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Cognitive flexibility broadly describes behavioral alterations made in response to environmental
changes and is fundamental for survival. While human and non-human animal assessments of
cognitive flexibility are available, a systematic cross-species comparison of behavioral,
neurophysiological, and computational markers of cognitive flexibility has not been reported. Using
versions of a probabilistic reversal learning task aligned between humans and rats,
electroencephalogram recordings reveal a frontal reward positivity (RewP) associated with
unexpected reward outcomes. Reinforcement Q-learning models of both species’ task behavior
reveal that prediction error (PE) magnitude was significantly related to RewP amplitude. The stimulant
drug modafinil alters PEs in rats without affecting the RewP in either species. These findings reveal
analogous neurophysiologicalmarkers associatedwithPEs in humans and rats using equivalent tasks
and identical computational analyses. This translational approachmay improve the predictive validity
of tests for novel pharmacotherapies and accelerate neuropsychiatric treatment by assessing neural
mechanisms conserved across species.

Cognitive flexibility broadly refers to the ability to alter behavior in response
to a changing environment1–3, and such adjustments are a vital component of
navigating everyday life4,5. It describes the balance between repeating beha-
viors that yield beneficial outcomes toward a particular goal and modifying
behaviors in response to environmental changes3,6. This modification of
behavioral strategy is key to cognitive flexibility and enables previously
learned rules to be updated to maximize rewarded outcomes. Cognitive
flexibility has been studied across several key domains, including set-shifting,
working memory, and reversal learning6. Moreover, human research has
found that cognitive flexibility is associated with resilience to stress and
negative life events4,7 and overall higher quality of life8. Conversely, deficits in
cognitive flexibility have been documented in a multitude of psychiatric
disorders, including mood disorders9–11, schizophrenia12,13, obsessive

compulsive disorder14,15, and substance use disorder16. If the neurobiological
processes underlying cognitive flexibility were better understood, they could
be targeted for treatment in these patient populations.

Reversal learning tasks, particularly probabilistic versions, are ideal for
assessing cognitive flexibility17–19. Although several variations of the prob-
abilistic reversal learning (PRL) task exist, they are all based on a funda-
mental reinforcement learning paradigmwhereby provided feedback is not
always informative and the stimulus associated with the higher probability
of reward is subject to change. For example, in a common PRL procedure,
subjects are presentedwith twodistinctive stimuli, oneofwhich is associated
with a high (e.g., 80%) probability of reinforcement, while the other is
associated with a low (e.g., 20%) probability of reinforcement. By sampling
both stimuli, subjects learn to maximize responding to the stimulus
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associated with a greater probability of reinforcement (i.e., target stimulus).
After a pre-determined criterion (e.g., consecutive responses for the target
stimulus), the reinforcement contingencies are reversed, and subjects need
to identify the new target stimulus (identified as a reversal). Thus, PRL tasks
require subjects to ignore occasional negative outcomeswhile responding to
the target stimulus and avoid perseverating on a previously successful action
when the reward contingencies are reversed. Individuals with major
depressive disorder are sensitive to negative events, and for example, may
respond to the occasional misleading negative feedback following a target
response by prematurely responding for the other (i.e., non-target)
stimulus20, whereas patients with obsessive compulsive disorder may per-
severate on a stimulus that is no longer the target stimulus, despite the new
relatively low reinforcement probability21. In either case, patients may
complete fewer reversals, indicative of impairment in adaptive behavior.

Expression of flexible behavior during a PRL task requires successful
and rapid reinforcement learning22, in particular, the ability to parse the
likelihood of reward and identify the target stimulus. As a result, a violation
of the expected outcome, such as the omission of reward following a target
response (i.e., due to probabilistic feedback), should elicit a reward predic-
tion error (PE). Frequent, but not occasional, PEs should facilitate a change
in response strategy. PEs have been associatedwith changes in event-related
potentials (ERPs) over frontocentral electrode sites, namely the Reward
positivity (RewP)23,24. Originally named the feedback-related negativity25,26,
and identified as a negative deflection following unexpected negative feed-
back (i.e., a negative PE) relative to expected positive feedback27,28, more
recent evidence clarified that the RewP is driven by the response to reward
feedback rather than non-rewarded outcomes23,29,30. Evidence suggests that
the FRN/RewP originates in the anterior cingulate cortex (ACC)31–33.
Alterations in the activity ofmidbraindopamineneurons are known to code
PEs34–36, whereby negative PEs elicit decreased firing of these neurons and
phasic activation encodes positive PEs. This dopaminergic signal projects to
the striatum and ACC and may modulate the FRN/RewP, which can sub-
sequently predict behavioral adjustments26,37,38.

Non-human animal versions of the PRL task are critical for advancing
our understanding of cognitive flexibility. In particular, the operant nature
of the task enables translation across species; moreover, task behavior is
well-characterized by reinforcement learning models, enabling application
of the same (or very similar) models to data across species39. To study this
phenomenon in non-human animals, rodent versions of the PRL task have
been developed40,41. While human and non-human versions of the task are
conceptually similar and may yield comparable behavioral results, to our
knowledge, a systematic cross-species comparison of behavioral, compu-
tational, andneurophysiologicalmarkers of cognitiveflexibility hasnot been
reported. Such a comparisonwould be useful for drug development because
putative treatments that demonstrate therapeutic behavioral effects and
target engagement in non-human animals could be used in parallel human
testing to accelerate drug discovery.

Thus, we modified human and rodent versions of a PRL task to align
several parameters, enabling the comparison of behavioral performance
across species. We measured the electroencephalogram (EEG) during the
task to determine whether unexpected rewards were associated with a
frontalRewP.Additionally,we applieda reinforcementQ-learningmodel to
model behavior and linked it to EEG data from both species to compare the
relationship between action values and frontal neurophysiological signals.
Lastly, we administered comparable doses of modafinil, an indirect dopa-
mine (DA) agonist that also has norepinephrinergic effects, to both species
to determine whether modulation of dopaminergic signaling similarly
altered the behavioral and neurophysiological indices of cognitive flexibility
in humans and rats. Prior studies have shown that DA agonists increase
reward-related ERPs during reward learning42 and modafinil increases DA
signaling in the striatum (via the inhibition of DA transporters), the neural
substrate for error prediction43. Critically, we identified behavioral, com-
putational, and neurophysiologicalmarkers of cognitive flexibility that were
similar across species, providing a robust platform that could hasten
treatment development.

Results
We instructed humans (n = 54) and trained rats (n = 11) to perform func-
tionally identical versions of a PRL task (Supplementary Fig. 1) that con-
sisted of 300 trials and reinforced responses probabilistically using an 80%/
20% schedule (see “Methods” section). For both species, the reward con-
tingencies reversed after eight consecutive correct responses, and EEG
recordingswere obtained during task performance (see “Methods” section).

