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ABSTRACT
The Probabilistic Reward Task (PRT) is widely used to investigate the impact of Major 
Depressive Disorder (MDD) on reinforcement learning (RL), and recent studies have used it 
to provide insight into decision-making mechanisms affected by MDD. The current project 
used PRT data from unmedicated, treatment-seeking adults with MDD to extend these 
efforts by: (1) providing a more detailed analysis of standard PRT metrics—response bias 
and discriminability—to better understand how the task is performed; (2) analyzing the 
data with two computational models and providing psychometric analyses of both; and 
(3) determining whether response bias, discriminability, or model parameters predicted 
responses to treatment with placebo or the atypical antidepressant bupropion. Analysis 
of standard metrics replicated recent work by demonstrating a dependency between 
response bias and response time (RT), and by showing that reward totals in the PRT 
are governed by discriminability. Behavior was well-captured by the Hierarchical Drift 
Diffusion Model (HDDM), which models decision-making processes; the HDDM showed 
excellent internal consistency and acceptable retest reliability. A separate “belief” model 
reproduced the evolution of response bias over time better than the HDDM, but its 
psychometric properties were weaker. Finally, the predictive utility of the PRT was limited 
by small samples; nevertheless, depressed adults who responded to bupropion showed 
larger pre-treatment starting point biases in the HDDM than non-responders, indicating 
greater sensitivity to the PRT’s asymmetric reinforcement contingencies. Together, these 
findings enhance our understanding of reward and decision-making mechanisms that 
are implicated in MDD and probed by the PRT.
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Research on the impact of depression on reward processing and reinforcement learning (RL) has 
flourished (Brown et al., 2021; Dombrovski et al., 2019; Proudfit, 2015) with the development 
of reward tasks that are sensitive to depressive illness (Halahakoon et al., 2020), improved 
understanding of brain reward systems (Haber & Knutson, 2010), and increased use of 
computational models (Gershman et al., 2015; Huys et al., 2016; Jaskir & Frank, 2023). The current 
study addresses three topics important to the continued success of this work: the complexity of 
behavior, psychometrics, and the predictive power of reward paradigms. We investigated these 
topics using the probabilistic reward task (PRT; Pizzagalli et al., 2005). The PRT is commonly used to 
assess RL in depression, but recent data show that it can also provide insight into decision-making 
(Dillon et al., 2022; Grange, 2022; Lawlor et al., 2020).

BEHAVIORAL COMPLEXITY
Behavior in RL tasks can be surprisingly complex. In the PRT (Figure 1A), which is rooted in the 
signal detection framework (Macmillan & Creelman, 2004), participants must distinguish between 
two stimuli (schematic mouths) of similar length, and correct identifications of one (rich) stimulus 
are rewarded three times more often than correct identifications of the other (lean) stimulus. 
Consequently, participants typically develop a response bias: they respond “rich” more than “lean” 
(note: we use quotes when referring to “rich” and “lean” responses, but omit them when referring 
to rich and lean stimuli). Weak response bias may be a marker of anhedonia (Pizzagalli et al., 
2005) and many data are consistent with this proposal (Liu et al., 2016; Pizzagalli et al., 2008b,c; 
Vrieze et al., 2013). Moreover, research has probed neural mechanisms that support response 
biases (Iturra-Mena et al., 2023; Pizzagalli et al., 2008a; Santesso et al., 2008). This body of work 
is sufficiently extensive that the PRT appears in the NIH RDoC Matrix as a validated test of reward 
learning. Nevertheless, in a recent study comparing unmedicated adults with Major Depressive 
Disorder (MDD) to healthy controls, we identified two aspects of PRT performance that were 
previously unrecognized (Lawlor et al., 2020).
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Figure 1 The (A) Probabilistic 
Reward Task (PRT) and (B) Drift 
Diffusion Model.

Note. (A) PRT trial stucture. 
(B) Blue and red lines show 
the drift process reaching 
the rich and lean boundaries, 
respectively. The HDDM, as 
setup in this study, returns 
one average drift rate per 
participant.
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First, we found that the response bias effect was not uniform: it was strong when response 
times (RTs) were fast (≤ 0.3 quantile), but weaker when RTs were slower. This indicates that the 
mechanism(s) underlying response bias likely involve preparation of fast motor actions rather than, 
for example, sustained stimulus evaluation (White & Poldrack, 2014). Second, reward totals were 
better predicted by discriminability than by response bias. In other words, the participants who 
earned the most rewards were those who responded most accurately, not those who developed 
the strongest tendency to respond “rich”. Given the emphasis on response bias in the PRT literature, 
this finding was striking. Moreover, it had a consequence: although no group difference in response 
bias emerged, controls earned significantly more rewards than depressed adults due to better 
discriminability. This indicates that weak response bias may not necessarily indicate anhedonia: 
by responding accurately, a participant with excellent discriminability could form no response bias 
and yet harvest more rewards, more quickly, than a participant with a stronger response bias but 
poorer discriminability. We replicated these results in a study of social anxiety disorder (SAD; Dillon 
et al., 2022), although here the socially anxious adults showed better discriminability (and earned 
more rewards) than healthy controls, especially after gaze training (Lazarov et al., 2017) for their 
anxiety. In the current study, we attempted to replicate our findings in a new depressed sample.

MODELS AND PSYCHOMETRICS
The results just described suggest that there are multiple ways to model the PRT, with implications 
for how to conceptualize task performance and MDD pathophysiology. Past research (Huys et 
al., 2013) successfully accounted for PRT data using an RL model, called the “belief” model, that 
envisions participants updating the estimated value of the rich and lean stimuli by computing 
trial-level prediction errors (PEs). This is sensible given the emphasis on rewards in the PRT, strong 
relationships between PEs and dopamine (Schultz, 1998), and the long-standing hypothesis that 
depression involves dopamine dysfunction (Dunlop & Nemeroff, 2007; Nestler & Carlezon, 2006; 
Treadway & Zald, 2011). The belief model has parameters for reward sensitivity and learning 
rate, two important contributors to RL, and a meta-analysis found relationships between MDD, 
anhedonia, and reward responsivity (Huys et al., 2013). In short, focusing on RL has been productive.

In the PRT, however, the reward probabilities for correctly identifying the rich and lean stimuli are fixed 
and reward magnitude does not change. Consequently, trial-level value updates may not be critical. 
Furthermore, the reward probability gap across the response options is so large that precise value 
estimates may not be necessary—a simple policy (press “rich”) based on rough approximations may 
suffice (Jaskir & Frank, 2023). Finally, participants are asked to make a difficult perceptual decision 
on each trial. This is unusual in the RL space, but tasks with similar attributes have been successfully 
analyzed with sequential sampling models, including the drift diffusion model (DDM; Ratcliff, 1978; 
Ratcliff & McKoon, 2008), for decades (Newsome et al., 1989; Platt & Glimcher, 1999; Sugrue et al., 
2004). Inspired by these examples, in our prior study of MDD (Lawlor et al., 2020) we analyzed the 
PRT data with the Hierarchical Drift Diffusion Model (HDDM; Wiecki et al., 2013).

The DDM conceptualizes decision-making as a process of evidence accumulation to thresholds 
(Figure 1B). When fit to the data in Lawlor et al. (2020), it captured the novel results mentioned 
earlier. Specifically, the DDM modeled the dependency between response bias and RT by moving the 
starting point of the diffusion process closer to the rich boundary, such that relatively little evidence 
needed to accumulate to elicit a “rich” response. Poorer discriminability in the MDD group was 
accounted for by reducing the drift rate, which captures the speed of evidence accumulation. Drift 
rate strongly predicted discriminability, supporting the conclusion that slow drift rate in MDD led to 
poor discriminability, which led to low reward totals. In short, the DDM—although not designed to 
address RL—provided an excellent account of the data. The relationships among these parameters 
replicated in our study of SAD (Dillon et al., 2022). Attempting to replicate these relationships again, 
and to confirm that drift rate is slow in adults with MDD, were aims of the current analysis.

