder
(MDD), persistent depressive disorder (PDD), or other specified depressive
disorder, as assessed by the Structured Clinical Interview for DSM-5 Axis I
Disorders – Patient Edition (SCID-I/P) [30]. A healthy control (HC) group
with similar age, sex, and body mass index (BMI) was also enrolled, as these
variables are well-known to affect inflammatory markers [31–37]. Exclu-
sionary criteria included a history of inflammatory or autoimmune disorder,
clinically significant abnormalities of laboratories, and any unstable
medical condition. Treatment with psychotropic medication or systemic
steroids within 4 weeks of assessment, or use of medication or nutritional
supplement known to affect the immune system within one week of the
assessment visit, were exclusionary. A complete list of the inclusion and
exclusion criteria is available in Supplemental Material.
During the screening visit, medical and psychiatric history was obtained.

All participants underwent clinical laboratory tests and toxicology screen-
ing. A pregnancy test was performed in premenopausal women. Within
4 weeks of screening, all eligible participants completed the assessment
visit, which included a blood draw for inflammatory markers collection,
and clinical and neuro-behavioral assessment of depression and
anhedonia.

Clinical assessment of anhedonia
Anhedonia was assessed using the Snaith-Hamilton Pleasure Scale (SHAPS)
[38], a well-validated self-report questionnaire assessing pleasure capacity,
both consummatory and anticipatory. Hedonic capacity was also measured
using the Temporal Experience of Pleasure Scale (TEPS) [39], a validated
self-report that provides specific sub-scores of anticipatory and

consummatory pleasure. A higher score of the SHAPS indicates more
severe anhedonia; a higher score on the TEPS indicates greater pleasure
and hence lower anhedonia severity.

Blood collection and processing
Blood was collected between 8 AM and 10 AM into tubes containing ACD
Solution A as anti-coagulant (BD Vacutainer) and delivered to the Human
Immune Monitoring Center (HIMC) of ISMMS for processing and storage.
To mitigate the effect of confounding factors, participants were asked to
reduce the intake of lipids and to avoid alcoholic beverages in the 12 and
24 h, respectively, prior to the blood draw. Details on the blood processing
procedures are available in Supplemental Material.
The samples were analyzed mid-way through the study and at the end

of the study period using Olink multiplex assay – Inflammatory panel (Olink
Bioscience, Uppsala, Sweden), according to the manufacturer’s instruc-
tions. The inflammatory panel allows the detection of 92 proteins
associated with human inflammatory conditions. More details are included
in the Supplemental Material.

MRI acquisition, processing, and reward task (incentive
flanker task)
All MRI data were acquired with a Siemens 3T MAGNETOM Skyra scanner
and a 32-channel head coil at ISMMS. Functional scans were preprocessed
and denoised for motion and physiological noise using multi-echo
independent component analysis (ME-ICA) [40, 41]. Multi-echo functional
MRI data were decomposed into independent components, and scaled
against TE [40–42]. Components with high TE-dependence are considered
BOLD-like whereas components with low TE-dependence are considered
noise-like [40–42]. Removal of non-BOLD components allows robust data
denoising for motion, physiological, and scanner artifacts [42]. The
incentive flanker task (IFT) is a modification of the monetary incentive
delay (MID) task [29]. Further details, including a detailed description of the
task, are included in the Supplemental Material (Fig. S1).

Probabilistic reward task
The probabilistic reward task (PRT) [25] is a signal detection test that
provides an objective assessment of reward learning and was completed
on the assessment visit. A detailed description of the task is provided in the
Supplemental Material.