Behavioral indices of cognitive flexibility and reinforcement
metrics are consistent across humans and rats
During a single test session, humans completed 4.4 ± 0.23 (mean ± SEM)
reversals per 100 trials (Fig. 1A), whereas rats completed 2.6 ± 0.40 (Fig. 1B).
Repeating a target response after reward delivery (i.e., target win-stay) and
abandoning the target response after non-reward delivery (i.e., target lose-
shift) reflect responsiveness to positive and negative feedback, respectively. In
both humans (Fig. 1A) and rats (Fig. 1B), target win-stay probability was
significantly greater than target lose-shift probability [humans: t(53) = 13.93,
p < 0.001; rats: t(10) = 6.20, p < 0.001]. Increased target win-stay and reduced
target lose-shift responding facilitated more reversals, as reflected by sig-
nificant positive correlations between target win-stay probability and rever-
sals in humans (Pearson r(52) = 0.44, p < 0.001; Fig. 1C) and rats (r(9) = 0.79,
p= 0.004; Fig. 1D), and significant negative correlations between target lose-
shift probability and reversals in humans (r(52) =−0.58, p < 0.001; Fig. 1C)
and rats (r(9) =−0.73, p = 0.012; Fig. 1D). Thus, in both species, greater
sustained responding for reinforced target responses, despite occasional
misleading feedback, was associated with better task performance.

Reinforcement learning models identify consistent patterns of
behavioral responding across species
To gain a deeper insight into the behavioral mechanisms underlying PRL
performance, we fit several Q-learning models to behavior (see Supple-
mentary Methods). Consistent with our previous work41,44, we found that
the model consisting of three free parameters (learning rate, inverse tem-
perature, and forget parameters) best fit PRL performance (Supplementary
Table 1). Moreover, parameter recovery and posterior predictive checks
(Supplementary Fig. 2) demonstrated recoverable parameter estimates and
alignment between simulated and observed PRL performance.

As subjects perform the PRL task, the value of each chosen action (i.e.,
Q-value) is updatedbasedon reinforcement. Thus, during the task, the value
of the target stimulus fluctuates to reflect the changing probability of reward
delivery (see Supplementary Fig. 3A, B for representative Q-values across a
test session for both species). As expected, humans assigned greater
Q-values to target stimuli (0.710 ± 0.007) than non-target stimuli
(0.329 ± 0.01) [t(106) = 25.51;p < 0.001] (SupplementaryFig. 3C), as did the
rats (0.550 ± 0.036 vs. 0.275 ± 0.034) [t(20) = 6.08, p < 0.001] (Supplemen-
tary Fig. 3C), indicating that both species learned to appropriately value
stimuli based on experience throughout the task.

The beta parameter reflects the degree to which subjects explore both
actions (lower beta value) vs. exploit the highest value action (higher beta
value)45.Higher beta valueswere significantly associatedwithmore reversals
in humans (r(52) = 0.65, p < 0.001; Fig. 1E) and rats (r(9) = 0.69, p = 0.019;
Fig. 1F). Thus, consistent with the target win-stay and lose-shift correlations
described above, exploiting high value actions and limiting exploration to
periodswhen those actionsbecome less favorable (i.e., after reversals)was an
adaptive strategy for both species. Conversely, there was no association
between alpha or forget parameters and reversals in either species (Sup-
plementary Fig. 4).

Electrophysiological markers associated with reward expec-
tancy are consistent across humans and rats
As humans and rats performed the PRL task, continuous EEG was recorded
and averaged across rewarded and non-rewarded trials. A RewP emerged in
frontal recording sites (e.g., frontocentral electrode (FCz) in humans
(Fig. 2A); ACC in rats (Fig. 2B)) in response to positive vs. negative feedback.
Highlighting spatial specificity, these effects were not present at parietal
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electrodes in either species (p’s > 0.168). The RewP peaked in the human FCz
electrode approximately 200ms following feedback and approximately
100ms after reward feedback in the rat ACC, and reflected a more positive
frontal signal for a rewarded vs. non-rewarded response (consistent with a
positive PE).When broken down further into the four possible trial types, the
average RewP amplitude was greater for rewarded compared to unrewarded
trials after both target and non-target responses in both humans (Fig. 2C)
and rats (Fig. 2D). In humans, a 2-way ANOVA revealed a significant
Response × Feedback interaction [F(1,33) = 6.10, p= 0.019], and Bonferroni
post-hoc tests revealed significantly greater voltage during rewarded vs.
unrewarded target trials (p= 0.002). Moreover, a 1-way ANOVA revealed a
significant linear effect of trial type [F(3,99) = 30.23, p < 0.001], and Bon-
ferroni post-hoc tests revealed progressively increasing voltage that scaled
with expected PE magnitude: Target/No Reward (expected to elicit the lar-
gest negative PE), Non-target/No Reward, Target/Reward, Non-target/
Reward (expected to elicit the largest positive PE). In rats, a 2-way ANOVA
did not reveal a significant Response × Feedback interaction, but did reveal a
significant main effect of Feedback [F(1,9) = 37.73; p < 0.001], and Bonfer-
roni post-hoc tests revealed significantly more positive voltage during
rewarded vs. unrewarded target trials (p < 0.001). Critically, like humans, a
1-way ANOVA in rodents revealed a significant linear effect of trial type
[F(3,27) = 18.52, p < 0.001], and Bonferroni post-hoc tests revealed pro-
gressively increasing voltage in the same order as humans.

Prediction errors associated with reward expectancy are con-
sistent across humans and rats
Based on the value assigned to the chosen option on any trial, a PE can be
computed depending on the outcome of that trial. For example, rewarded

target responses (i.e., informative feedback) should elicit small positive PEs,
whereas non-rewarded target responses (i.e., misleading feedback) should
elicit large negative PEs46,47. Indeed, the PEs for rewarded and unrewarded
outcomes were positive and negative, respectively, and PE magnitude was
greaterwhen the outcome of the selected actionwas unexpected (Fig. 2E, F).
In humans, a 2-way ANOVA revealed a significant main effect of Feedback
(F(1, 53) = 22,570.94, p < 0.001), but no Response × Feedback interaction.
Post-hoc tests revealed significantly greater PEs during rewarded vs. unre-
warded target trials (p < 0.001). Consistent with the linear effect of the
four trial types onRewPvoltage, 1-wayANOVArevealed a significant linear
effect of trial type [F(3,159) = 3571.61, p < 0.001], and Bonferroni post-hoc
tests revealed progressively increasing PE values in the same order as
described for RewP voltage. In rats, a 2-way ANOVA revealed a
significant main effect of Feedback (F(1, 10) = 5698.12, p < 0.001), but no
Response × Feedback interaction. Post-hoc tests revealed significantly
greater PE during rewarded vs. unrewarded target trials (p < 0.001). Similar
to humans, the 1-wayANOVAacross all four trial types in rodents revealed
a significant effect [F(3,30) = 882.49, p < 0.001], due to progressively
increasing PEs. Interestingly, in both species, PEs were more negative for
unrewarded target vs. non-target responses andmore positive for rewarded
non-target vs. target responses (all p’s < 0.001), suggesting that reward
expectancy was greater following target vs. non-target responses in both
groups.