Therefore, we fit our data with the HDDM and the RL models in Huys et al (2013), including the belief 
model. We used simulations to assess each model’s ability to capture behavior, and we investigated 
two psychometric properties: internal consistency and retest reliability. Internal consistency indexes 
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a variable’s within-session stability and serves as a floor for the strength of all other relationships—a 
measure cannot be more strongly related to another measure than it is to itself (Infantolino et al., 
2018; Luking et al., 2017). We also assessed retest reliability. In this study, data were collected twice 
about three weeks apart (but see below for the limitation of an intervening manipulation), allowing 
us to examine the reproducibility of parameter estimates. In our prior work (Dillon et al., 2022; 
Lawlor et al., 2020), HDDM parameters estimated from PRT data showed good to excellent internal 
consistency. Our data in SAD (Dillon et al., 2022), and larger datasets from different tasks (Lerche 
& Voss, 2017; Schubert et al., 2016; Yap et al., 2012), also indicate that the retest reliability of DDM 
parameters is adequate to good. By contrast, the psychometrics of the belief model have not been 
studied. Examining psychometrics is important for precision medicine: measures with high internal 
consistency are needed to predict outcomes for individuals. As described next, predicting treatment 
responses was the goal of the larger study for which the current data were collected.

PREDICTING PLACEBO RESPONSES
The data described here come from a project examining whether reward tasks can predict 
placebo responses. Such predictions could facilitate placebo responding in clinical settings (to reap 
therapeutic benefits) while removing placebo responders from drug trials (to more easily detect 
drug effects). The primary hypothesis was that individuals with better reward system function 
would be more likely to show placebo responses (Brown & Peciña, 2019; Peciña et al., 2021).

To test this account, adults with MDD completed a positron emission tomography (PET)/magnetic 
resonance imaging (MRI) scan to assess mesolimbic dopaminergic reward system activity before 
beginning a clinical trial in which they were initially randomized to placebo or to the atypical 
antidepressant bupropion, which is a dopamine/norepinephrine reuptake inhibitor (Learned-
Coughlin et al., 2003); most participants who received placebo and did not respond were switched 
to bupropion (see Methods for details; see Figure S1 for a summary). About three weeks later, 
participants completed the tasks a second time. Details of the trial and the PET/MRI data will be 
presented elsewhere. Here we focus on PRT data, collected from a subset of participants after 
the PET/MRI scans. We used the data to address two questions. First, do pre-treatment model 
parameters or standard PRT metrics (response bias, discriminability) predict placebo responses? 
Second, do pre-treatment scores on these variables predict responses to bupropion in placebo 
non-responders? As detailed below, low statistical power limited our ability to answer these 
questions. Nonetheless, the data may provide leads for future investigations.

SUMMARY
This PRT analysis had four aims: (a) replicate the dependency between response bias and RT, and 
the finding that reward totals are better predicted by discriminability vs. response bias; (b) fit the 
data with the HDDM and the belief model, with the expectation that these models will provide 
insight into mechanisms underlying discriminability and response bias, and will uncover slow drift 
rates in this depressed sample; (c) examine internal consistency and retest reliability of model 
parameters; and (d) determine whether response bias, discriminability, or any model parameter 
can predict responses to placebo or responses to bupropion in placebo non-responders.

METHODS
Data and code are available at the Open Science Framework (OSF) at https://osf.io/347rm. The 
study was not pre-registered.

PARTICIPANTS AND PROTOCOL

This research was performed following a protocol approved by the Mass General Brigham 
Institutional Review Board (“Neurobiological underpinnings of placebo response in depression”, 
#2014P000889), and written informed consent was obtained. Prospective participants were 

https://osf.io/347rm
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recruited by the Depression and Clinical Research Program at Massachusetts General Hospital 
(MGH). Inclusion criteria included: (a) meeting Diagnostic and Statistical Manual IV (DSM-IV; 
First et al., 2002) criteria for MDD; (b) 18–45 years old; (c) score of 17 or greater on the Hamilton 
Depression Rating Scale-31 (HAMD-31; Williams et al., 1988); (d) continuing to meet criteria for 
current MDD and Clinical Global Impression (CGI; Guy, 1976) improvement scores ≤ 3 in the interval 
between the screen and Session 1 visit; and (e) no failed antidepressant trials of adequate dose 
and duration, as defined by the MGH Antidepressant Treatment History Questionnaire (ATHQ; 
Chandler et al., 2010). Exclusion criteria minimized comorbidity and eliminated risks associated 
with neuroimaging; see the Supplement for details.

Eligible individuals were enrolled in a clinical trial. The trial and clinical data will be detailed 
elsewhere; because the current manuscript is focused on the PRT, a summary is given. Briefly, the 
trial used a sequential parallel comparison design (Fava et al., 2003) to increase the number of 
placebo responders. Participants were randomized to placebo or 300 mg bupropion in a 7:1 ratio 
(87.5% placebo, 12.5% bupropion) and were told that bupropion is a “fast-acting antidepressant” 
because expectations of success can drive placebo responses (Zubieta & Stohler, 2009) and affect 
reward circuitry (Lidstone et al., 2010). After four weeks, participants randomized to bupropion 
stayed on bupropion, whereas placebo responders and non-responders were re-randomized to 
placebo or bupropion in a 1:7 ratio (12.5% placebo vs. 87.5% bupropion, computed separately for 
placebo responders and non-responders). Depression was assessed throughout with the HAMD-
31. Responder status was assessed four weeks post-baseline and defined as a 50% or greater 
reduction in HAMD-31 score; drop outs were considered non-responders.

PRT data were collected before randomization and again three weeks later; these timepoints are 
referred to as Sessions 1 and 2. Because placebo responses often develop in about two weeks 
(Posternak & Zimmerman, 2005; Quitkin et al., 1991), scheduling Session 2 three weeks after 
Session 1 should assess those responses. Note that while treatment continued after Session 2, we 
call this session “post-treatment” because it occurred after randomization.

PRT

PRT methods followed prior reports (Pizzagalli et al., 2005). Participants sat at a PC with their index 
fingers on the “v” and “m” keys of a keyboard and completed three blocks of 100 trials. As shown 
in Figure 1A, trials began with presentation of a schematic face (500 ms) onto which a “short” 
(11.5 mm) or “long” (13.0 mm) mouth was flashed (100 ms). The task was to indicate, as quickly 
as possible, which length was shown. Most trials yielded no feedback, but 20 cent rewards were 
delivered three times more often for correct identifications of one mouth (the rich stimulus, up 
to 30 rewards) vs. the other (the lean stimulus, up to 10 rewards). Assignment of lengths to rich/
lean conditions was counterbalanced across participants, and the keys used for “rich” vs. “lean” 
responses were counterbalanced across sessions. Participants were paid $15.80 or $16.20.

QUALITY CONTROL

A prior quality control assessments were used to exclude poor quality datasets; these and all 
subsequent analyses were conducted using Python in Jupyter notebooks (Kluyver et al., 2016). 
Outliers were defined as trials with raw RTs faster than 150 ms or slower than 2,500 ms, or where 
the ln(RT) exceeded the participant’s mean ln(RT) ± 3S.D., computed separately for rich vs. lean 
trials. Blocks were QC failures if there were: fewer than 80 non-outlier trials; a rich/lean reward ratio 
< 2.0; fewer than 20 rewarded rich trials; or fewer than 6 rewarded lean trials. If any blocks was 
marked as a QC failure, the dataset was excluded.

SIGNAL DETECTION ANALYSES

Response bias and discriminability were computed by counting the number of correct/incorrect 
rich and lean responses per block and entering them in these formulas (Pizzagalli et al., 2005):

10
* 0.5 ( )*
*

correct incorrect

correctincorrect

rich lean
responsebias log

rich lean
=
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10
*0.5 ( )*
*

correct correct

incorrect incorrect

rich lean
discriminability log

rich lean
=

Counts were initialized at 0.5 to avoid division by zero (Hautus, 1995).