Statistical analyses
The sample size was calculated using anhedonia as a continuous outcome
and relying on preliminary data wherein the magnitude of association
between a linear combination of immune factors provided >90% power to
detect an association between immune factors and anhedonia based on a
proposed sample size of n= 50 (MDD, n= 30; HC, n= 20).
Demographic and clinical characteristics, blood biomarkers, and

behavioral measures of reward are summarized separately. Continuous
variables are summarized using means and standard deviations, while
categorical variables are summarized as proportions. Cytokines and
chemokines with >50% missing or below the limit of detection (LOD)
values were excluded from the analysis. Outliers, defined as standard
deviations >3, were excluded separately for each immune factor [43]. Each
of the remaining proteins had <5% missing data, considered randomly
missing. Predictive mean matching was used for imputation of missing
data using multivariate imputation by chained equations (MICE) using R
software [44], which computes a realistic distribution, separately optimized
for each variable, and randomly selects a regression-predicted value from
50 iterations [45–47]. A list of analytes that were not included in the
analysis is available in the Supplemental Material. To determine the
influence of stimulated levels of immune factors, the proteins’ fold change
was calculated as the value of the cytokine released by PBMC following
LPS stimulation divided by the un-stimulated value of the cytokines
secreted by PBMC prior to the LPS challenge. The resultant fold-change
protein data (42 proteins × 51 subjects) were entered into principal
component analysis (PCA) to reduce the dimensionality of the multi-
dimensional data, while retaining the majority of variability within the data.
A scree plot of eigenvalues was computed and inspected to indicate
component significance (see Supplemental Material). Significant compo-
nents from the PCA were examined for group differences based on
individual factor loadings using independent-samples t-test, and used for
correlations with self-report questionnaires, clinician-administrated scales,
measures of reward learning, and brain activation using two-tailed
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Pearson’s correlation. The PCA was used for the statistical analysis and
results.
Task-based fMRI analysis included first-level general linear models (GLM)

with regressors for cue onset (reward/loss/neutral), flanker onset, and
feedback onset, each including duration modulation using AFNI’s stim_DM
function, and convolved with the hemodynamic response function. The
contrast of interest for reward anticipation was gain cue > neutral cue.
Activation for each contrast was extracted within the VS ROI from FSL’s
Harvard-Oxford atlas [48] for each subject and entered into independent
samples t-test for group difference comparison. Pearson correlation was
used to examine relationships between VS activation during reward
anticipation and significant immune principal components. An additional
whole-brain analysis was performed using two-tailed Pearson’s correlation
between whole-brain activation maps for gain > neutral cue and the first
significant immune principal component (PC1) factor loading. For this, a
voxelwise, cluster-defining threshold of p < 0.005 was used plus cluster-
wise correction of K > 60 as calculated by AFNI’s ACF function to mitigate
against spatial autocorrelation and the incidence of false-positives [49].

RESULTS
Sample characteristics
Of the 57 subjects assessed for eligibility, 51 met inclusion/
exclusion criteria and completed the assessment visit: 30 subjects
with depression and 21 matching healthy volunteers. Within the
depressed group, 28 subjects met criteria for current MDD, one for
PDD, and one for other specified depressive disorder. Of these, 28
were in a current major depressive episode (MDE). No significant
difference emerged between the two groups in sociodemo-
graphic characteristics, age, gender, BMI, or smoking status
(Table 1).

Immune markers
Basal plasma factors: Analysis of peripheral immune parameters
were conducted utilizing 69 analytes from plasma. There were no
group differences in circulating plasma levels of inflammatory
factors (see Supplemental Material; Table S1).
LPS simulated PBMCs: Analysis of peripheral immune para-

meters was conducted utilizing 42 analytes from supernatant from
LPS-stimulated PBMCs, based on the LOD described above. In
contrast to the findings with basal plasma levels, patients with
depression showed a greater increase in PBMC release of
inflammatory factors following stimulation with LPS compared
to healthy controls as calculated by the immune markers’ fold
change. Immune factors fold change in depressed and healthy
controls are reported in Fig. 1A.
LPS-stimulated PBMC analytes were subjected to principal

component analysis (PCA). The first three components preceded
the scree plot eigenvector elbow, all had an eigenvector value >1
and were thus considered significant. Principle component 1 (PC1)
explained a large proportion of the variance (52.8%), with an
eigenvector of 12.6 (Fig. S2). PC1 included highest factor loadings
for TNF, C-C motif chemokine 20 (CCL20), IL6, interleukin-12
receptor subunit beta (IL12B), and monocyte-chemotactic protein
3 (MCP3) (Fig. 1B). This component was significantly higher in
patients with depression compared to controls (t49= 2.83, p=
0.007, Fig. 1C). The other two significant components, PC2 and
PC3 had highest loadings for TNF and IL-12b, respectively, and
were not different between groups (p’s > 0.3).

