
Nature Mental Health | Volume 2 | December 2024 | 1498–1517 1498

nature mental health

Analysis https://doi.org/10.1038/s44220-024-00334-x

Neuroimaging biomarkers of addiction

Hamed Ekhtiari    1,2 , Arshiya Sangchooli3, Owen Carmichael4, 
F. Gerard Moeller5, Patricio O’Donnell6,7, Maria A. Oquendo8, Martin P. Paulus    2, 
Diego A. Pizzagalli    9,10, Tatiana Ramey11, Joseph P. Schacht    12, 
Mehran Zare-Bidoky13, Anna Rose Childress8 & Kathleen Brady14

As a neurobiological process, addiction involves pathological patterns 
of engagement with substances and a range of behaviors with a 
chronic and relapsing course. Neuroimaging technologies assess brain 
activity, structure, physiology, and metabolism at scales ranging from 
neurotransmitter receptors to large-scale brain networks, providing 
unique windows into the core neural processes implicated in substance 
use disorders. Identified aberrations in the neural substrates of reward and 
salience processing, response inhibition, interoception, and executive 
functions with neuroimaging can inform the development o f p ha rm ac ol og-
ical, n  e u  ro  m o  du  l a tory, and p  s y  ch  o t  he  r a peutic interventions to modulate 
the disordered neurobiology. Closed- or open-loop interventions can 
integrate these biomarkers with n  e u  ro  m o  du  lation in real time or offline to 
personalize stimulation parameters and deliver precise intervention. This 
Analysis provides an overview of neuroimaging modalities in addiction 
medicine, potential neuroimaging biomarkers, and their physiologic 
and clinical relevance. Future directions and challenges in bringing these 
putative biomarkers from the bench to the bedside are also discussed.

Substance use disorders (SUDs), including alcohol use disorder, cause 
substantial and increasing mortality and morbidity worldwide1,2. In the 
United States alone, yearly costs of medical care, lost productivity, and 
law enforcement associated with SUDs exceed an estimated US$400 
billion3. As the designation suggests, SUDs have conventionally been 
viewed as disorders of ‘substance use,’4 but increasing evidence suggests 
that this harmful substance use is both driven by and contributes to 
pervasive brain alterations that underlie profound cognitive and behav-
ioral manifestations broader than substance use5. Since early pneu-
moencephalography studies revealed general brain atrophy in people 

with chronic alcohol use6, decades of neuroimaging research have 
increasingly caused a shift toward a ‘brain disease’ model of SUDs7–9.  
Under this neuroimaging-informed model, genetic, developmental, 
social, and biological influences converge on combinations of core 
neurocognitive aberrations: the mesocorticolimbic reward network 
is sensitized by drugs of abuse, leading to excessive attribution of sali-
ence to drug-associated stimuli; anti-reward and stress systems across 
the basal ganglia and the extended amygdala become over-reactive, 
contributing to withdrawal symptoms and negative-affective states, 
which can also motivate substance use; and executive control networks 
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discussion with another systematic review of 61 meta-analyses between 
inception and 10 November 2023 of neuroimaging biomarkers in SUDs 
and highlight biomarkers that have replicated in meta-analyses across 
multiple contexts and diagnoses. We then discuss different neuro-
imaging biomarkers that may be developed for SUDs on the basis of 
taxonomy developed by the FDA–NIH Biomarker Working Group32 and 
highlight challenges and future directions to provide clinicians and 
researchers with an understanding of opportunities and challenges 
in neuroimaging biomarker research.

Results
This Analysis is informed by two systematic reviews. The first covered 
SUD clinical research protocols that include neuroimaging outcome 
measures, obtained by querying the ClinicalTrials.gov repository 
between inception and 17 November 2021 (Supplementary Fig. 1a). 
This systematic review yielded a final result of 409 protocols. The sec-
ond systematic review was conducted on PubMed, focusing on meta-
analyses of neuroimaging studies of SUDs and finding 61 meta-analyses 
from which 83 meta-analytic findings were extracted (Supplementary 
Fig. 1b). In this paper, while we seek to structure the discussion around 
replicated findings that have held across SUDs, some findings pertain 
only to specific SUDs, in which cases the particular SUD is highlighted. 
It should also be noted that the neuroimaging measures and findings 
in included protocols and meta-analyses do not constitute validated 
biomarkers: any objective measure needs to undergo an extensive 
validation process to qualify as an actual biomarker of disease or recov-
ery, which is not the case for any of the measures we discuss. Essential 
validation steps are discussed in Challenges and future directions. The 
systematic reviews serve to highlight replicated neuroimaging find-
ings in SUDs and demonstrate the different exploratory purposes for 
which neuroimaging modalities are already used in clinical research. 
These purposes or ‘contexts of use’ are grouped under corresponding 
categories of biomarkers to outline what measures might come to serve 
as actual neuroimaging biomarkers of SUDs and motivate a discussion 
of challenges that need to be surmounted in the process.