RELATIONSHIPS AMONG BEHAVIORAL VARIABLES

We studied relationships among PRT variables to better understand how the task is performed, to 
identify regularities that might be captured by the models, and to replicate prior findings (Dillon 
et al., 2022; Lawlor et al., 2020). First, quantile-probability plots were used to examine the RT 
distribution. Based on earlier work, we expected a strong right skew in our depressed sample. In 
other words, we anticipated that many trials would be characterized by slow RTs, leading to a long 
right tail when the RT distribution is plotted horizontally. This is important because the shape of 
the RT distribution yields predictions for the HDDM: a strongly right-skewed distribution is often 
well-fit by a slow drift-rate (Ratcliff, 1978). Second, the quantile-probability plots were used to 
determine whether the rich > lean accuracy effect, which captures response bias, varied by RT. We 
expected the rich > lean accuracy difference to be larger for faster vs. slower RTs. Finally, we again 
expected reward totals to be more strongly related to discriminability than response bias, because 
accurate responding allows participants to efficiently collect rewards on rich and lean trials.

HDDM

We fit the HDDM (version 0.7.5) to trial-level choice and accuracy data, separately by session. 
We retained the default priors (Wiecki et al., 2013) and modeled the data using the HDDM’s 
StimulusCoding tool. The model was the same as in prior studies (Dillon et al., 2022; Lawlor et al., 
2020):

m = hddm.StimCoding(data, include = ‘z’, stim_col = ‘stim’, split_param = ‘v’)

This approach estimates the starting point bias (z) and returns an absolute value for drift rate (v), 
which is coded –v and +v for trials in which the lower (0 = “lean” response) vs. upper (1 = “rich” 
response) boundary is reached.

Models were estimated by drawing three chains of 2,500 samples from the posterior (burn-in: 
500 samples). Chains were concatenated and convergence was assessed by inspecting posterior 
distributions and by checking that the maximum R̂ did not exceed 1.1 (Gelman & Rubin, 1992) 
(max R̂: Session 1 = 1.003; Session 2 = 1.016). Next, the HDDM’s post_pred_gen tool was used 
to generate 500 simulated datasets per participant, and post_pred_stats was used to check if 
simulated accuracy and RT matched the observed data.

Relationship with standard metrics

To facilitate interpretation, we regressed each participant’s (across-block) mean response bias and 
discriminability against the HDDM parameters. We expected response bias to be most strongly 
related to starting point bias and discriminability to be most strongly related to drift rate and 
threshold (because response accuracy is facilitated by rapid evidence accumulation and wide 
boundaries, which maximize the likelihood of the drift process reaching the correct boundary).

RLDDM

The data were also fit with the Reinforcement Learning Drift Diffusion Model (RLDDM; Pedersen & 
Frank, 2020). Briefly, the RLDDM uses trial-level PEs to assign values to (stimulus, action) pairs—
e.g., “rich” responses to rich stimuli—in a Q-learning framework, but it uses the DDM (rather than 
the softmax function) as the choice rule: here, drift rate is scaled on each trial by the difference in 
Q-values for the two response options. It was unclear if the combination of RL plus the DDM would 
improve on the HDDM fits. To investigate this, we used Deviance Information Criterion (DIC) values 
and posterior predictive checks to compare RLDDM vs. HDDM fits.
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RL MODELS

The data were next fit with RL models successfully used in prior PRT research (Huys et al., 2013; code 
for all models at https://github.com/mpc-ucl/emfit). Group priors were computed via expectation-
maximization (Do and Batzoglou, 2008) and Laplace approximation of posterior distributions 
was used to compute subject-specific parameters. To compare model fit, integrated group-level 
Bayesian Information Criterion (iBIC) was used. Consistent with prior findings (Huys et al., 2013), 
the most parsimonious account of the data was provided by the belief model, so for brevity we 
do not discuss the other RL models. The belief model postulates that rewards serve to inform 
two uncertainty-weighted stimulus-action associations (since participants may be unsure about 
which stimulus was presented in a given trial). The model has five parameters: reward sensitivity, 
learning rate, belief, instruction sensitivity, and initial action bias.

A detailed treatment of the belief model is in Huys et al. (2013), but here we provide an 
overview. Briefly, this is a Q-learning model in which prediction errors (PEs)—the discrepancy 
between expected and actual rewards (0 = no reward, 1 = reward)—serve to update Q-value 
estimates for each action/stimulus pair (e.g., responding “rich” to the rich stimulus). Reward 
sensitivity scales reward impact: when it is larger, rewards have greater impact, and when it is 
smaller they are devalued. This allows for the possibility that rewards are “liked” more or less by 
different participants. Learning rate is also a scaling factor—it controls the speed with which PEs 
affect Q-values. When learning rate is higher, Q-values change more rapidly from trial-to-trial, 
whereas when it is lower, the Q-values change more gradually. In the belief model, participants 
estimate four Q-values, one each for the 2 StimulusType × 2 ResponseType design. The similarity 
of stimuli, however, makes it hard for participants to know which stimulus was shown on any 
trial. The belief parameter captures this uncertainty. Instruction sensitivity tracks accuracy: it 
covaries with participants’ ability to correctly identify the rich vs. lean stimulus. Finally, action bias 
corresponds to a preference for one of the two responses. To avoid non-Gaussianity, parameters 
were transformed. To conduct posterior predictive checks, we used the best-fitting parameters to 
simulate 500 datasets per particpant, as done with the HDDM.

Relationship with standard metrics

We regressed response bias and discriminability against the belief model’s five parameters.

PSYCHOMETRICS

To examine internal consistency, the data were split into odd and even trials and submitted to 
signal detection, HDDM, and belief model analyses. The belief model involves value updates driven 
by PEs on sequential trials, which might make this approach suboptimal. Therefore, we also split 
each participant’s data in half and examined the consistency of analyses conducted on each half. 
The Spearman-Brown (SB) formula (Brown, 1910; Spearman, 1910) was calculated to measure 
internal consistency:

2*
1

r
SB

r
=

+

Here, r is the Pearson correlation coefficient for odd vs. even trials, or for the first vs. second half 
of trials.

To examine test-retest reliability, Pearson correlations comparing Sessions 1 and 2 were computed 
for mean (across-block) response bias and discriminability values, and for all model parameters; 
the mean ± SD days between sessions was 24 ± 5. Recall that all participants received either 
placebo or bupropion between Sessions 1 and 2. Consequently, estimates of test-retest reliability 
should be interpreted cautiously as they may be affected by treatment.

PREDICTING RESPONSES TO PLACEBO AND BUPROPION

To examine whether pre-treatment PRT data could predict placebo responses, we ran a 2 
(PlaceboResponder: yes, no) × 3 (Block) ANOVA on Session 1 response bias and discriminability. 
These ANOVAs were repeated using Session 2 PRT data; here the expectation was that Session 2 

https://github.com/mpc-ucl/emfit
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response bias would be higher in placebo responders vs. non-responders. Next, the HDDM Session 
1 and 2 analyses were re-run, this time allowing all parameters to vary by placebo response 
status. For the belief model, all five parameters were submitted to between-group t-tests (placebo 
responder vs. non-responder) for Sessions 1 and 2.

Finally, we identified placebo non-responders re-randomized to bupropion. Session 1 and 2 data 
from these participants were analyzed in 2 (BupropionResponder: yes, no) × 3 (Block) ANOVAs on 
response bias and discriminability. The HDDM was re-estimated allowing all parameters to vary as 
a function of bupropion response status, and between-groups t-tests (bupropion responders vs. 
non-responders) were computed for all belief model parameters.

STATISTICS

Statistical tests include linear regressions, ANOVAs, pairwise comparisons, and t-tests conducted 
in R, version 4.0.5 “Shake and Throw” (R Core Team, 2023). Packages included afex for ANOVAs 
(Singmann et al., 2016), emmeans for pairwise comparisons (Lenth et al., 2020), and cocor for 
comparing correlations (Diedenhofen & Musch, 2015).

RESULTS
SAMPLE CHARACTERISTICS AND RESPONDER STATUS

Session 1 data were collected from 59 participants;10 QC failures were discarded, leaving 49 
datasets. Session 2 data were collected from 57 participants; 13 QC failures were discarded, 
leaving 44 datasets. The two most common problems were losing too many trials to outlier RTs 
(30% of failures in Session 1, 22% in Session 2) and having too few usable rich trials in which a 
reward was delivered (33% of failures in Session 1, 41% in Session 2). The elevated rate of QC 
failures may reflect fatigue as the PRT was completed after the PET/fMRI session.