Relationships between behavioral and electrophysiological
measures of PEs
Next, we investigated associations between model parameters and electro-
physiological markers. Using linear regression, we used trial-level data to

Fig. 1 | PRL behavior was comparable between
humans (left) and rats (right) performing similar
versions of the task. Although humans (n = 54; A)
generally completed more reversals than rats
(n = 11; B), the probability of repeating a previously
rewarded target response (win-stay) was greater
than the probability of abandoning a previously
unrewarded target response (lose-shift) in both
species. Target win-stay probability was positively
associated with the number of completed reversals
in both humans (C) and rats (D), while target lose-
shift probability was negatively associated with
reversals in both species. Greater beta values, indi-
cating a greater likelihood to exploit known infor-
mation to maximize rewards, positively correlated
with the number of completed reversals in humans
(E) and rats (F). Reversal data are presented using
box plotsmarking themedian value (center line), the
25th and 75th percentiles (the outer edges), and±1.5
times the interquartile range (the whiskers), as well
as the mean (triangle) ± standard error of the mean
(error bars).
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determine the association between the ERP/LFP voltage at each timepoint
within each trial and the PE associated with that trial. Notably, in both
species (Fig. 3A, B), the regression coefficient peaked in the time window
corresponding to the RewP. This indicates that during the RewP period,
greater ERP/LFP amplitudes are associatedwithmore positive PEs, whereas
lower ERP/LFP amplitudes are associatedwith less positive PEs. That is, the
more positive ERP/LFP for rewarded vs. unrewarded non-target responses
appears to reflect the positive PE that occurs when rewards are unexpected.
Analogous models using outcome and expected value (i.e., the sub-
components of PE) are presented in Supplementary Fig. 5.

To provide additional validation for this regression approach, we used
the intercept and regression coefficient generated at each timepoint to
predict the ERP/LFP amplitude associated with various PEs. The predicted
ERP/LFP traces (Fig. 3C, D) replicated the traces observed in humans and
rats (Fig. 2A, B), and, importantly, differences in the predicted traces
emerged at the time window corresponding to the RewP. Moreover, the
predictedERP/LFPwas greaterwhen thehypothetical PEwasmorepositive.
To ensure that the predicted ERP/LFP traces aligned with the activity we
recorded from our human or rodent subjects, we plotted the ERP/LFP for
trials associated with a PE greater than 0.5 or less than−0.5 (Fig. 3E, F). As
expected, and consistent with our predicted ERP/LFP values, more positive

PEs were associated with a more positive ERP/LFP, and this difference was
most evident in the RewP time window.

Modafinil effects on frontal electrophysiological signals and
PE values
To understand whether electrophysiological markers of cognitive flexibility
are modulated by altering dopamine transmission, we administered the
dopamine transport blocker modafinil to a separate cohort of humans
(N = 29) and the same cohort of rats described above (N = 11) prior to PRL
testing and EEG recording. Under the placebo/vehicle condition, we suc-
cessfully replicated the frontal RewP observed between unrewarded and
rewarded responses in both humans (Fig. 4A) and rats (Fig. 4B). In humans,
a 1-way ANOVA of the ERPs following target responses revealed a sig-
nificant main effect of Feedback [F(1,26) = 10.16, p = 0.004] (Fig. 4C). The
same significant Feedback effect [F(1,9) = 15.08, p = 0.004] was identified in
the 1-wayANOVAof the rodent LFPs (Fig. 4D). In both species, ERPs/LFPs
were more negative following unrewarded target responses relative to
rewarded target responses, with, unexpectedly, no effect of modafinil (see
Supplementary Fig. 6 for ERPs from all modafinil doses for both species).

We then fitted the same Q-learning algorithm to PRL performance.
One-way ANOVA models examining PEs following target responses

Fig. 2 | Frontal feedback-locked event-related
potentials (ERPs) and prediction error (PE) values
were comparable between humans (left) and rats
(right) during performance of the PRL task.
Frontal (FCz in humans, anterior cingulate cortex in
rats) ERPs were more positive during rewarded vs.
unrewarded target responses in both humans (A)
and rats (B), indicative of the reward positivity
(RewP). The pattern of voltage changes during the
RewP period across all four trial types was similar
between humans (n = 34; C) and rats (n = 11; D). A
nearly identical pattern emerged with regard to PE
values in both humans (n = 34; E) and rats (n = 11;
F). ERP traces are presented for all trial types
(rewarded target = blue solid line; non-rewarded
target = red solid line; rewarded non-target = blue
dotted line; non-rewarded non-target = red dotted
line) and expectancy-based difference waveforms
(Expected = Rewarded Target – Non-rewarded
Non-Target, and Unexpected = Rewarded Non-
Target – Non-rewarded Target) and were averaged
across all subjects and triggered to the tone pre-
dicting the presentation or omission of reward.
Voltage and PE data are presented using box plots
marking themedian value (center line), the 25th and
75th percentiles (the outer edges), and ± 1.5 times
the interquartile range (the whiskers), as well as the
mean (triangle) ± standard error of the mean
(error bars).

A

C

B

D

E F

HUMAN RAT
Feedback-Locked ERPs

μV

Time (msec)

Feedback 
Tone

RewP

-100 0 100 200 300 400

8

4

0

-4

o

400-100 0 100 200 300
-60

-40
-20

0

20

40

60

Feedback-Locked ERPs

Time (msec)

Feedback 
Tone

RewP

Unexpected Difference

Expected DifferenceTarget Reward
Target No Reward

Non-Target Reward
Non-Target No Reward

−6
−3
0
3
6
9

12

No Reward Reward

μV

RewP Voltage

Non-targetTarget

*
*

*

−40
−30
−20
−10

0
10
20
30
40
50

RewP Voltage

No Reward Reward

*
*

−1.0

−0.5

0.0

0.5

1.0

PE
 V

al
ue

Prediction Error (PE)

No Reward Reward

*
*

*
*

−1.0

−0.5

0.0

0.5

1.0

No Reward Reward

Prediction Error (PE)

*
*

*
*

https://doi.org/10.1038/s42003-025-08729-x Article

Communications Biology |          (2025) 8:1268 4

www.nature.com/commsbio


revealed a significant main effect of Feedback for both humans
[F(1,28) = 7630.16, p < 0.001] (Fig. 4E) and rats [F(1,10) = 2737.01,
p < 0.001] (Fig. 4F). Interestingly, in rats, a 1-way ANOVA across all
modafinil doses revealed significant linear effects for the rewarded condition
[F(5,50) = 2.62, p = 0.035] with higher doses resulting in more positive PEs;
this was not the case for the unrewarded condition [F(5,50) = 1.90,
p = 0.111]. Although the linear effects analysis of human PEs was not sig-
nificant, thepatternof resultswas similar to rodents (i.e., increasingPEswith
increasing modafinil dose). Although a wide dose response range was used
in rodents, matching doses across species is challenging48 and it is possible
that the higher doses used in rats (e.g., 32 and 64mg/kg) were relatively
greater than the highest human dose. Thus, the pattern of increasing PEs
across doses may have been more robust if the human participants were
exposed to higher modafinil doses.