Neuroimaging modalities in addiction medicine
Interest in clinical uses of neuroimaging paradigms for virtually all SUDs 
has increased over time, with 87.3% of the protocols in our systematic 
review starting in 2010 or later. This is particularly the case with alcohol 
(N = 139) and nicotine use disorders, but a growing number of protocols 
are using neuroimaging as an outcome measure for cocaine (N = 44), 
cannabis (N = 36), and opioid (N = 31) use disorders (Fig. 1a and Supple-
mentary Fig. 2). The growing interest in using neuroimaging paradigms 
has also been reflected in the conducted meta-analyses (note that three 
of the studies are mega-analyses rather than meta-analyses, although 
we use the term meta-analysis to refer to these for simplicity), with all 
of them conducted after 2011 and more than half of them (N = 31 out of 
61) in the past 3 years. Most of the meta-analyses were conducted on 
multiple substances (N = 28), followed by analyzing studies focusing 
solely on alcohol (N = 13) (Supplementary Fig. 3). With some exceptions, 
neuroimaging paradigms in addiction neuroscience can be broadly 
categorized into ‘structural’ imaging techniques, which probe brain 
structure statically; ‘functional’ paradigms, which evaluate changes in 
a signal associated with brain function during the scan; and ‘molecular’ 
paradigms, which assess the static or changing distribution of impor-
tant molecules/metabolites within the brain. These various paradigms 
are converging on a multi-scale perspective into brain changes in SUDs 
and may be used to develop clinically relevant biomarkers35,36.

Brain structure
While a few studies have utilized computed tomography scans to inter-
rogate brain structure alterations in SUDs37, arguably the most popu-
lar structural neuroimaging paradigm in addiction neuroscience is 
structural magnetic resonance imaging (sMRI), used by 35 protocols 

centered around prefrontal regions are disrupted, with the degradation 
of top-down frontal control leading to disinhibited substance use7–11.

Considering the evidence for neural aberrations in SUDs that 
can be objectively assessed using neuroimaging technologies, there 
is growing interest in using neuroimaging to inform clinical care and 
intervention development for SUDs12,13. Objective measures of SUDs 
are currently limited to measures of psychoactive substances or their 
metabolites in biological samples14 or reflect toxic effects of use15. These 
measures of substance use are not informed by the neurocognitive 
processes that underlie addiction and thus have limited use in distin-
guishing at-risk individuals, offering prognostic insight, or informing 
interventions8. In this context, neuroimaging technologies provide 
objective measures that could be used as ‘biomarkers’ for SUDs, ena-
bling the translation of neuroscientific insights to the bedside16. This 
echoes broader trends in precision psychiatry and efforts to develop 
and utilize so-called biomarkers in psychiatric practice and research 
more extensively17,18. Neuroimaging biomarkers, which can indicate 
specific aberrations of brain structure and function in SUDs, bring a 
threefold advantage. First, they provide a direct window into proxi-
mal potential neurobiological mechanisms of disease and recovery 
in individuals with SUDs; second, they suggest new treatment targets 
and provide neurophysiological evidence of effectiveness to facilitate 
intervention development; and third, mechanistically grounded mark-
ers could be used directly for clinical purposes: to distinguish different 
subpopulations of substance-using individuals and inform personal-
ized interventions and ongoing monitoring tailored for patients with 
specific brain abnormalities19–23.