The samples were predominantly White and not Hispanic or Latino, with a roughly equal mix of 
males and females and a mean education level equivalent to some years of college (see Table 
S1). Due to scheduling issues, 34 participants provided usable data from Sessions 1 and 2. 
Consequently, we provide pre- and post-treatment HAMD scores separately for Session 1 and 2, 
since these two samples were not entirely overlapping.

Of 49 Session 1 participants, 43 were randomized to placebo: 11 responded, 32 did not. There was 
no difference in baseline HAMD (mean ± S.D., responders: 29.82 ± 6.08; non-responders: 32.41 
± 6.84), but four weeks later scores were lower in responders (10.45 ± 4.99) vs. non-responders 
(26.30 ± 7.03), t(39) = 6.84, p < 0.001. The remaining 6 participants were randomized to bupropion: 
3 responded, 3 did not. HAMD scores were similar at baseline (responders: 26.67 ± 10.02; non-
responders: 40.67 ± 6.66), but differed four weeks later (responders: 7.00 ± 7.94; non-responders: 
37.33 ± 10.21); no test conducted given small samples.

Of the 44 Session 2 participants, 40 had been randomized to placebo: there were 14 responders vs. 
26 non-responders (note: there were more placebo responders at Session 2 vs. 1 because not all 
responders completed the Session 1 PRT, and due to Session 1 QC failures). There was no difference 
in baseline HAMD scores for placebo responders (29.07 ± 7.60) vs. non-responders (31.19 ± 6.71), 
but after four weeks scores were lower in responders (10.29 ± 5.43) vs. non-responders (26.35 
± 6.89), t(38) = 7.54, p < 0.001. The remaining four participants were randomized to bupropion; 
three responded. In this small group, baseline HAMD scores were similar (responders: 26.00 ± 9.00; 
non-responder: 33) but four weeks later scores were lower in responders (6.00 ± 6.24); the non-
responder’s score (33) did not change.

Finally, Session 1 data were collected from 26 placebo non-responders who were re-randomized 
to bupropion and subsequently classified as responders (n = 12) or non-responders (n = 14). HAMD 
scores did not differ at baseline (responders: 30.25 ± 6.37; non-responders: 34.14 ± 6.59), but 
they differed at the final clinical session (4 weeks after Session 2: responders: 9.67 ± 4.58; non-
responders: 25.82 ± 7.64; t(21) = 6.21, p < 0.001). Session 2 data were collected from 23 placebo 
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non-responders who were re-randomized to bupropion and subsequently classified as responders 
(n = 8) or non-responders (n = 15). Baseline HAMD scores did not differ (responders: 30.25 ± 6.50; 
non-responders: 31.53 ± 7.38), but HAMD scores were lower in responders (9.88 ± 3.18) vs. non-
responders (25.54 ± 7.42) at the final sesssion t(19) = 5.62, p < 0.001.

SIGNAL DETECTION ANALYSES

Signal detection analyses were initially conducted for all participants with usable data, regardless 
of randomization to placebo vs. bupropion or responder status. Detailed results are in Table S2. In 
summary, a response bias was observed in both sessions. In Session 1, regressing response bias on 
Block revealed larger values in block 3 vs. 1 (coefficient = 0.08, SE = 0.04, t-value = 2.15, p = 0.033), 
providing evidence of learning. In Session 2, a similar regression revealed no differences between 
blocks (ps > 0.15), but one-sample t-tests confirmed that response bias was above zero in every 
block (ts > 4.65, ps < 0.001, Cohen’s d values > 0.69). Linear regressions of discriminability on Block 
did not yield any significant effects in Session 1 or 2 (ps > 0.09), but all values were well above 
zero. Internal consistency, assessed by comparing odd vs. even trials, was high for response bias 
(Session 1: SB = 0.85; Session 2: SB = 0.84) and discriminability (Session 1: SB = 0.88; Session 2: SB = 
0.91). Retest reliability was modest but significant for response bias (r = 0.59) and discriminability 
(r = 0.49), ps < 0.004.

RELATIONSHIPS AMONG BEHAVIORAL VARIABLES

Figures 2 A and 2B show quantile probability plots. The RT distributions are skewed: the gaps 
between the 99.5th and 90th quantiles, and between the 90th and 70th quantiles, are larger than the 
gaps between lower quantiles. The plots also show that the rich > lean accuracy effect is larger for 
faster RTs: the horizontal distance between the rightmost circles and crosses, which captures the 
difference in proportion correct responses to the rich vs. lean stimuli, is larger for shorter RTs (e.g., 
.10 quantile in blue) vs. longer RTs (e.g., 0.995 quantile in brown).

A. B.

Session 1

0.0 0.80.60.40.2
mean discriminability

34

42

40

38

36

m
ea

n 
re

w
ar

d 
to

ta
l

32
0.0 0.80.60.40.2

mean discriminability

Session 2

34

42

40

38

36

m
ea

n 
re

w
ar

d 
to

ta
l

32

r = 0.60
p < 0.001

r = 0.53
p < 0.001

C. D.

rich
+ lean

Session 1 Session 2

200

500

600

700

800

900

1000

400

300

R
T 

(m
s)

200

500

600

700

800

900

1000

400

300

R
T 

(m
s)

Correct >><< Incorrect

0.0 1.00.80.60.40.2
Response Proportion

Correct >><< Incorrect

0.0 1.00.80.60.40.2
Response Proportion

Figure 2 Quantile Probability 
Plots and Relationship 
Between Reward Totals and 
Discriminability.

Note. Top row shows quantile 
probability plots in (A) Session 1 
and (B) Session 2. RT quantiles 
are color coded: .10 (blue), 

.30 (orange), .50 (green), .70 
(red), .90 (purple), and .995 
(brown). Data for rich and lean 
stimuli are shown in circles and 
crosses, respectively. Bottom 
row shows the relationship 
between mean reward totals 
and discriminability at the block 
level in (C) Session 1 and (D) 
Session 2.



55Dillon et al.  
Computational Psychiatry  
DOI: 10.5334/cpsy.108

For each participant we coded RTs < = 0.3 quantile as fast and all other RTs as slow (Dillon et al., 
2022; Lawlor et al., 2020), and then ran logistic regressions on accuracy with factors Stimulus 
(rich, lean), ResponseSpeed (fast, slow), and their interaction; participants were treated as random 
effects (accuracy ~ stimulus * response_speed + (1|subject)). These models returned strong 
Stimulus × ResponseSpeed interactions (Session 1: coefficient = –1.08, SE = 0.08, Z = –12.95; Session 
2: coefficient = –1.26, SE = 0.09, Z = –14.27). Follow-up analysis showed that while the rich > lean 
accuracy effect is always present, it is stronger for fast RTs (Zs > 18) vs. slow RTs (Zs < 7). Second, 
lean accuracy is lower for fast vs. slow RTs (Zs < –10) but rich accuracy is higher for fast vs. slow 
RTs (Zs > 7). Thus, participants disproportionately respond “rich” when RTs are short, but are more 
even-handed when RTs are long.

Strong positive relationships between reward totals and discriminability emerged in Sessions 1 
(Figure 2C) and 2 (Figure 2D). By contrast, reward totals were not correlated with response bias in 
Session 1 (r = –0.02) or 2 (r = 0.01). Meng tests (Meng et al., 1992) confirmed that reward totals 
were more strongly related to discriminability than response bias in both sessions (Zs > 2.4, ps < 
0.015).