Discussion
Using analogous PRL tasks across species, along with equivalent EEG data
processing and identical computational analyses of behavioral and EEG
data, we found remarkably concordant behavioral, computational, and
electrophysiological findings across species, including a neurophysiological
response consistent with a RewP in both humans and rats. In humans, the

RewPwas observed over frontocentral brain regions, while the rodent RewP
was recorded directly from the ACC. Notably, in humans, this component
peaked approximately 200ms following feedback, which is earlier than the
more typically observed ~300ms peak49.We postulate that this latency shift
is likely due to using auditory feedback rather than the more typical visual
feedback, but recognize that other task design effectsmay also be involved in
this latency shift. Behavioral performance between species was comparable,
as indicated by greater sensitivity to positive feedback (i.e., target win-stay)
relative to negative feedback (i.e., target lose-shift), both of which sig-
nificantly correlated with the overall number of reversals in both species.
Although the number of reversals and win-stay responses were generally
higher and lose-shift ratios were generally lower in humans compared to
rats, these findings are consistent with previously published PRL data in
both species40,50. Importantly, Q-learning computational analyses revealed
that both humans and rats assigned greater value to target vs. non-target
stimuli, and these values alternated between response apertures as the cri-
terion for reversals was achieved and reward contingencies were switched.
Consistent with our prior finding51, we found a positive correlation between
the beta parameter and the number of completed reversals, likely because a
higherbetaparameterpromotes a greater tendency to exploit the actionwith
the higher value. Taken together, these findings confirm that humans and

Fig. 3 | The strong relationship between ERP
voltage following reward feedback and PE values
was comparable between humans (left) and rats
(right). Linear regression revealed a strong positive
correlation between ERP voltage during the reward
positivity (RewP) period and PE value in both
humans (A) and rats (B). Data reflect average
regression coefficient values. We then predicted the
ERP response based on several fixed PE values
(PE = 0.3, blue dashed line; PE = 0.6, blue solid line;
PE =−0.3, red dashed line; PE =−0.6, red solid line)
and showed that the predicted ERP was more
negative or positive when the PE value was negative
or positive, respectively, in both humans (C) and rats
(D). These effects only emerged during the RewP
period and were nearly identical to the actual ERP
voltages when split between high (PE > 0.5; blue
solid line) and low PE (PE <−0.5; red solid line)
values in both humans (E) and rats (F). Data reflect
grand average ERP traces.
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rats performing the PRL task exhibit concordance in both behavioral per-
formance and evoked neurophysiological responses.

Reward PEs are fundamental for learning52, and signal when an actual
outcome deviates from what was expected. As the value assigned to the
targetwas greater than thenon-target, onewould likely expect a reward after
a target response. Importantly, rewarded outcomes elicited positive PEs,
whereas non-rewards elicited negative PEs. However, the PE signal fol-
lowing a rewarded non-target response was more positive than rewarded
target responses, and a non-rewarded target response elicited a more
negative PE than non-rewarded non-target responses. Interestingly, the
direction and magnitude of the frontal voltage across the RewP window
following feedbackwere strikingly similar to the direction andmagnitude of
PEs across all four trial types in both species (Fig. 2C–F), and PEs sig-
nificantly correlated with voltage during the RewP window in both species
as well. These results suggest that the frontal voltage changes triggered by
reward feedback represent a neural marker of PEs that is consistent across
humans and rats. Less positive deflections after an unexpected reward
omission are associated with greater negative PEs, whereas smaller deflec-
tions are associated with weaker negative PEs. Blunted negative PEs may
contribute to perseverative responding and less flexibility if reward omis-
sions fail to signal that an error has occurred and that alternate options

should be explored. Future research focusedonunderstanding the trial-level
relationship between neural activity and choice selection may provide fur-
ther insight into the role of PEs in cognitive flexibility.

Because midbrain dopaminergic signals to the ACCmay contribute to
and/or modulate the RewP26,53, we hypothesized that indirectly enhancing
dopamine levels (among other neuromodulators) via modafinil would
enhance both the RewP and PEs. Interestingly, in rodents, we found that
higher doses of modafinil increased positive PEs for rewarded target
responses (i.e., PEs became more positive as modafinil dose increased) but
suppressed negative PEs for unrewarded target responses (i.e., PEs became
less negative asmodafinil dose increased). The effect onPEsmaydisrupt the
ability to properly identify and update the value of the target stimulus,
ultimately impacting choice behavior. Notably, we only saw this effect in
rodents administered the higher modafinil doses, and animals also com-
pleted fewer reversals and exhibited alterations in win-stay/lose-shift stra-
tegies (see Supplementary Table 2). The absence of this effect in humans
suggests that the maximal human dose administered (200mg) was not
sufficient to disrupt behavior and neurophysiology in a manner consistent
with that observed in rats.

It is possible that by increasing dopamine levels, high doses of mod-
afinil might have interfered with the ability of midbrain dopamine neurons

Fig. 4 | Modafinil did not alter feedback-locked
ERPs, but did disrupt PE values in rats at
high doses. Testing with the placebo/vehicle pro-
duced a similar reward positivity (RewP) as pre-
viously shown (Fig. 2) in both humans (A) and rats
(B). Modafinil did not alter the magnitude of the
RewP in either species (C,D). However, positive PE
values increased and negative PE values became less
negative in response to high doses of modafinil in
rats (n = 11;F). A similar trendmay have emerged in
humans (n = 30; E) at higher doses. Grand average
ERP traces time-locked to the feedback tone are
presented for all trial types (rewarded target = blue
solid line; non-rewarded target = red solid line;
rewarded non-target = blue dotted line; non-
rewarded non-target = red dotted line) and
expectancy-based difference waveforms (Expec-
ted = Rewarded Target – Non-rewarded Non-Tar-
get, and Unexpected = Rewarded Non-Target –
Non-rewarded Target). Voltage and PE data are
presented using box plots marking the median value
(center line), the 25th and 75th percentiles (the outer
edges), and ± 1.5 times the interquartile range (the
whiskers), as well as the mean (triangle) ± standard
error of the mean (error bars).
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to appropriately suppress activity during an unexpected event, thereby
suppressing the PE, which is associated with an attenuated RewP. This is
consistent with prior evidence indicating that increased dorsomedial stria-
tum activity reduces the impact of loss, thereby impairing performance in a
reversal learning task54. Critically, modafinil also modulates other mono-
amine systems55, such as noradrenaline and serotonin,whichalso play a role
in regulating reward PEs and value updating56,57. Indeed, noradrenergic
neurotransmission plays a central role in error monitoring58. Thus, it is
unclear whether PRL disruptions evident in rats after the highest dose of
modafinil are due to alterations in dopamine neurotransmission or another
neurotransmitter system. Alternatively, another possible explanation for
why modafinil did not modulate PEs and ERPs/LFPs may have to do with
the subjects. All human participants were healthy and without any psy-
chiatric conditions, and all rats were naïve and otherwise healthy. Thus,
dopamine signaling in healthy subjects may already be optimal, and any
additional increase may impede performance. It is possible that modafinil
may improve PRL performance in subjects that are otherwise healthy but
exhibit reduced task performance or in patient samples characterized by
reduced cognitive flexibility. Future studies that are sufficiently powered
could group participants based on task performance (i.e., optimal vs poor)
before modafinil administration or consider neuropsychiatric samples.