Correlation between immune factors and clinical symptoms
The relationship between peripheral immune factors and anhe-
donia was examined across the full sample, and within the two
groups separately. For these correlations, BMI, age, and sex were
included as covariates. A greater PC1 score was associated with
greater anticipatory anhedonia as measured by the TEPS
anticipatory sub-score (r=−0.34, p= 0.016) (Fig. 2). PC1 was not
correlated with the TEPS consummatory anhedonia as measured
by the TEPS consummatory sub-score (r=−0.12, p= 0.170) or

with general anhedonia as measured by the SHAPS (r= 0.25,
p= 0.071).

Task-based MRI results
Functional MRI data during the IFT were available for 28 depressed
subjects (age= 36.5 ± 11, 14 females) and 20 HC subjects (age=
37.8 ± 9.4, 7 females). One MDD subject was excluded due to
excessive motion during MRI. Groups did not differ in their
performance accuracy (MDD= 85.9% ± 10.4, HC= 87.7% ± 0.1,
p= 0.76), or their baseline reaction times (MDD= 927.6 ms ±
172.5, HC= 859.3 ms ± 145.7, p= 0.16). Patients with MDD
showed lower VS response to reward (gain cue > neutral cue)
compared to controls across all four runs of the task (t45=−1.88,
p= 0.066) but most notably during the first run (t45=−2.05, p=
0.047), consistent with previous reports of VS habituation to
reward over time [50] (Fig. 3). Therefore, follow-up analyses were
performed utilizing the first run only.
Consistent with our hypothesis, a higher PC1 immune score was

associated with reduced activation to reward anticipation in the
VS across both groups (r=−0.376, p= 0.011; Fig. 3). This
association remained significant when controlling for age, gender,
and BMI (r=−0.389, p= 0.011). No correlation emerged within
the MDD (r=−0.26, p= 0.230) or HC group (r=−0.3, p= 0.250)
alone. An additional exploratory whole-brain analysis correlating

Table 1. Demographic and clinic characteristic of study sample.

MDD (N= 30) Healthy
controls
(N= 21)

p value

Age, M (SD) 37.1 (10.8) 37.1 (9.6) 0.98

Gender (male), n (%) 14 (46.7) 13 (61.9) 0.28

BMI, M (SD) 26.7 (5.8) 24.8 (4.7) 0.22

Daily smoking, n (%) 0 (0) 0 (0) 1

hs-CRP level, M (SD) 3.8 (7.2) 1.7 (1.6) 0.19

Race, n (%)

White/Caucasian 16 (53.3) 10 (47.6) 0.08

Ethnicity, n (%)

Hispanic/Latino 7 (23.3) 3 (14.3) 0.22

Employment, n (%)

Employed 21 (70.0) 17 (81.0) 0.05

Education, n (%)

Bachelor Degree 21 (70.0) 16 (76.2) 0.61

Relationship status, n (%)

Married 2 (6.7) 4 (19.1) 0.07

Psychiatric comorbidities

Anxiety disorder,
n (%)

14 (46.7) 0 (0) <0.001

PTSD current, n (%) 1 (3.3) 0 (0) 0.22

MADRS, M (SD) 27.4 (6.4) 1 (1.6) <0.001

SHAPS, M (SD) 34.5 (7.6) 17.6 (4.9) <0.001

TEPS anticipatory,
M (SD)