It is important to note that the brain-disease model is not the only 
account of addiction etiology. For example, alternative explanations 
posit that addiction is a disease of choice and may be caused by a lack of 
alternative reinforcers24, some contest whether addiction is a ‘disease’25, 
and others simply argue that neurobiological explanations cannot 
be privileged over others26. Moreover, the brain-disease model has 
faced criticism on scientific, philosophical, and political grounds27–29, 
and while it is generally agreed that alcohol and substance use dis-
orders involve brain changes23,30, some have argued that the current 
body of neurobiological evidence may not be sufficient to conclude 
that neurobiological dysfunctions are specific and primary causes of 
addiction broadly31. However, while we would argue that the addiction 
neuroimaging literature to date both aligns with a brain-disease model 
of addiction and supports the development of neuroimaging biomark-
ers, adherence to the former is not strictly necessary for the latter. 
According to the Food and Drug Administration–National Institutes 
of Health (FDA–NIH) Biomarker Working Group, a biomarker is simply 
“a defined characteristic that is measured as an indicator of normal 
biological processes, pathogenic processes, or biological responses 
to an exposure or intervention, including therapeutic interventions.”32 
Regardless of whether addictive disorders are primarily caused or sus-
tained by neurological dysfunction, neuroimaging biomarkers of aber-
rant brain structure or function associated with specific mechanisms 
of addiction and recovery could illuminate neural pathology, facilitate 
intervention development, and guide clinical care. A pertinent example 
is hypertension: the fact that the disease can be caused in large part by 
social and environmental factors does not diminish the importance of 
blood pressure as a biomarker to diagnose and monitor hypertension 
and develop interventions33,34.

To lay the conceptual framework for a discussion of potential 
neuroimaging biomarkers in SUDs, we will provide an overview of 
the current status of neuroimaging paradigms in translational addic-
tion neuroscience, informed by a systematic review of neuroimaging 
outcome measures in 409 protocols registered on ClinicalTrials.gov 
between its inception and 17 November 2021. Together, the 409 proto-
cols have utilized 479 imaging modalities and 688 neuroimaging out-
come measures and provide a broad estimate of the clinically relevant 
uses of neuroimaging in addiction neuroscience. We supplement this 
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in our trials database as the only neuroimaging paradigm and by 27 
protocols in conjunction with another paradigm (Fig. 1b). Among the 
meta-analytic findings reviewed, 22 out of 83 were aberrations observed 
with sMRI. Using MRI, algorithms such as voxel-based morphometry 
can isolate and quantify gray matter38, and meta-analyses of these and 
similar techniques have revealed widespread losses of gray matter 
across cortical and subcortical regions across a number of different 
SUDs39–44, although there is some evidence that these may recover with 

abstinence45. ‘Mega-analyses’ of MRI data collected from thousands of 
individuals with a variety of SUD types have also revealed an overall loss 
of gray matter, particularly in the insula and prefrontal and parietal 
cortices, and suggest that the severity of use may be correlated with 
lower amygdala and nucleus accumbens volume, particularly in alco-
hol use disorder46. Simultaneously, studies of white-matter structure 
with diffusion-weighted imaging have broadly revealed white-matter 
degeneration in commissural tracts, the internal capsule, and corpus 
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Fig. 1 | Distribution of the neuroimaging protocols based on year and 
substance. a, Number of protocols starting for each substance each year 
(n = 409). Years are obtained from the ClinicalTrials.gov database indicating 
actual or planned start years. b, Number of neuroimaging modalities used in 
each protocol for each substance. Numbers on this figure sum to 479 for 409 
protocols since 70 protocols used multiple imaging modalities. The gray shades 
in the heatmap represent varying intensities of the data values. Lighter shades 

indicate lower numbers and darker shades correspond to higher numbers in each 
category. ATS, amphetamine-type stimulants; sMRI, structural MRI, including 
whole-brain T1 imaging, gray-matter volumetry or diffusion tensor imaging; 
Perfusion, brain perfusion imaging, including arterial spin labeling, cerebral 
blood flow imaging, and magnetic resonance angiography. Data were collected 
from ClinicalTrials.gov on 17 November 2021.
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callosum across several SUDs39,47–49. Observed structural changes in 
the gray and white matter might explain deficits in both higher-order 
cognitive processes and bottom-up processes in SUDs, with striking 
alterations in both frontal, parietal, and insular cortical regions involved 
in interoception, attention, and executive control and in the amygdala 
and nucleus accumbens, which subtend bottom-up reward and affec-
tive processing46,50.