Importantly, the results of the cross-species studies presented here
highlight the potential to replicate the rodent study using a parallel patient
sample. If successful, this and other similar cross-species approachesmay be
used to test novel putative pharmacotherapies using similar behavioral and
neurophysiological measures with high predictive validity59. Such an
approach would identify which neural mechanisms linked to behavioral
endpoints are conserved across species and thus would be appropriate to
assess using an animalmodel. Importantly, as amajor step towards this goal,
our findings demonstrate that concordant behavioral, computational, and
neurophysiological measures are observed in humans and rodents per-
forming a cross-species task. A similar approach could be used to identify
neural mechanisms of and treatments for disorders featuring deficits in
cognitive flexibility and other behaviors that can be accurately measured
across species and linked to conserved neural processes.

Methods
A detailed description of the multidisciplinary research program of which
the present study was part is described at: clinicaltrials.gov/study/
NTC02855229.

Humans subjects
Sixty-three volunteers, aged 18–45 years, were recruited for the first PRL
cohort (whichdid not includemodafinil testing). A total of 54were retained
(19male, 35 female) for final behavioral data analyses, of which 34 (13male,
21 female) were retained for EEG analyses after further exclusion due to
poor EEG data quality. Thirty separate right-handed volunteers were
recruited for the second PRL cohort (which includedmodafinil), and a total
of 29 subjects (14 male, 15 female) were retained for final data analyses.
Subjects were free of any psychiatric history, as determined by a clinician-
administered Structured Clinical Interview for DSM-5 (SCID-5)60. Subjects
were compensated $452 for participation. All ethical regulations relevant to
human research participants were followed, and all procedures were
approved by the Mass General Brigham Institutional Review Board. Sub-
jects providedwritten informed consent in the presence of amedical doctor
prior to participation.

Human PRL task procedure. The first cohort participated in a single
testing session. Subjects were randomly assigned to either the PRL task or
a Flanker task (the results of which were reported separately)61. Analyses
examining the effects of task order revealed no significant differences.
The second PRL cohort completed three sessions, separated by at least
one week, using a double-blind, within-subjects, placebo-controlled
design; across sessions, subjects were administered 0 mg (placebo),
100 mg, or 200 mg modafinil (2 h pretreatment).

Subjects completed amodifiedversion of thePRL task (Supplementary
Fig. 1A) while seated ~70 cm from a computer monitor inside an acousti-
cally and electrically shielded booth. All stimuli were presented on a 22.5-in
VIEWPixx monitor (VPixx Technologies, Saint-Bruno, Canada) using
PsychoPy software. In this PRL task, participants were tasked to choose
between two stimuli, one of which had been randomly designated as the
target stimulus at the beginning of the session. Participants received prob-
abilistic feedback in that, if the target stimulus was chosen, a reward would
follow 80% of the time. Similarly, if non-target stimuli, negative feedback
was given 80% of the time. Thus, spurious feedback would occur 20% of the
time. The target or non-target assignment was reversed if the participant
selected the target stimulus on 8 consecutive trials irrespective of feedback.

To ensure parallel instructions between species, participants were not
made aware of reversing contingencies. Rather, they were instructed that
they would need to “choose between two circles in order to win as much
money as you can” and that they would hear one tone indicating a win/
correct selection or a different tone indicating an incorrect selection. Par-
ticipants completed 10 practice trials to familiarize themselves with the trial
structure and the two tones. One session consisted of 300 trials with one
break after 150 trials.

Every trial started with the presentation of a fixation cross of random
duration between 500 and 1000ms. Stimuli consisted of a red and blue
circle, randomly placed on the left or right side of the screen, presented for
maximally 2000ms or until a response was given. Participants selected the
left circle bypressing “c”or the right circle bypressing “m”onakeyboard.As
soon as the response was given, a black border appeared around the selected
circle for 400ms. Following a random delay of between 400 and 600ms,
auditory feedback (either a 700Hz or 1000Hz pure sine wave) was played
for 200ms. Assignment of the reward and omission outcome to the high or
low tone was counterbalanced between participants. If the subject received
positive feedback, the feedback tone was followed by the sound of a coin
dropping for 1200ms. This sound was added to mimic the consumption of
the food reward in rodents. If participants failed to answerwithin 2000ms, a
300Hz tone was played together with a visual stimulus reading “No
response!”.

Human EEG acquisition. In both PRL cohorts, EEG data were recorded
using an actiCHampamplifier and a 96Ag/AgCl active electrode actiCAP
system (Brain Products GmbH, Gilching, Germany) that used an equi-
distant spherical montage and was referenced online to a vertex channel
(approximating Cz), with a ground electrode approximately at AFz. Data
were digitized at 500 Hz using BrainVision Recorder, and impedances
were kept below 35 kΩ.

Rodent subjects
Eleven adult male (n = 5) and female (n = 6)Wistar rats were used for both
baseline and modafinil experiments (Charles River Laboratories, Wil-
mington,MA,USA). Animals were pair-housed and food-restricted to 85%
of their free-feeding bodyweight throughout behavioral training. After EEG
electrodes were surgically implanted, animals were single-housed for the
duration of the experiment and all PRL tests. All rats were housed in a
vivarium room with a 12-h reverse light-dark cycle, with lights off between
7:00 AM and 7:00 PM. Rats were monitored daily for signs that would
prompt a humane endpoint (e.g., excessive weight loss, inappetence, mor-
ibund state, or infection), requiring removal from the study and euthanasia.
We have complied with all relevant ethical regulations for animal use; all
rodentprocedureswere approvedby theUCSanDiego InstitutionalAnimal
Care and Use Committee, and were conducted in accordance with guide-
lines from the National Institute of Health and the Association for
Assessment and Accreditation of Laboratory Animal Care.

Rodent EEG surgery and data acquisition. Prior to testing, rats were
anesthetizedwith a 2% isoflurane/oxygen vapormixture and secured on a
stereotaxic frame (Kopf Instruments; Tujunga, CA, USA). In order to
best approximate human EEG recordings, we implanted three different
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electrode types over and within the rats’ brains: (1) A 1/8” diameter fine
silver disc (Hauser and Miller; St. Louis, MO, USA) soldered to a 0.01”
diameter PFA-coated stainless steel wire (#792400; A-M Systems;
Sequim, WA, USA) was placed on the surface of the skull immediately
rostral to bregma; (2) a stainless steel jeweler’s screw soldered to the wire
described above was implanted in the skull over the frontal cortex
(AP+ 3.7 mm, ML ± 2.5 mm) and parietal cortex (AP −4.5 mm, ML ±
4.9 mm); (3) a stainless steel wire described above was inserted into the
ACC (AP+ 2.7 mm, ML ± 0.8 mm, DV −2.3, from bregma), lateral
orbitofrontal cortex, nucleus accumbens shell, caudate nucleus, and
primary auditory cortex; notably, electrode implantation angles were
unified across animals. Recordings from sites other than the ACC will be
reported separately. Reference and ground skull screws were implanted
bilaterally over the cerebellum. All electrodes were secured initially with
Denmat cement, then completely covered with dental acrylic. The wires
from all electrodes were securedwith gold pins into an electrode interface
board (EIB-16; Neuralynx; Bozeman, MT, USA) that attached to a
removable amplifier board during data acquisition. Rats were monitored
for at least one-week post-surgery before EEG recording. Unifying
electrode coordinates, materials, and implantation angles across animals
was done to minimize variability in signal orientation62,63.