HDDM

Posterior Distributions

Figure 3 shows HDDM posterior distributions. Three findings are noteworthy. First, the starting 
point is biased away from the midline (0.5) and towards the rich boundary (coded 1), consistent 
with a high number of “rich” responses when RT is fast. Second, drift rate is slow. We have applied 
the HDDM to six prior PRT datasets—two MDD samples and two healthy control samples in Lawlor 
et al., 2020; one socially anxious and one healthy control sample in Dillon et al., 2022)—and 
the mean drift rate has always exceeded 1, whereas here it is well below 1. Indeed, while the 
posterior distributions for threshold, starting point, and non-decision time in Figure 3 are all similar 
to those observed in the large (n = 258) MDD sample tested in Lawlor et al. (2020), the drift rates 
are markedly lower here. Third, changes across sessions are modest. We computed the percent 
overlap for Session 1 and 2 posterior distributions, referred to as a q-value, and found less than 5% 
overlap only for non-decision time (q = 0.044).

HDDM: Posterior Distributions by Session
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Posterior Predictive Checks

HDDM parameters were used to simulate 500 datasets, and the observed data—including the 
percentage of “rich” responses and the RT means, SDs, and 0.1/0.3/0.5/0.5/0.9 quantiles—all fell 
within 95% credible intervals based on the simulations, indicating that the HDDM fit well.

To confirm this, we plotted simulated against observed data. Figure 4 shows a close correspondence 
between observed and simulated accuracy and RT in Session 1, whether the data were binned by 
stimulus (Figure 4a, 4b), or response (Figure 4c, 4d). Next we binned the simulated data in 100 trial 
blocks to compute response bias and discriminability. Figure 4e shows that simulated response 
bias underpredicted observed bias in blocks 2 and 3; moreover, the simulated response bias did 
not vary by block, as expected because HDDM parameters were estimated across blocks. The 
correspondence between simulated and observed discriminability was good (Figure 4f). Session 2 
simulations yielded similar results (Supplemental Figure S2).

Relationship with Standard PRT Metrics

Results of regressing mean (across blocks) response bias and discriminability on HDDM parameters 
are in Table S3. Starting point bias was the only reliable predictor of response bias in Sessions 1 and 
2 (ps < 0.001). Discriminability was strongly predicted by drift rate and decision threshold in both 
sessions (ps < 0.001).

Psychometrics

Table 1 shows internal consistency. For the HDDM, Spearman-Brown coefficients exceeded 0.80, 
except for Session 2 starting point bias computed on the first vs. second half of trials (SB = 0.651). 
Average Spearman-Brown coefficents were higher for parameters estimated on odd vs. even trials 
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(Session 1: 0.929; Session 2: 0.927) than first vs. second half of trials (Session 1: 0.865; Session 2: 
0.812). Retest reliability (Pearson r-values) of HDDM parameters is in Table S4 and ranged from 
0.36 (non-decision time) to 0.67 (threshold), all ps < 0.05.

RLDDM

The data were better fit by the HDDM than by the RLDDM. This conclusion is supported by lower 
DIC values in Session 1 (HDDM: 8080.07; RLDDM: 8776.43) and Session 2 (HDDM: 7224.18; RLDDM: 
7799.77), and by posterior predictive checks. We used RLDDM parameters to generate 50 simulated 
datasets and again plotted simulated data alongside observed data. Supplemental Figures S3 and 
S4 show poorer correspondence for the RLDDM vs. HDDM. In particular, the RLDDM underpredicted 
accuracy and discriminability. The RLDDM did capture the across-block increase in response bias. 
However, block 1 simulated response bias was negative in both sessions, which was not seen in 
the actual data, and a quantitative fit between simulated and actual values was not evident until 
block 3.

BELIEF MODEL

Parameter Values

Figure 5 shows belief model parameters. Changes across the sessions were modest, with paired 
t-tests returning no significant differences (ps > 0.41).

PARAMETER ODD/EVEN TRIALS FIRST HALF/SECOND HALF

 HDDM: Session 1

Threshold (a) 0.982 0.890

Non-decision time (t) 0.899 0.866

Drift rate (v) 0.914 0.894

Starting bias (z) 0.919 0.807

 HDDM: Session 2

Threshold (a) 0.982 0.893

Non-decision time (t) 0.966 0.833

Drift rate (v) 0.920 0.873

Starting bias (z) 0.841 0.651

 Belief Model: Session 1

Reward sensitivity –0.079 0.457

Instruction sensitivity 0.883 0.800

Learning rate –0.118 0.325

Belief –0.142 0.555

Initial bias –0.090 0.594

 Belief Model: Session 2

Reward sensitivity 0.010 0.557

Instruction sensitivity 0.856 0.757

Learning rate 0.010 0.396

Belief 0.380 0.717

Initial bias 0.084 0.609

Table 1 Internal Consistency of 
the HDDM and the Belief Model.

Note. Values are Spearman-
Brown coefficients, computed 
by comparing parameter 
estimates computed for odd vs. 
even trials (“Odd/even trials”), 
or for the first vs. second half 
of the task (“First half/second 
half”), separately by session for 
the HDDM and Belief models.
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Relationship with Standard PRT Metrics

Results of regressing mean (across blocks) response bias and discriminability on belief model 
parameters are in Table S5. Session 1 response bias was significantly predicted by all model 
parameters but initial bias; Session 2 response bias was predicted by reward sensitivity and 
learning rate (ps < 0.001). Discriminability was predicted by instruction sensitivity and belief in 
both sessions (ps < 0.001), and was negatively predicted by learning rate in Session 2 (p = 0.040).

Posterior Predictive Checks

Figure 6 shows actual vs. simulated Session 1 data for the belief model; because this model does 
not account for RT, only choice results are shown. The model captures the increase in response bias 
over the blocks, and higher accuracy for the rich vs. lean stimulus. However, it does not reproduce 
higher accuracy for “lean” vs. “rich” responses, accuracy is generally too low in the simulated data, 
and the model sharply underpredicts discriminability. Results for Session 2 are similar (Figure S5).

Psychometrics

Table 1 shows that Spearman-Brown coefficients for belief model parameters ranged from –0.142 
to 0.883; the average coefficent was higher for parameters estimated using the first vs. second 
half of trials (Session 1: 0.546; Session 2: 0.607) than for odd vs. even trials (Session 1: 0.091; 
Session 2: 0.268). The mean ± SD Spearman-Brown value, averaged across parameters, sessions, 
and both methods for splitting up the data, was lower for the belief model (0.378 ± 0.346) vs. the 
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HDDM (0.883 ± 0.077). Retest reliability (Pearson r-values) for belief model parameters is in Table 
S4; values ranged from –0.46 (initial bias) to 0.33 (instruction sensitivity), with only the initial bias 
value being significant.

PREDICTION OF RESPONSES TO PLACEBO AND BUPROPION

ANOVAs comparing response bias and discriminability in placebo responders vs. non-responders 
yielded no significant effects in either session (ps > 0.09). Similar results emerged for the HDDM: 
across Sessions 1 and 2, the posterior distributions for placebo responders vs. non-responders 
always showed extensive overlap (q-values > 0.18). The belief model returned no significant 
effects in Session 2. However, in Session 1 eventual placebo responders showed lower reward 
sensitivity (responders: 0.57 ± 0.44; non-responders: 1.14 ± 0.40; p < 0.001, d = 1.40) and higher 
learning rates (responders: –1.04 ± 1.67; non-responders: –4.05 ± 1.68; p < 0.001, d = 1.80) than 
non-responders.