Brain function
While structural neuroimaging paradigms are useful, the brain is 
engaged in constant activity during task performance and even idle-
ness or sleep51, and alterations in these rich neural dynamics underlie 
the cognitive–behavioral profiles typical of SUDs52. This necessitates 
the use of functional neuroimaging paradigms that can measure brain 
activity either during the performance of various tasks (‘task-based’ 
imaging, 342 out of 688 instances in protocol database and 30 out of 
83 in our meta-analysis database) or during rest (‘resting-state’ imag-
ing, 217 instances in our protocol database and 4 in our meta-analy-
sis database)53. For example, ‘cue-reactivity paradigms’ involve the 
presentation of stimuli associated with substances, such as pictures, 
scents, or tastes, to assess neural reactivity and sensitization to these 
cues54 and are used by 130 protocols in our protocol database (and 
10 meta-analytic findings in SUDs). Other tasks can be used to probe 
other aspects of reward processing (42 instances across protocols, 
6 meta-analytic findings), response inhibition (36 instances across 
protocols, 3 meta-analytic findings), and decision making (22 instances 
across protocols, 1 meta-analytic finding), all processes whose neural 
circuitry is impacted in SUDs11,20 (Fig. 2).

The first major group of functional neuroimaging outcomes (433 
instances across protocols and 30 findings across meta-analyses) 
is ‘hemodynamic’ techniques that include blood oxygenation level-
dependent (BOLD) and arterial spin labeling functional MRI (fMRI), 
functional near-infrared spectroscopy (fNIRS), and cerebral perfu-
sion imaging methods55–58. The most commonly used neuroimaging 
paradigm in addiction neuroscience is fMRI, with 412 instances of 
fMRI as an outcome measure in our database out of the 688 neuroim-
aging outcome measures used in the 409 protocols (Figs. 1b and 2a). 
Further, 39 meta-analytic findings across neuroimaging SUD studies 
are from meta-analyses that include fMRI studies alone (30 findings) 
or in combination with other modalities (Fig. 2b). There is extensive 
task-based fMRI evidence of disruption during reward processing59, 
and drug cue exposure results in a cascading hyperactivation of limbic 
circuits that subtend valuation and salience processing and disruption 
of prefrontal control, which can end in drug use20,60. However, resting-
state fMRI studies have revealed that SUDs are associated with weaker 
connections in the executive control network and stronger couplings 
within and between salience, reward, and ‘default mode’ networks, 
suggesting that this might account for impaired response inhibition 
and the abnormal salience of drugs11,61. Other hemodynamic paradigms 
have converged on similar findings, with aberrant function and perfu-
sion in the middle frontal and orbitofrontal cortices, among others, 
observed in SUDs56,62.

The second group of functional imaging modalities focuses on 
the brain’s electrophysiological properties: electroencephalography 
(EEG) and magnetoencephalography (MEG) record, respectively, the 
electrical and magnetic fields generated during brain activity using 
extra-cranial probes to infer the underlying brain activity63,64. Owing to 
its low cost and portability, EEG is the more common paradigm, with 74 
instances in our protocol database (and 8 findings in our meta-analysis 
database) compared with a single protocol with MEG. Event-related 
potentials elicited during task performance are usually split into com-
ponents associated with underlying cognitive processes. For example, 
there is evidence that the P300 component of event-related potentials 
elicited by drug cues may be associated with reward valuation and the 
late positive potential with substance use motivation in individuals 

with SUDs, while the error-related negativity and feedback-related 
negativity components are associated with cognitive control and 
self-regulation65,66. Another approach is to decompose the recorded 
EEG or MEG signal into specific ‘bands’ with different frequencies, 
which has revealed decreases in EEG beta band power in opioid and 
alcohol use disorders67. As with fMRI and fNIRS, EEG recordings also 
revealed network-level changes in individuals with SUDs. Examples 
include disruptions in the communication of the parietal lobe with 
other brain regions68 and reductions in global integration and locally 
specialized connectivity69.