During testing, rats were connected to a 16-channel amplifier board
(RHD2132; Intan Technologies; Los Angeles, CA, USA) that transmitted
electrophysiological data to a USB interface board connected to a computer
running RHD2000 interface software (Intan Technologies). Data were
continuously recorded at a 1 kHz sampling rate andfiltered between0.1 and
300Hz. While LFP data were being continuously collected during the PRL
task, TTL event markers were recorded to identify presentation of reward
feedback. Audio signals were recorded during testing and connected to the
EEG acquisition system to confirm the accuracy of the time-lock between
tones and neurophysiological signals.

Rodent PRL task procedure. Rats were trained and tested in a Plexiglas
operant conditioning box (24 × 30 × 29 cm; Med Associates, St Albans,
VT, USA) enclosed in a Faraday cage (Med Associates). It consisted of two
retractable levers, a food receptacle positioned between the two levers, a
stimulus light above each lever, a speaker above the food receptacle, and a
house light placed 2 cm below the ceiling on the opposite wall. Tones were
created by an audio generator. All programs and collection of data were
done on MED-PC V software (Med Associates, St Albans, VT, USA).

The rodent PRL task was designed to be as similar to a human task as
possible (Supplementary Fig. 1B). Briefly, rats responded for one of two
colored light stimuli (that were illuminated for up to 5 s) by pressing one of
two levers (presented 1 s after illumination) under the two lights. Target
responses resulted in positive feedback (100ms tone, 5 or 15 kHz, coun-
terbalanced) on 80% of trials 500–1000ms after the response and preceded
the delivery of a 45mg (for male rats) or 20mg (for female rats) sucrose
pellet (5TUT, Test Diet), or negative feedback on 20% of trials (other tone)
followed by nopellet.Non-target responses resulted in negative andpositive
feedback on 80% and 20% of trials, respectively. Eight consecutive target
responses, regardless of feedback, resulted in the target stimulus switching to
the other light. A “reversal” was recorded when a rat successfully made 8
consecutive target responses after a switch. Rats completed 300 trials
per session.

EEG recordings were obtained on the 21st day of testing (i.e., after rats
had sufficient time to learn the PRL procedure). After one week, EEG
recordings were obtained during testing after administration of one of the
following doses of modafinil using a within-subjects Latin-square design: 0,
4, 8, 16, 32, 64mg/kg. The vehicle for modafinil dosing was DMSO,
administered at a volume of 1ml/kg. There was a minimum one-week
washout period between tests.

Cross-species Task Performance and ERP/LFP derivation
In both species, in addition to reversals, target win-stay probabilities were
calculated as the number of responses repeated after a rewarded target

response divided by the total number of rewarded target responses. Target
lose-shift probabilities were calculated as the number of responses not
repeated after an unrewarded target response divided by the total number of
unrewarded target responses. Q-learning parameters, including Q, PE,
alpha, beta, and forget values, were also calculated identically in both species
(see Supplementary Methods).

All EEG data were analyzed with BrainVision Analyzer 2.1 (Brain
Products GmbH, Gilching, Germany) in the following steps: human data
were visually inspected to identify gross muscle activity and artifactual
channels, and rodent data were checked for polarity inversions. Following
this, data were bandpass filtered from 0.1 (12 dB/oct) to 30 Hz (24 dB/Oct
Human cohort 1, 48 dB/oct, Human cohort 2, and Rats) using zero-phase
Butterworth IIR filters. Human data were then subjected to independent
component analysis to remove eye movement and EKG sources, spherical
spline interpolation to replace corrupted channels, and finally re-referenced
to the common average. Rodent data were re-referenced to the electrode
implanted above the left cerebellum. Processed data for both species were
then segmented into −1500 to 2000ms epochs around the feedback sti-
mulus, and segments were rejected channel-wise as artifact if any of these
criteria were met: (1) a voltage exceeding ±75 µV (humans) or ±800 µV
(rats); (2) a maximum voltage difference of less than 0.5 µV for more than
100mswithin a trial.Humanrecordingswere also checked against twoextra
criteria: (1) a voltage step exceeding 50 µV, and (2) a maximum voltage
difference of more than 150 µV across 200ms time intervals within a trial.

In both species, feedback-locked data were segmented into individual
epochs spanning from 200ms before and 600ms after the feedback tone,
baseline-corrected (described below), and averaged. In humans, feedback-
locked ERPs were quantified at channel 2 (approximating electrode FCz),
and baseline-corrected to the −200 to 0ms pre-feedback window. The
RewP was quantified as the average amplitude between 165 and 225ms
post-feedback. In rats, feedback-locked LFPs were baseline-corrected to the
−300 to −100ms pre-feedback window and quantified at the ACC LFP
channel as the average activity across the 60–160ms post-feedbackwindow.

Statistics and reproducibility
Across all cohorts (i.e., 1 rodent (n = 11) and 2 humans (n = 34 andn = 30)),
the associations between task performance and behavioral parameters were
assessed using Pearson’s correlation. In turn, between-condition compar-
isons for all parameters, at both the trial- and session-level, were evaluated
using 1- and 2-wayANOVAs. Finally, the association between the ERP/LFP
voltage and PE values was evaluated using a series of generalized linear
models (GLMs)with aGaussian distribution and identity link function. The
general structure of these models was as follows:

E Voltagedt
� � ¼ β0 þ β1PEt ð1Þ

where E(Voltagedt) corresponds to the ERP/LFP amplitude at each data
point, d, within a given trial, t, and PEt is the signed PE value on that
given trial.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Numerical source data used in the present manuscript are hosted on OSF
and available at: osf.io/gxkdv. All other data (i.e., raw EEG recordings) that
support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The following softwarewere used in preprocessing rawdata and subsequent
analysis: BrainVision Analyzer (v2.0), Python (v3.7.1), NumPy Python
library (v1.21.5), pandas Python Library (v1.1.5), SciPy Python Library
(v1.4.1), matplotlib Python library (v3.5.3), statsmodels Python Library
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(v0.13.5), IBM SPSS Statistics (v24), and GraphPad Prism (v8). Where
possible, Python and R code used in the present analysis are available on
OSF at: osf.io/gxkdv. EEG preprocessing templates are available from the
corresponding author on reasonable request.
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Supplemental Materials 

Supplementary Methods 

Q-learning modeling of PRL behavioral data and quantification of model performance 

We fit a variety of Q-learning models to the behavioral data. On each trial (t), the value (Q) 

of the chosen action (c) is estimated according to the outcome delivered (r; reward = 1, no reward 

= 0). Q values were initialized to 0.5 (neither good nor bad since the target and non-target stimuli 

were randomly assigned at the beginning of the session). Prediction errors (PE) — the difference 

between the estimated value of the chosen action (Qc) and the actual outcome — were computed 

according to: 

𝑃𝑃𝑃𝑃 = 𝑟𝑟(𝑡𝑡) − 𝑄𝑄𝑐𝑐(𝑡𝑡)                                             (1) 

The PE was then used to update the value estimate for the chosen action (but not the 

non-chosen action) on a trial-by-trial basis according to equation 2. 