26.7 (10.5) 45.1 (6.5) <0.001

TEPS consummatory,
M (SD)

26.1 (10.5) 39.3 (6.1) <0.001

Race and ethnicity were reported by the study participants.
BMI body mass index, hs-CRP high-sensitivity C reactive protein, M means,
MADRS Montgomery–Åsberg Depression Rating Scale, MDD Major Depres-
sive Disorder, PTSD posttraumatic stress disorder, SD standard deviation,
SHAPS Snaith-Hamilton Pleasure Scale, TEPS Temporal Experience of
Pleasure Scale.
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PC1 against whole-brain activation to gain > neutral cue revealed
no significant correlation between brain activation and PC1.

Behavioral measures of reward (PRT)
Fifty-one subjects completed the PRT on the assessment day. Of
these, 17 healthy volunteers and 23 depressed subjects had valid
data following the quality check (QC). Reasons for exclusion were:
too many outliers (n= 8), uncompleted task (n= 1), and below
chance accuracy (n= 2). The remaining analysis was conducted
only on the subjects who passed the QC (n= 40).
As hypothesized and consistent with prior reports, response

bias (computed by subtracting the total response bias in the first
block from the total response bias in the last block) was higher in
healthy compared to depressed [t38= 2.27 p= 0.029); Fig. S3].
Reward learning was associated with greater activation to reward
anticipation in the VS (r= 0.32, p= 0.053), but did not correlate

with PC1 immune score upon controlling for BMI, age, and sex
(r=−0.16, p= 0.33). For more details, see Supplemental Material.

DISCUSSION
The current study investigated the relationship between inflam-
matory factors released by PBMCs stimulated ex vivo with LPS,
anhedonia and neural reactivity to reward anticipation in
depression. We found that depressed subjects showed an
exaggerated response to the immune challenge with LPS
compared to HC. Further, an increase in immune factors released
by PBMCs following LPS stimulation was associated with reduced
anticipation of pleasure as measured with the anticipatory sub-
score of the TEPS and with a reduced response to reward
anticipation within the VS in the brain.
Depressed subjects showed increased levels of immune

markers released by PBMCs stimulated ex vivo with LPS,
consistent with previous work showing similar results in rodent
stress models of depression [10]. Here, we were able to translate
these findings into humans and expand it through the analysis of
a broad range of immune factors. Of note, other authors have
investigated the effect of LPS stimulation within depressed
subjects with mixed results. A large study [51] using data from
the Netherlands Study of Depression and Anxiety (NESDA) on
adults with current or remitted depression or anxiety disorders
and healthy controls explored the correlations between clinical
symptoms of anxiety and depression and inflammatory markers
that were assayed from plasma and after whole blood stimula-
tion with LPS. In this large cohort, LPS-stimulated inflammatory
markers, but not plasma factors, were associated with anxiety
symptom, but not with depression severity, upon adjustment for
health condition and lifestyle. A recent study [52] on adolescents
with anhedonia across a broad spectrum of psychiatric disorders
showed no group differences in cytokine levels following whole
blood LPS stimulation. Of note, the different LPS stimulation
approach (whole blood compared to isolated PBMC stimulation)

Fig. 1 Heightened peripheral blood mononuclear cells reactivity in depression. A Difference in fold change of levels of lipopolysaccharide
(LPS) stimulated immune factors released ex vivo by peripheral blood mononuclear cells (PBMCs) between depressed and healthy volunteers -
uncorrected t-test. B Principal component 1 (PC1) factor loading. PC1 explained a large proportion of the variance, with an eigenvector of 12.6,
accounting for 52.8% of the total variance in the data and included highest factor loadings for tumor necrosis factor alpha (TNF-alpha),
chemokine ligand 20 (CCL-20), interleukin-6 (IL-6), interleukin-12 subunit beta (IL-12B), and monocyte-chemotactic protein 3 (MCP3).
C Immune reactivity PC1 score difference between depressed subjects and healthy volunteers; *p < 0.05, error bars represent standard error of
the mean (SEM).