Brain biochemistry
On a molecular level, positron emission tomography (PET) and single 
photon-emission computed tomography (SPECT) use radiotracers with 
specific patterns of distribution across the tissue. Psychiatric SPECT and 
PET imaging increasingly use complex ligands known to preferentially 
bind to molecules of interest to probe both the density and binding 
potential of a certain neurotransmitter system across the brain and 
dynamic changes in neurotransmission induced by a pharmacological 
agent or during cognitive and behavioral tasks70. Magnetic resonance 
spectroscopy (MRS) is a different approach to investigating molecular 
concentrations across the brain, using magnetic resonance rather than 
ionizing radiation to assess relative levels of different metabolites, 
such as choline and N-acetylaspartate, and neurotransmitters, such 
as glutamate, GABA, and glutamine71.

All three modalities are used in our protocol database as out-
come measures, with 70 instances of PET, 7 instances of SPECT, and 40 
instances of MRS (Fig. 2a), and 16 meta-analytic PET/SPECT findings (7 
findings from meta-analyses of studies using only PET/SPECT, 9 in com-
bination with fMRI studies). PET and SPECT studies have demonstrated 
that dopamine transporter and D2 dopamine receptor availability are 
consistently downregulated in SUDs, especially D2 receptors in the 
striatum whose downregulation is associated with compulsive drug 
use72. This has been extensively corroborated in stimulant use disor-
ders with several recent meta-analyses73,74. Against this altered chronic 
state, drug cues trigger acute dopamine release and drug craving75. 
These observations and further aberrations in dopamine synthesis and 
release are consistent with dysfunctional dopaminergic neuroadapta-
tions in the reward network and accompany changes in other neuro-
transmitter systems implicated in the neurocognitive abnormalities 
observed in SUDs, such as serotonergic disruptions potentially related 
to affective deregulation and opioidergic downregulation, which may 
explain tolerance and dependence76–78. At the same time, meta-analyses 
of MRS studies have revealed decreased N-acetylaspartate levels across 
frontal and cingulate regions, suggesting decreased neuronal and 
axonal viability;79,80 others have reported aberrations in glutamate and 
GABA levels in the prefrontal cortex and basal ganglia, which correlate 
with disease severity and cognitive function across SUDs81,82. These 
findings suggest that neurotransmitter abnormalities may account 
for some neurocognitive abnormalities in attention and executive 
function observed in SUDs.

Neuroimaging biomarkers of addiction
Given the observation of brain abnormalities across different domains 
in SUDs, there are ongoing efforts to utilize these brain aberrations as 
biomarkers for specific contexts of use. The neuroimaging technolo-
gies discussed in the preceding have distinct advantages and disadvan-
tages, and thus each may be better suited for use in certain contexts 
and/or for different SUDs. The systematic review of the registered 
protocols discussed in the preceding expectedly identified mostly 
neuroimaging biomarkers used to measure the effect of an interven-
tion in a trial. However, neuroimaging biomarkers could go beyond 
treatment response assessment. The FDA–NIH Biomarker Working 
Group has formally defined distinct biomarker types that correspond 
to different stages of addiction, recovery, and clinical intervention:32 In 
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Scale Modality