𝑄𝑄𝑄𝑄(𝑡𝑡+1) =  𝑄𝑄𝑄𝑄 +  𝛼𝛼 × 𝑃𝑃𝑃𝑃                                        (2) 

The α parameter is a learning rate, ranging from 0 to 1, that controls how quickly the PE 

updates value estimates. A low α results in Q-values that gradually changed over multiple trials, 

whereas a high α causes more rapid changes in Q-values. 

The above equations are used to modify the value attributed to each action. The values 

are used to guide choices by converting them into action probabilities using the softmax equation. 

𝑝𝑝(𝐴𝐴) =  𝑒𝑒𝑄𝑄𝑄𝑄 × 𝛽𝛽

𝑒𝑒𝑄𝑄𝑄𝑄 × 𝛽𝛽+ 𝑒𝑒𝑄𝑄𝑄𝑄 × 𝛽𝛽                                             (3) 

The degree to which choices are exploratory (i.e., selecting the lower-valued action) vs. 

exploitative (i.e., selecting the higher-valued action) is controlled by the inverse temperature (β) 

parameter. A higher β parameter indicates a greater tendency to engage in exploitative choices 
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whereas a lower β parameter is indicative of a greater tendency to explore actions associated 

with a lower value. The model above describes the simplest model that we evaluated and includes 

two free parameters (α, β) that are estimated.  

We implemented several modifications to determine if any model variant provided a better 

explanation of behavior. As one example, PRL performance might involve simultaneously 

updating the value of both the chosen and the non-chosen actions after each PE. To evaluate this 

possibility, we implemented a model with a “double update” rule, whereby the value of both the 

chosen and unchosen actions are updated by the PE1. The value of the chosen action is updated 

according to equation 2 but the value of the unchosen action (Qnc) is updated according to: 

𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡+1) =  𝑄𝑄𝑄𝑄𝑄𝑄 −  𝛼𝛼 × 𝑃𝑃𝑃𝑃                                       (4) 

With this variant, a rewarded left response would increase the value attributed to the left 

action while simultaneously decreasing the value associated with the right action. Alternatively, 

another approach that modulates the value of both actions on the same trial incorporates a 

method to decay the value of the unchosen action. This approach is designed to capture 

“forgetting” the value of an action if it has not been selected for several trials2,3. Again, the value 

of the chosen action is updated according to equation 2, but the value of the unchosen action is 

updated according to: 

𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡+1) = (1 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) × 𝑄𝑄𝑄𝑄𝑄𝑄                                  (5) 

When the forget parameter equals zero, then the value of the unchosen action is 

unaffected, and the model is identical to that described by equation 2. By contrast, if the subject 

chooses the left action and the forget parameter equals 0.5, then the value of the right action is 

reduced by 50% for each trial where the left action was selected. 

Each of the model variants above were used in conjunction with the softmax function 

(described by equation 3) to convert value estimates into choice probabilities. Although the 
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inverse temperature (β) parameter regulates the degree to which the subject engages in 

explorative vs. exploitative decisions, choice behavior could also be influenced by the presence 

of a bias for one action or another. Therefore, rather than using the standard softmax function 

(equation 3), each of the model variants described above can also be used in conjunction with a 

modified softmax function that includes a bias parameter: 

𝑝𝑝(𝐴𝐴) =  𝑒𝑒(𝑄𝑄𝑄𝑄+𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) × 𝛽𝛽

𝑒𝑒(𝑄𝑄𝑄𝑄+𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)+ 𝑒𝑒𝑄𝑄𝑄𝑄 × 𝛽𝛽                                             (6) 

A bias parameter of 1 would indicate an extreme bias for action A and a bias parameter of 

-1 would indicate an extreme bias for action B. When the bias parameter was 0 then the subject 

exhibited no bias for either action and equation 6 would function in a similar manner to the softmax 

function described in equation 3.  

The models described above all used a single α parameter to control the rate at which 

PEs updated value estimates. To explore whether a difference in the sensitivity for rewards vs. 

non-rewards influenced PRL performance, we also implemented a series of models that used 

separate learning rates for each outcome, as follows: 

𝑄𝑄𝑄𝑄(𝑡𝑡+1) =  𝑄𝑄𝑄𝑄 +  𝛼𝛼 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 1                                        (7) 

𝑄𝑄𝑄𝑄(𝑡𝑡+1) =  𝑄𝑄𝑄𝑄 +  𝛼𝛼 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0                                        (8) 

If the response resulted in a reward, then the rate at which PEs updated value estimates 

was controlled by the positive learning rate (α-gain; equation 7). By contrast, for non-rewarded 

trials a negative learning rate was used (α-loss; equation 8). 

Using the equations described above, we fit 10 separate models to the PRL data. The 

optimal parameter values for each of the models were identified by minimizing the negative log-

likelihood of choice probabilities using the “minimize” optimization function with the L-BFGS-B 

algorithm in Python’s Scipy library (v.1.5)4. To sample broadly from the range of possible 
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parameter values and reduce the possibility of the model getting stuck in local minima, the 

optimization algorithm was initialized at five different starting points within the parameter space 

for each subject. The parameter values associated with the lowest negative log-likelihood were 

selected as the best-fitting set for each subject.  

The best-fitting model was determined by comparing the Bayesian Information Criteria 

(BIC) value for each model. The ∆BIC value was calculated using the difference between the BIC 

of each model from the lowest BIC value and used to calculate the relative likelihood as follows: 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑜𝑜𝑜𝑜𝑜𝑜 =  𝑒𝑒(−0.5 × ∆𝐵𝐵𝐵𝐵𝐵𝐵)                       (9) 

To confirm the validity of the best-fitting model, we conducted posterior predictive checks 

in which we compared the simulated performance with actual PRL performance for human and 

rodent subjects. Parameter recovery exercises were also performed to confirm the accuracy of 

parameter estimation5. 

To determine the relationship between the ERPs and reward PEs, we used generalized 

linear models to predict the trial-by-trial neural activity at each timepoint within a trial. The first 

regression model presented in Figure 3 included the reward PE for each trial as the sole model 

predictor whereas the regression model presented in Supplemental Figure 5 included the outome 

of the trial (i.e., rewarded or not) and the value of the chosen action (i.e., the expected value). 

This approach is designed to delineate between error signaling and outcome valence6,7. In both 

models, neural activity for each timepoint within the trial epoch was used as the dependent 

variable. To predict the ERP waveform for a given reward PE value, we multiplied a hypothetical 

reward PE value (e.g., -0.6, -0.3, 0.3, or 0.6) with the regression coefficient and added the model 

intercept. This step was repeated for each timepoint.  
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Supplementary Tables 

Supplementary Table 1. Quantification of Model Performance 

Model performance was quantified and evaluated using BIC. The best-fitting model with the 

lowest BIC value for both species incorporated a single alpha learning rate and forget parameters 

(oaf). o=one; t=two; a=alpha; f=forget; du=double update; b=bias. 