ANOVAs on response bias and discriminability in placbo non-responders re-randomized to 
bupropion yielded no differences between bupropion responders vs. non-responders in Session 
1 or 2 (ps > 0.12). Similarly, between-group comparisons of belief model parameters were non-
significant in both sessions (ps > 0.15). By contrast, as shown in Figure 7, the HDDM revealed a 
difference in Session 1 starting point bias, which was higher in the (eventual) bupropion responders 
vs. non-responders (q-value < 0.01). In Session 2, this difference was weaker (q-value = 0.10) but 
a group difference in decision threshold (responders > non-responders) emerged (q-value = 0.04). 
Figure S6 shows mean starting point bias values for bupropion responders vs. non-responders in 
Session 1. Six non-reponders have values below those of every responder, suggesting that starting 
point bias in the PRT might be useful for predicting bupropion (non-) response in individuals.
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Conceptually, the analyses in this section may be more easily understood in a logistic regression 
framework, where the initial placebo response (0 = non-responder, 1 = responder) might be predicted 
by Session 1 response bias, discriminability, belief model parameters, or HDDM parameters. We ran 
these analyses and results very closely resembled the ANOVA outcomes: placebo response was not 
predicted by Session 1 response bias, discriminability, or HDDM parameters, but it was negatively 
predicted by reward sensitivity (coefficient = –4.16, SE = 1.47, Z = –2.82, p = 0.004) and positively 
predicted by learning rate (coefficient = 0.87, SE = 0.27, Z = 3.29, p = 0.001) from the belief model. 
Logistic regressions were also run to predict responses to bupropion (in placebo non-responders) 
with the same Session 1 variables. The only reliable predictor was Session 1 starting point bias, 
from the HDDM (coefficient = 29.73, SE = 13.30, Z = 2.24, p = 0.025). Finally, logistic regressions 
predicting responses to bupropion (in placebo non-responders) with Session 2 variables were also 
run. These returned no significant effects. Thus, across the ANOVA and logistic regression analyses, 
placebo responses were negatively predicted by reward responsivity but positively predicted by 
learning rate (both from the belief model) in Session 1, whereas responses to bupropion (following 
initial non-response to placebo) were predicted by Session 1 starting point bias from the HDDM.

DISCUSSION
This PRT study yielded several findings. First, we again found that response bias varies with RT: the 
rich > lean accuracy difference was larger for faster vs. slower RTs. When participants respond quickly, 
they often respond “rich” regardless of which stimulus is shown; when they respond more slowly, 
the stimulus effect on accuracy (and thus response bias) is reduced. Second, reward totals were 
better predicted by discriminability than by response bias. Third, the data were well-fit by the HDDM. 
There was close correspondence between the data and HDDM simulations, although the HDDM did 

*

Figure 7 Session 1 HDDM 
Parameters in Eventual 
Bupropion Responders vs. Non-
responders.

Note. Asterisk marks < 
1% overlap of posterior 
distributions between groups.
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not capture increased response bias over blocks. Internal consistency of HDDM parameters was 
good to excellent, and retest reliability was adequate. Finally, comparing the HDDM parameters to 
those from prior reports (Dillon et al., 2022; Lawlor et al., 2020) revealed that drift rate was low in this 
depressed sample, consistent with the proposal that slow evidence accumulation is a broad marker 
of psychopathology (Sripada & Weigard, 2021; but see Dillon et al., 2022). Fourth, the belief model 
captured the increase in response bias over blocks, but this model produced lower accuracy and 
discriminability than was observed, and its parameters were psychometrically weaker: the internal 
consistency and retest reliability of belief model parameters was poorer than for HDDM parameters. 
Fifth, the models provided insight into prediction of responses to placebo and bupropion. These 
results must be interpreted cautiously due to very small samples. Nonetheless, at baseline the 
belief model indicated that eventual placebo responders showed weaker reward responsivity but 
higher learning rates than non-responders. The HDDM revealed stronger starting point biases in 
placebo non-responders who eventually responded to bupropion. Overall, these findings provide 
insight into cognitive processes that are recruited by the PRT and affected by depression, while also 
providing leads for larger studies focused on predicting placebo responses.

COGNITION IN THE PRT

Many studies use response bias in the PRT as a behavioral test of reward system function and a 
probe for anhedonia, but few have examined the nature of response bias or closely examined 
discriminability. This paper is the third to do so (Dillon et al., 2022; Lawlor et al., 2020), and all three 
yielded similar results that make two points about PRT performance.

First, quantile-probability plots consistently show that the response bias effect is strong when RTs 
are fast but is weaker, if not absent, for slower responses. As explicated by White and Poldrack 
(2014), this dependency between accuracy and RT marks a true response bias: on many trials, 
participants quickly press “rich” regardless of which stimulus is shown. In other words, participants 
exhibit a response-outcome association (Rescorla, 1992)—because “rich” responses are likely to 
be rewarded, on many trials they make fast “rich” responses. Second, the quantile-probability 
plots and correlational analyses show that there is more to the PRT than response bias. Although 
the rich > lean accuracy effect is strong for the fastest 30% of responses, on the remaining trials 
the response bias effect is small and accuracy for the rich and lean stimuli is similar. This surprising 
but consistent result indicates that an account of PRT performance should not stop at response 
bias, but should also explain the many deliberate, more even-handed responses observed. The 
importance of this issue is underlined by the fact that reward totals were again better predicted 
by discriminability than by response bias: if a participant has good discriminability, it is to their 
advantage to make unbiased, accurate responses.

The HDDM can account for discriminability and response bias. Variation in discriminability is 
explained by drift rate and threshold, with other parameters making much smaller contributions. 
This is sensible because accuracy in the DDM is governed by the speed with which participants 
assemble the evidence needed to respond and the distance between the thresholds that the 
accumulating evidence must cross; fast evidence accumulation (high drift rate) plus widely spaced 
boundaries (high decision thresholds) yields accurate responding. The HDDM explains response 
bias with starting point bias: the accumulation process begins closer to the “rich” boundary, 
such that little evidence for the rich stimulus needs to accumulate for that response to be made. 
Consequently, there are more fast “rich” vs. “lean” responses.

With three parameters—drift rate, decision threshold, and starting point bias—the HDDM can thus 
account for PRT data. However, the HDDM estimates the average starting point bias and does not 
capture the increase in response bias over blocks. This reflects the fact that that the DDM does not 
model learning: it can account for bias, but not for how a bias forms. Also, while it is is encouraging 
to consistently find a close relationship between response bias in the PRT and starting point bias in 
the HDDM, the one-to-one nature of this relationship limits its explanatory value: how the starting 
point bias develops and what it reflects with regard to underlying neural mechanisms is unclear. 
Focusing on pre-stimulus value signals in motor regions (Cisek, 2007) might be a useful first step 
towards identifying neural mechanisms that underlie starting point bias.
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To summarize, the PRT elicits two patterns of behavior. First, the asymmetric reinforcement induces 
a response bias: participants learn that one response is rewarded more often than the other, and 
so on many trials they simply press the “rich” key very quickly. The stimuli contribute little to this 
behavior. The second pattern, however, is that on many trials participants respond more slowly and 
accuracy for the rich and lean stimuli is similar. This aspect of behavior is reflected in discriminability, 
it is captured by drift rate (and threshold) in the HDDM, and it has received much less attention. 
However, this manuscript and our prior papers (Dillon et al., 2022; Lawlor et al., 2020) have shown 
clearer effects of psychopathology on drift rate and discriminability than on the starting point bias 
and response bias. Also, all three studies show that drift rate and discriminability predict what 
participants care most about—namely, cumulative reward totals. In short, the emphasis on 
discriminating between two similar stimuli—which is central to the PRT but uncharacteristic of 
most RL tasks—appears valuable for understanding how psychopathology affects cognition.

DEPRESSIVE COGNITION

The current sample generated the lowest drift rate we have seen in our PRT studies, which is 
striking as the values for all other HDDM parameters were similar to those in a large (n = 258) 
MDD sample (Lawlor et al., 2020). Consequently, despite the lack of a control group, these 
data again reveal slow evidence accumulation in MDD, similar to what is seen in other forms of 
psychopathology (Sripada & Weigard, 2021). The underlying cause of slow evidence accumulation 
in MDD is unknown—possibilities include low cortical dopamine (Beste et al., 2018) or disrupted 
white matter tracts (Wang et al., 2014)—and this is a target for future work.

Surprisingly, there was no evidence of a blunted response bias in this treatment-seeking sample: 
in both sessions, a response bias emerged and the HDDM’s starting point was shifted towards the 
“rich” boundary. Interpretation must be somewhat tentative given the lack of controls, but this 
MDD group was sensitive to the reinforcement. This raises the point that while depression can 
negatively affect reward function, the extent of the disruption varies widely; indeed, even when 
controls show a stronger response bias than depressed adults, the depressed group often still 
shows the effect (Pizzagalli et al., 2008c). Given increased appreciation of the fact that depression 
is heterogeneous, that mental health is often better conceptualized as continuous rather than 
dichotomous, and that many effect sizes in psychology research are smaller than originally 
supposed, going forward it may be productive to collect larger PRT datasets, identify individuals 
with anomalous results (e.g., no response bias), and then study those datasets to learn more 
about underlying mechanisms and their relationship with MDD.