a

b

Paradigm Task category

Scale Modality SUD Biomarker

Not specified, n = 11

Other, n = 16

Cue reactivity, n = 130

Reward processing, n = 142

Response inhibition, n = 36

Decision making, n = 22

A�ect processing, n = 19

Executive function, n = 18

Stress, n = 11

Working memory, n = 10

Impulsivity, n = 8

Social processing, n = 7

Attention, n = 7

Whole brain, n = 21

Gray matter, n = 20

White matter, n = 21

Vascular, n = 2

CBF, n = 2

ASL, n = 5

Neurofeedback, n = 9

Resting state, n = 217

sMRI, n = 62

EEG, n = 74

MEG, n = 1

SPECT, n = 7

MRS, n = 40

PET, n = 70

Sonography, n = 1

Perfusion, n = 9

fNIRS, n = 12

fMRI, n = 412

Hemodynamic, n = 434

Structural, n = 27

sMRI, n = 27

Opioids, n = 5
Susceptibility, n = 1

Predictive, n = 1

Response, n = 13

Diagnostic, n = 68

Cannabis, n = 8

Nicotine, n = 8

Stimulants, n = 11

Alcohol, n = 19

Multi-substance, n = 32

EEG, n = 8

MRS, n = 3

PET/SPECT, n = 7

fMRI, n = 30

Multimodal, n = 8

Electrophysiology, n = 8

Biochemical, n = 10

Hemodynamic, n = 38

Biochemical, n = 117

Electrophysiological, n = 75

Structural, n = 62

Task based, n = 342

Conditioning, n = 5

Fig. 2 | Characteristics of neuroimaging outcome measures across registered 
trials and meta-analyses. a, Multi-level characteristics of 688 neuroimaging 
outcome measures in 409 registered protocols. These levels include the scales 
at which neuroimaging modalities have probed the nervous system (structural, 
biochemical, hemodynamic, or electrophysiological), the neuroimaging 
modality, different paradigms in each modality, and the types of tasks used in 
task-based functional neuroimaging paradigms. All structural paradigms in 
our database were variants of MRI; ‘biochemical’ paradigms include SPECT, 
MRS, and PET; hemodynamic paradigms include fMRI, fNIRS, less-common 
perfusion imaging modalities, and ultrasound; and EEG and MEG constitute 
‘electrophysiological’ imaging paradigms. These modalities have been used for 
static structural scans of brain gray or white matter and vasculature, resting-
state functional scans, or task-related functional scans with various tasks. 
Note that many protocols have utilized more than one neuroimaging outcome 
measure, and the total number of outcome measures is 688, more than the 

number of protocols (n = 409). The gray shades in the heatmap represent varying 
intensities of the data values. Lighter shades indicate lower numbers and darker 
shades correspond to higher numbers in each category. Data were collected 
from ClinicalTrials.gov on 17 November 2021. b, Multi-level characteristics 
of 83 neuroimaging outcome measures in 61 meta-analyses. These levels 
include the scales at which neuroimaging modalities have probed the nervous 
system (structural, biochemical, hemodynamic, or electrophysiological), the 
neuroimaging modality, different paradigms in each modality, and the types of 
tasks used in task-based functional neuroimaging paradigms. Note that some 
meta-analyses have utilized more than one neuroimaging outcome measure, and 
the total number of outcome measures is 83, more than the number of total meta-
analyses (n = 61). Further, 3 of the 83 findings are from mega-analyses rather 
than meta-analyses, although we use the term meta-analysis to refer to these for 
simplicity. CBF, cerebrospinal fluid; ASL, arterial spin labeling.
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the context of SUDs, ‘susceptibility’ biomarkers indicate the risk that 
individuals develop a SUD, and ‘diagnostic’ biomarkers can distinguish 
individuals with SUDs from individuals who use substances that have 
not developed an SUD or between clinically relevant subtypes of SUDs. 
For individuals with an established SUD diagnosis, ‘prognostic’ bio-
markers can predict the future progression of patients toward relapse 
versus remission, and ‘monitoring’ biomarkers can be measured over 
time to assess changes.

When developing or implementing a clinical intervention for 
SUDs, ‘predictive’ biomarkers can predict the clinical impact of an 
intervention, and ‘safety’ biomarkers can be measured to assess the 
safety of an intervention or novel substance while ‘response’ biomark-
ers reflect an individual’s response to an intervention and, under 
certain conditions, can be used as ‘surrogate endpoints’: biomarkers 
that can demonstrate the likely clinical effectiveness of an interven-
tion before actual clinical outcomes develop83,84. A schematic of the 
different stages of SUDs and intervention is presented in Fig. 3. It 
is important to note that a single neuroimaging measure may con-
ceivably serve multiple biomarker roles in different contexts. As an 
example, higher baseline ventral striatal fMRI drug cue reactivity can 
distinguish relapsing individuals with stimulant use disorder from 
non-relapsing individuals 3 months after the scan (prognosis)85 and 
predict the clinical response of individuals with alcohol use disorder 
to naltrexone (prediction)86. At the same time, striatal cue reactivity 
in individuals with alcohol use disorder can be reduced through treat-
ment (response)87. Such converging evidence can support the clinical 
validity of a biomarker.

On the basis of an assessment of the structure of the reviewed 
protocols, the 409 protocols have collectively used 510 neuroimaging 
measures as putative SUD biomarkers. These 510 putative neuroimag-
ing-based biomarkers are broken down according to biomarker type, 
substances, and neuroimaging modalities in Fig. 4. From the system-
atic review of meta-analyses, several of these markers have also been 
suggested across several SUDs or contexts of use in meta-analyses of 
neuroimaging studies. Such suggested findings were observed in 55 
meta-analyses in our database and are summarized in Table 1. The fol-
lowing sections review these biomarker types in greater detail.