 Humans Rats 

Model BIC ∆ BIC 
Relative 

Likelihood BIC ∆ BIC 
Relative 

Likelihood 
oaf 239.963 0 1 341.830 0 1 
tadu 240.117 0.154 0.92589 344.949 3.119 0.210241 
oa 242.149 2.186 0.335209 345.204 3.374 0.185074 
taf 243.634 3.671 0.159534 346.296 4.466 0.107206 
oabf 244.164 4.201 0.122395 349.840 8.010 0.018224 
oab 244.515 4.552 0.102694 351.546 9.716 0.007766 
ta 244.852 4.889 0.08677 352.845 11.015 0.004056 
oadu 246.246 6.283 0.043218 354.768 12.938 0.001551 
tab 247.628 7.665 0.021655 355.848 14.018 0.000904 
tabf 247.810 7.847 0.019772 357.235 15.405 0.000452 
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Supplementary Table 2. Effect of modafinil on PRL performance 

In humans, modafinil treatment had no significant effect on the number of completed reversals, 

or win-stay or lose-shift responses for either response. By contrast, there was a significant dose 

on the number of completed reversals when rats were administered modafinil [F(5,45)=3.17, 

p<0.05], which was due to a reduction when administered 64 mg/kg (p<0.05). Similarly, a dose 

effect was evident when target win-stay responding was analyzed [F(5,45)=3.05, p<0.05] that was 

also driven by a reduction in the highest treatment group (p<0.05). Modafinil treatment had no 

significant effect on the remaining PRL measures.  

 
 Humans 

Dose 
Completed 
Reversals TWS NTWS TLS NTLS 

Placebo 4.01 + 0.30 0.88 + 0.01 0.82 + 0.04 0.58 + 0.04 0.67 + 0.03 

Low 4.40 + 0.39 0.87 + 0.01 0.84 + 0.04 0.55 + 0.04 0.67 + 0.03 

High 4.39 + 0.30 0.88 + 0.01 0.85 + 0.03 0.52 + 0.04 0.66 + 0.03 

 Rats 
Vehicle 3.19 + 0.28 0.78 + 0.02 0.76 + 0.04 0.44 + 0.03 0.53 + 0.03 

4 mg/kg 3.35 + 0.31 0.81 + 0.01 0.80 + 0.04 0.43 + 0.02 0.51 + 0.03 

8 mg/kg 3.27 + 0.39 0.78 + 0.02 0.73 + 0.03 0.47 + 0.03 0.54 + 0.02 

16 mg/kg 2.64 + 0.37 0.76 + 0.03 0.79 + 0.04 0.43 + 0.06 0.51 + 0.04 

32 mg/kg 2.93 + 0.41 0.73 + 0.03 0.80 + 0.03 0.49 + 0.05 0.46 + 0.04 

64 mg/kg 1.76 + 0.27  0.67 + 0.05 0.76 + 0.05 0.50 + 0.06 0.46 + 0.06 

 
Note: NTLS = Non-Target Lose Shift; NTWS = Non-Target Win-Stay; TLS = Target Lose-Shift; 

TWS = Target Win-Stay  
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Supplementary Figures 

Supplementary Figure 1. Cross-species PRL Task Design 

The human (A) and rat (B) versions of the PRL task were designed to be procedurally similar. 

During each trial, two stimuli were presented simultaneously and subjects used a keyboard 

(humans) or levers (rats) to select one of the stimuli. One stimulus was randomly selected to be 

the target at the beginning of each test session. Selection of the target was rewarded with 80% 

probability, whereas selection of the non-target stimulus was rewarded with 20% probability. After 

each response, a high or low frequency tone signaled the subsequent presentation or omission 

of a reward (counterbalanced). When the target was selected on 8 consecutive trials, the 

reinforcement contingencies reversed such that the other stimulus became the target. Each test 

session lasted 300 trials for both species, and the total number of reversals and other measures 

(e.g., target win-stay and lose-shift probabilities) were recorded. 
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Supplementary Figure 2. Simulated vs. Actual PRL Behavioral Data 

To confirm the validity of the selected Q-learning model we first performed a posterior predictive 

check by simulating PRL performance (n = 30) using the parameter values obtained from fitting 

the model to behavior. There was a close correspondence between the actual and simulated PRL 

performance for the number of completed reversals (A), target win-stay (B), and target lose-shift 

responses (C). Additionally, we ensured that the three model parameters of the chosen model 

(alpha, beta, forget parameters) were accurately estimated. We simulated PRL performance using 

known values for each parameter and then fitted the Q-learning model to the simulated PRL data. 

A positive correlation for each of the three model parameters was evident between the simulated 

and fitted values (D – F), indicating that the parameters were recoverable and accurately 

estimated. 
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Supplemental Figure 3. Q and PE Values During PRL Task Performance 

Representative Q and PE values are displayed across a test session for humans (A) and rats (B). 

Blue and orange lines represent Q and PE values, respectively, across trials. The dots above and 

below Q and PE values represent responses on the left/right apertures. The dotted lines represent 

periods during which the response criterion is achieved and a reversal is recorded. Trial number 

is indicated along the x-axis. Across an entire test session, Q values were significantly greater for 

target vs. non-target stimuli in both humans (n = 54) and rats (n = 11) (C). 
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Supplemental Figure 4. Q-learning Model Parameter Association with Reversals 

Alpha (A, B) and forget (C, D) parameters were correlated with number of reversals per 100 trials 

in both humans (n = 54) and rats (n = 11) using simple linear regression. None of these model 

parameters were significantly associated with reversals in either species (all r values < 0.55; all p 

values > 0.05). 
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Supplemental Figure 5. Relationship between neural activity and the outcome and 

expected value components of the PE 

The regression model presented in Figure 3 of the main text revealed a positive relationship 

between neural activity and reward PEs. However, the sign of reward PEs is dependent on the 

outcome received. Therefore, to confirm that this relationship was due to prediction error signaling 

and not simply due to the outcome valence, it was important to disentangle this potential 

collinearity by performing a secondary regression analysis that included outcome and expected 

value (i.e., the two sub-components of a reward prediction error) as model predictors. As 

expected, a positive regression coefficient was evident in humans (A) and rodents (B) for the 

response outcome (blue line) and a negative relationship was evident for expected value (red 

line). Importantly, this divergence coincided with the timepoint in the first model where reward PEs 

was positively associated with neural activity. Thus, this relationship is likely due to an association 

with prediction error signaling and not simply due to outcome valence. 
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Supplemental Figure 6. Feedback locked ERP (human) and LFP (rodent) waveforms for each administered dose of modafinil 

Human (n = 30) and rodent (n = 11) subjects each completed the PRL task after being administered different doses of modafinil and 

EEG data were captured throughout these sessions. Human participants were administered 100 mg (A) and 200 mg (B) doses, while 

rodents were administered weight-based doses of 4mg (C), 8mg (D), 16 mg (E), 32 mg (F), and 64 mg (G) per kilogram of body weight. 

All plots present the evoked neural activity following the delivery of feedback for the various trial types of the task (rewarded target = 

blue solid line; nonrewarded target = red solid line; rewarded non-target = blue dotted line; non-rewarded non-target = red dotted line) 

and expectancy-based difference waveforms (Expected = Rewarded Target – Non-rewarded Non-Target, and Unexpected = Rewarded 

Non-Target – Non-rewarded Target) and identify a Reward Positivity (RewP) or RewP-like signal in humans and rats, respectively.  
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