Fig. 2 Peripheral blood mononuclear cells reactivity is negatively
associated with response to pleasure. Negative correlation
between immune factors released by peripheral blood mononuclear
cells (PBMCs) stimulated ex vivo with lipopolysaccharide (LPS)
represented by factor loading on PC1 and anticipatory reward, as
measured with the anticipation subscale of the TEPS self-report.
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may explain the different results. Further, we enrolled only adult
subjects diagnosed with unipolar depressive disorders to
minimize heterogeneity [11, 53]. Others [54] analyzed the levels
of pro-inflammatory cytokines IL-6, TNF-alpha, and IL-1beta
following LPS stimulation on isolated PBMC on depressed and
healthy volunteers reporting a reduced response to LPS
stimulation in depressed. The authors isolated CD14+mono-
cytes prior to culture cultured them with LPS and used a
chemiluminescence method to measure the levels of the pro-
inflammatory cytokines IL-6, TNF-alpha, and IL-1beta. Different
LPS stimulation protocol and analysis methods may account for
the dissimilar findings.
We did not find a difference between groups in un-stimulated

plasma level in the current study. This negative result is discordant
with several studies and meta-analyses showing higher levels of
some immune factor in patients with depression compared to
non-depressed controls, such as C-reactive protein (CRP), IL-6, and
TNF-alpha [14, 15, 55]. Notwithstanding a number positive reports,
there have been several negative reports as well, including the
large NESDA study discussed above. Indeed meta-analyses
suggest that findings of elevated circulation inflammatory factors
in patients with depression may be small and quite variable
[55, 56]. Recent data suggest that inflammation may be prominent
only in a subset of depressed patients and mostly among subjects
with treatment resistant depression [57]. A recent study by Syed
et al. suggests that lifetime treatment with antidepressant may
affect cytokines concentration in MDD [58]. In this work, drug-
naive depressed subjects showed an elevation in plasma
concentration of pro- and anti-inflammatory cytokines compared
to healthy volunteers that was immunosuppressive on freshly
isolated PBMCs from a healthy volunteer donor at the monocytes/
dendritic cells, B cells and T cell memory level. Further, a 12-week
period treatment with escitalopram, duloxetine or cognitive
behavioral therapy (CBT) was associated with an increase in anti-
inflammatory cytokine levels in both responder and non-
responders, whereas pro-inflammatory cytokines continued to
increase in non-responders while they were stabilized in
responders.
This study is among the firsts to use Olink inflammatory panel

to explore a wide range of inflammatory markers within a
psychiatric population [59]. The use of this assay, one of the most
extensive panel available for proteins associated with inflamma-
tion and related biological processes, highlighted the potential
contribution of a broad range of immune and inflammatory
factors to depression and anhedonia, beyond well-studied pro-
inflammatory cytokines such as TNF-alpha and IL-6. Interestingly,
there has been increasing interest regarding the role of

chemokines in the neurobiology of depression [60]. Chemokines
act as chemiotactic factors and activators of peripheral immune
cells that can potentially contribute to the neurodegeneration
observed in depression [61, 62]. For instance, monocyte-
chemotactic proteins (MCP)-1, together with MCP-2 and MCP-3,
is well known to exert potent pro-inflammatory action and has
been shown to possess the ability to translocate across the
blood–brain barrier (BBB) and induce chemotaxis of circulating
leukocytes [63]. Thus, broader spectrum analysis of immune
markers should be explored to investigate further the biological
mechanisms of immune dysregulation in depression.
The second main finding of our study was that the degree of

immune cell reactivity was positively associated with impairment
in the ability to experience pleasure across groups as measured by
self-report. Consistent with the work from Freed et al. [52], the
magnitude of immune response was negatively associated with
anhedonia severity. Similarly, others investigated the relationship
between immune factors released by whole blood LPS stimulated
and symptom severity [64] across a spectrum of depressive
disorders and showed an association between LPS-stimulated
inflammation and depression severity.
Our third finding was that the magnitude of immune cell