MODEL COMPARISON

The HDDM models the PRT as a perceptual decision-making task in which one response 
is more frequent than the other, whereas the belief model envisions the PRT as an RL task in 
which participants use PEs to update values assigned to (stimulus, action) pairs. These distinct 
conceptualizations might cause analysts to prefer one model over the other. The current analysis 
aimed to inform such choices through simulations and by examining psychometrics.

Overall, the results were more favorable to the HDDM. HDDM simulations were similar to the 
data with respect to accuracy, RT, and discriminability, and the HDDM simulated a response bias, 
although it did not vary by block. HDDM parameters showed good to excellent internal consistency 
and adequate retest reliability, and the stability of relationships between response bias, 
discriminability, and HDDM parameters was encouraging. Response bias was selectively related to 
starting point bias in the HDDM, whereas discriminability was strongly related to drift rate and, to 
a lesser extent, threshold (Lawlor et al., 2020; Dillon et al., 2022). These results indicate that the 
HDDM captures key features of PRT data, with the parameters being sufficiently stable within and 
across sessions to study individual differences.

The picture was more mixed for the belief model. This model captured the response bias increase 
over blocks and higher accuracy for the rich vs. lean stimulus. However, it did not capture the 
response effect on accuracy, simulated accuracy was too low, and simulated discriminability was 
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much lower than actual discriminability. Also, relationships between belief model parameters and 
signal detection metrics were less selective and stable than for the HDDM. For example, in Session 
1 response bias was predicted by every belief model parameter except initial bias, whereas in 
Session 2 it was predicted only by reward sensitivity and learning rate. Along with the weaker 
psychometric results, this variability suggests cautious interpretation of belief model parameters.

Because the belief model involves learning from trial-by-trial feedback, which the HDDM does not, 
its psychometric properties may be inherently less stable. We attempted to address this concern 
by assessing internal consistency with first-half vs. second-half comparisons, so as not to disrupt 
trial-level sequences. This was helpful in that internal consistency for belief model parameters was 
higher using the “by-halves” approach vs. the odd/even approach, but internal consistency was 
still worse for belief model vs. HDDM parameters with the by-halves approach. Also, the by-halves 
approach introduces temporal delays that may negatively affect internal consistency—indeed, 
the consistency of HDDM parameters was lower using the by-halves method. Recall that all 
participants received placebo or bupropion between sessions, which could affect the assessment 
of test-retest reliability. This raises the possibility that poorer reliability for the belief model is due 
to greater sensitivity to the interventions. This seems unlikely given that paired t-tests examining 
session effects on belief model parameters were all non-significant. Nevertheless, fairly assessing 
the consistency of RL models is non-trivial and should be a focus going forward, especially because 
many clinically-oriented hypotheses assume lasting disruptions to reward sensitivity and RL; 
psychometrically stable RL measures are needed to test these hypotheses (Brown et al., 2021).

TREATMENT PREDICTION

These data are from a project examining prediction of placebo responses; the core hypothesis was 
that individuals with stronger reward system function were more likely to be placebo responders. 
Unfortunately, the number of placebo responders with usable PRT data was small, limiting the 
conclusions that can be drawn from prediction analyses. Indeed, effect size estimates for responder 
vs. non-responder differences in belief model parameters are implausibly large (e.g., d = 1.40); with 
small samples, only large effects will be significant and such effects are nearly always smaller when 
studied in larger samples (Button et al., 2013). The same concern applies for the HDDM parameters.

Nevertheless, because the results might inform better-powered work, we describe them here. 
First, the belief model indicated that baseline reward responsivity was lower and learning rate 
was higher in (eventual) placebo responders vs. non-responders. Second, the HDDM indicated that 
baseline starting point bias was higher in (eventual) bupropion responders vs. non-responders; 
this analysis included only placebo non-responders, to identify predictors of bupropion response 
unconfounded with placebo.

With respect to the belief model, lower reward responsivity in placebo responders contradicts the 
core hypothesis but higher learning rates are broadly consistent with enhanced reward system 
function. Higher learning rates indicate a stronger effect of recently received rewards on value 
updating. Thus, these findings may fit with theories emphasizing reward-based learning processes 
in placebo effects (Lee et al., 2015; Schmidt et al., 2014; Turi et al., 2017).

The HDDM revealed larger starting point biases in bupropion responders vs. non-responders. There 
is some precedent, as prior work found that reward system function positively predicted responses 
to pramipexole, a dopamine agonist (Whitton et al., 2020). Furthemore, adults with MDD who 
responded to bupropion (after failing to respond to sertraline) showed a higher pre-treatment 
response bias in the PRT than bupropion non-responders (Ang et al., 2020). These results indicate 
that larger PRT studies of placebo prediction may be warranted.

CONCLUSION
The PRT is a widely used probe of reward system function, with weak response bias often taken as 
a marker of anhedonia. Here we provided a detailed analysis that clarifies the nature of response 
bias and highlights the importance of discriminability. We also applied two computational models 
to the data. The HDDM accounted for response bias and discriminability and showed strong 
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psychometric properties. The belief model performed less well psychometrically, but—unlike 
the HDDM—it reproduced the increase in response bias over blocks. Finally, the study provided 
preliminary evidence that the PRT may be useful for predicting treatment responses, with perhaps 
the strongest result being a larger baseline starting point bias in those who subsequently responded 
to bupropion. This result emerged from very small samples and awaits replication, but it supports 
the idea that bupropion may be most effective in depressed adults whose reward system function 
is relatively intact. Overall, these data provide insight into the PRT, into depressive cognition, and 
into mechanisms of behavior that can be captured by computational models.
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Supplemental Material for  

Computational analyses of reward-based decision-making in depressed adults 

Exclusion Criteria 

The exclusion criteria were as follows: (a) pregnancy or childbearing potential without a 

medically accepted contraceptive; (b) serious suicide or homicide risk; (c) unstable medical 

illness; (d) any of the following DSM-IV diagnoses—organic mental disorders, substance use 

disorders within the last year, psychotic disorders, bipolar disorder, acute bereavement, severe 

borderline or antisocial disorder, eating disorder, current primary diagnosis of panic disorder, 

social anxiety disorder, posttraumatic stress disorder, generalized anxiety disorder, or obsessive 

compulsive disorder, mood congruent or incongruent psychotic features; (e) history of abuse of 

stimulants or opiates; (f) current use of antipsychotics, anticonvulsants, stimulants, 

antidepressants, or augmenting agents [e.g., St. John’s Wort]; (g) use of any investigational 

psychotropic drug in the last year; (h) non-response to two or more antidepressant trials of 

adequate dose and duration, per the ATHQ, over the last five years; (i) history of inadequate 

response to or poor tolerability of bupropion; (j) concomitant psychotherapy for depression; (k) 

current or prior treatment with vagal nerve stimulation, electroconvulsive therapy, or transcranial 

magnetic stimulation; or (l) red/green colorblindness (due to a task used in the PET/MRI scan). 

 

  



Figure S1 

 

Note. Simplified protocol summary. PRT data were acquired immediately prior to Phase 1 
randomization to placebo (PBO) or bupropion, and again immediately before Phase 2 re-
randomization. All participants were diagnosed with Major Depressive Disorder, and Phase 1 
randomization was disproportionately to the placebo condition given the goal to identify 
predictors of placebo response. 
  



Figure S2 

 

 

Note. Observed data from Session 2 vs. data from 500 simulations, generated using the HDDM. 
Results are shown for (A) the stimulus effect (rich/lean) on accuracy, (B) the stimulus effect on 
RT, (C) the response effect (“rich”/ “lean”) on accuracy, (D) the response effect on RT, (E) 
response bias, and (F) discriminability. 
 

  

HDDM: Observed vs. Simulated Data in Session 2 ( n = 44)
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Figure S3 

 

 
Note. Observed data from Session 1 vs. data from 50 simulations, generated using the RLDDM. 
Results are shown for (A) the stimulus effect (rich/lean) on accuracy, (B) the stimulus effect on 
RT, (C) the response effect (“rich”/ “lean”) on accuracy, (D) the response effect on RT, (E) 
response bias, and (F) discriminability. 
 

  

RLDDM: Observed vs. Simulated Data in Session 1 ( n = 49)
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Figure S4 

 

 
Note. Observed data from Session 2 vs. data from 50 simulations, generated using the RLDDM. 
Results are shown for (A) the stimulus effect (rich/lean) on accuracy, (B) the stimulus effect on 
RT, (C) the response effect (“rich”/ “lean”) on accuracy, (D) the response effect on RT, (E) 
response bias, and (F) discriminability. 
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Figure S5 

 
Note. Observed data from Session 2 vs. data from 500 simulations, generated using the belief 
model. Results are shown for (A) the stimulus effect (rich/lean) on accuracy, (B) the response 
effect (“rich”/ “lean”) on accuracy, (C) response bias, and (D) discriminability. 
  

Belief Model: Observed vs. Simulated Data in Session 2 ( n = 44)
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Figure S6 

 

 
Note. Mean starting point bias estimates for bupropion responders vs. non-responders, given 
non-response to placebo. 



Table S1 

Demographic Data 

Session N Age 
Number 
Females 

Years of 
Education 

Number 
White 

Number Hispanic or 
Latino 

1 49 29±10 25 (51%) 15±2 35 (71%) 8 (16%) 
2 44 28±9 20 (45%) 15±2 34 (77%) 6 (14%) 

Note. Mean±SD values are given for age and years of education. Session 1 data were collected at 
baseline, before randomization to placebo or bupropion; Session 2 data were collected 
approximately three weeks later (mean±S.D. = 24±5 days between sessions). Age data were 
missing for one participant in Sessions 1 and 2. 
  



Table S2 

Mean (SD) Response Bias, Discriminability, and Reward Totals by Session and Block 

 Response bias Discriminability Reward total 

Session 1 (n = 49) 

Block 1 0.09 (0.18) 0.37 (0.19) 38.0 (2.39) 

Block 2 0.14 (0.18) 0.38 (0.18) 38.6 (2.06) 

Block 3 0.16 (0.16) 0.43 (0.19) 39.0 (1.95) 

Session 2 (n = 44) 

Block 1 0.13 (0.18) 0.37 (0.18) 38.4 (2.15) 

Block 2 0.13 (0.19) 0.36 (0.15) 38.9 (2.15) 

Block 3 0.19 (0.16) 0.35 (0.17) 38.6 (2.18) 
 
  



Table S3 

Results of Regressing Response Bias and Discriminability on HDDM Parameters 

Parameter B [95% CI] SE β t-value p-value 

Response Bias: Session 1 

Threshold (a) 0.01 [-0.14,0.16] 0.08 0.02 0.12 0.904 

Non-decision time (t) -0.16 [-0.73,0.41] 0.28 -0.07 -0.55 0.583 

Drift rate (v) -0.03 [-0.14,0.08] 0.05 -0.07 -0.49 0.626 

Starting bias (z) 1.86 [1.17,2.56] 0.35 0.64 5.38 < 0.001 

Discriminability: Session 1 

Threshold (a) 0.29 [0.23,0.35] 0.03 0.39 9.85 < 0.001 

Non-decision time (t) 0.12 [-0.10,0.34] 0.11 0.04 1.07 0.289 

Drift rate (v) 0.49 [0.45,0.53] 0.02 1.02 23.13 < 0.001 

Starting bias (z) -0.25 [-0.52,0.03] 0.14 -0.07 -1.80 0.078 

Response Bias: Session 2 

Threshold (a) 0.01 [-0.17,0.19] 0.09 0.02 0.10 0.922 

Non-decision time (t) -0.25 [-0.76,0.26] 0.25 -0.13 -0.98 0.332 

Drift rate (v) -0.00 [-0.13,0.13] 0.06 -0.01 -0.05 0.962 

Starting bias (z) 2.58 [1.50,3.66] 0.53 0.62 4.87 < 0.001 

Discriminability: Session 2 

Threshold (a) 0.25 [0.18,0.32] 0.03 0.42 7.25 < 0.001 

Non-decision time (t) -0.05 [-0.24,0.14] 0.10 -0.02 -0.51 0.611 

Drift rate (v) 0.49 [0.44,0.54] 0.02 1.17 20.16 < 0.001 

Starting bias (z) 0.13 [-0.28,0.54] 0.20 0.03 0.64 0.523 
 

  



Table S4 

Retest Reliability of the HDDM and Belief Models 

Parameter Pearson r-value p-value 

HDDM 

Threshold (a) 0.67 < 0.001 

Non-decision time (t) 0.36 0.036 

Drift rate (v) 0.63 < 0.001 

Starting bias (z) 0.50 0.003 

Belief Model 

Reward sensitivity 0.06 0.727 

Instruction sensitivity 0.33 0.054 

Learning rate 0.25 0.148 

Belief 0.27 0.123 

Initial bias -0.46 0.006 
Note. These analyses were run on 34 participants with usable PRT data at Sessions 1 and 2, 
regardless of assignment to placebo or bupropion. 
  



Table S5 

Results of Regressing Response Bias and Discriminability on Belief Model Parameters 

Parameter B [95% CI] SE β t-value p-value 

Response Bias: Session 1 

Reward sensitivity 0.15 [0.06,0.24] 0.04 0.53 3.30 0.002 

Instruction sensitivity -0.13 [-0.26,-0.00] 0.06 -0.28 -2.02 0.049 

Learning rate 0.04 [0.02,0.06] 0.01 0.63 4.05 < 0.001 

Belief 0.16 [0.03,0.29] 0.06 0.36 2.52 0.016 

Initial bias -0.25 [-0.86,0.36] 0.30 -0.10 -0.82 0.415 

Discriminability: Session 1 

Reward sensitivity -0.01 [-0.04,0.03] 0.02 -0.02 -0.35 0.729 

Instruction sensitivity 0.38 [0.34,0.43] 0.02 0.66 16.28 < 0.001 

Learning rate -0.01 [-0.01,0.00] 0.00 -0.08 -1.83 0.075 

Belief 0.26 [0.21,0.31] 0.02 0.46 10.91 < 0.001 

Initial bias -0.08 [-0.30,0.15] 0.11 -0.03 -0.68 0.499 

Response Bias: Session 2 

Reward sensitivity 0.22 [0.13,0.31] 0.04 0.67 4.89 < 0.001 

Instruction sensitivity -0.00 [-0.12,0.11] 0.06  -0.01 -0.05 0.962 

Learning rate 0.05 [0.03,0.07] 0.01 0.71 5.21 < 0.001 

Belief 0.06 [-0.08,0.19] 0.07 0.10 0.82 0.420 

Initial bias -0.29 [-0.90,0.31] 0.30 -0.11 -0.99 0.329 

Discriminability: Session 2 

Reward sensitivity -0.04 [-0.09,0.00] 0.02 -0.12 -1.88 0.068 

Instruction sensitivity 0.41 [0.35,0.47] 0.03 0.80 14.02 < 0.001 

Learning rate -0.01 [-0.02,-0.00] 0.00 -0.14 -2.13 0.040 

Belief 0.20 [0.13,0.27] 0.03 0.32 5.67 < 0.001 

Initial bias 0.25 [-0.06,0.57] 0.15 0.09 1.65 0.107 
 
 
 
 


	Using Drift Diffusion and RL Models to Disentangle Effects of Depression On Decision-Making vs. Learning in the Probabilistic Reward Task
	ABSTRACT
	BEHAVIORAL COMPLEXITY
	MODELS AND PSYCHOMETRICS
	PREDICTING PLACEBO RESPONSES
	SUMMARY
	METHODS
	RESULTS
	DISCUSSION
	CONCLUSION
	ADDITIONAL FILE
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	COMPETING INTERESTS
	AUTHOR CONTRIBUTIONS
	REFERENCES