reactivity was negatively associated with VS activation to reward
anticipation. There is substantial evidence that peripheral
cytokines impact reward processing areas implicated in anhedonia
and depression [65–68]. The administration of pro-inflammatory
cytokines (e.g., INF-α) or endotoxin have been shown to reduce
neural responses to reward [67, 68], while the relationship
between plasma high-sensitivity CRP (hs-CRP) and the brain
reward circuit has been investigated in depression, at the level of
resting-state functional connectivity [21, 65]. Herein, we showed
that greater immune activity was associated with reduced
activation to reward anticipation in the VS. These findings suggest
immune reactivity in depression may be associated with a specific
aspect of the hedonic experience that relies on the brain reward
system centered on the VS [39, 69]. However, caution should be
taken in generalizing these results given the limited sample size of
this study and potential limitations of test-retest reliability of task-
based fMRI [70]. Further work focusing on the interaction between
the peripheral immune system and the brain reward circuit in
larger samples are warranted to improve our understanding on
the effect of immune dysregulation on the brain circuit of
depressed subjects with anhedonia.
Finally, in the current study, depressed subjects were

characterized by a blunted reward learning toward rewards as
measured by the PRT, although this was not associated with
LPS-stimulated immune factors. This is the first report

Fig. 3 Blunted response to reward in depression and association with immune reactivity. A Ventral striatum (VS) region of interest (ROI);
B Group difference in VS response to reward (gain > neutral cue) during the first run of the task in MDD and HC in VS ROI. C Correlation
between immune reactivity, as computed through the principal component 1 (PC1) factor loading, and VS activation to reward (gain cue >
neutral cue) on the first run of the (incentive flanker task) IFT across the sample.
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investigating the relationship between reward learning (as
measured with a computer-based task) and cytokine change
following PBMCs stimulation with LPS. A recent study exploring
the effect of the influenza vaccination on reward learning in 41
young healthy subjects showed that increases in IL-6 in
circulation predicted increased performance on the PRT [71].
The different study population and the mild systemic inflam-
matory response elicited by the influenza vaccine may explain
the differences in behavioral sensitivity to inflammation in this
sample compared to healthy volunteers.
Limitations of the study include the relatively small sample size

and the enrollment of subjects with a broader unipolar depressive
phenotype. The small sample size may have led to Type II errors
that could explain, for example, the lack of association between
LPS-stimulated immune factor and activation to reward anticipa-
tion in the depressed group alone. Hence, this data may guide
sample size calculation for future larger studies studying dynamic
changes in the immune factors and response to reward within
depression. Moreover, this study did not explore the effect of
antidepressant medication on immune challenged PBMCs.
Although limiting the external validity of the study, given the
size of the sample analyzed, we opted to limit enrollment to
subjects free of medication due to the unknown interactions
between CNS medications on immune factors released by PBMC
following LPS stimulation and the well-established effects on
antidepressants on fMRI measures in depression. Further, since
this study focused on currently depressed subjects and lacks a
depressed control group in remission, it is unclear if the altered
immune profile observed should be considered a state or a trait
characteristic of depression. Finally, the current study focused on
the isolation of PBMC prior to LPS stimulation, but did not explore
the contribution of cellular immune markers. The increased levels
of immune markers released by PBMCs stimulated ex vivo with
LPS in depressed compared to healthy controls warrants further
exploration and suggest a prominent role for the monocyte/
macrophage lineage in the context of depression. Future studies
investigating the cellular mechanisms associated with depression
using a transcriptome approach to examine the molecular
mechanisms of peripheral inflammation relevant to depression
are needed.
In the current study, we found that changes in immune factors

in response to LPS stimulation were associated with depression
and correlated with impaired anticipatory reward function at the
clinical and neuronal level. Future studies with larger sample sizes
are required to improve the knowledge of the neurobiological
mechanism underlying depression.
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