Neuroimaging biomarkers for assessment
The most straightforward application of neuroimaging biomarkers 
for SUDs would be for assessment purposes since any structural, func-
tional, or biochemical brain differences between individuals with and 
without SUDs could, hypothetically, be used to at least support the 
existence of disease. Accordingly. we identified 110 putative assessment 
neuroimaging markers in our systematic review of clinical research 
protocols and 69 across meta-analyses of neuroimaging studies in 
SUDs. However, mere diagnosis may not be the best use of neuroim-
aging biomarkers. Currently, diagnoses rely ultimately on relatively 
inexpensive clinical interviews, and the added benefit of neuroimaging 
biomarkers is unclear88. More promising may be the use of neuroim-
aging biomarkers for clinically relevant subtyping, prognosis, and 
patient monitoring.

Biomarkers for diagnosis, subtyping, and susceptibility assess-
ment. Conceivably useful assessment neuroimaging biomarkers for 
SUDs fall into a few contexts of use. One would be diagnostic biomark-
ers, which differentiate healthy and disordered substance use rather 
than individuals with SUD and individuals who do not use substances, 
given that distinguishing substance use disorder and individuals who 
use substances that have not developed SUD purely on the basis of 
self-report and substance use quantity is difficult89. We identified 88 
instances of potential diagnostic biomarkers across protocols (Fig. 4) 
and 68 across meta-analyses (Fig. 2b) in our systematic review data-
bases. Several neuroimaging biomarkers may help distinguish people 
with and without different types of SUDs. For example, alcohol use dis-
order compared with light alcohol use may be associated with greater 
alcohol cue-induced BOLD signal in the dorsal striatum but lower signal 
in the ventral striatum90, and people with cannabis use disorder have 
lower orbitofrontal cortex volume compared with individuals who 
use substances that have not developed an SUD91. Such diagnostic 
biomarkers may be especially relevant in the staging of SUDs, given 
the recently proposed category of ‘pre-addiction’92. Another use of 
diagnostic biomarkers could be to distinguish SUD patients with the 
same diagnosis but different underlying neurocognitive pathology. 
For example, heavy alcohol drinkers who drink primarily for ‘relief’ 
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Fig. 3 | Schematic representation of stages in substance use and SUDs and 
their therapeutic interventions and corresponding biomarker types. 
Susceptibility biomarkers can predict transition to substance use or disorder, 
prognostic biomarkers can predict the future progression of the disorder, 
diagnostic biomarkers can distinguish clinically relevant populations, 
monitoring biomarkers facilitate ongoing information about the course of 

the disorder with or without intervention, predictive biomarkers can predict 
treatment response, response biomarkers can reflect the physiological impact of 
an intervention and potentially be used as surrogate endpoints in lieu of clinical 
outcomes, and safety biomarkers can help assess the potential hazards of various 
substances used in clinical or non-clinical settings.
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from negative affect have greater alcohol cue-induced BOLD signal in 
the dorsal striatum compared with ‘reward’ drinkers93.

Another useful class of assessment biomarkers would be markers 
of susceptibility, biomarkers that predict the development of SUD in 
at-risk individuals in the absence of diagnosable disease. Only two of the 
registered protocols and one meta-analysis had putative susceptibility 
biomarkers, which require studying healthy participants for the devel-
opment of SUDs. Much of the previous SUD-susceptibility neuroimag-
ing research has been conducted in adolescents, who are particularly 
at risk of initiating substance use and transitioning to SUDs due to 
reward deficits associated with the striatal dopaminergic reorganiza-
tion and the faster development of limbic emotion and reward systems 
compared with the prefrontal control circuitry94. Consistent with this 
theory, task-related fMRI investigations have shown that dorsal striatal 
hyperactivation during reward tasks may be a marker of substance use 
vulnerability and is linked with co-existing externalizing psychopathol-
ogy, and stronger responses of the reward-related nucleus accumbens 
and orbitofrontal regions to alcohol cues can distinguish individuals 
who transition to heavy drinking95,96. Moreover, response inhibition 
fMRI studies have shown that blunted frontoparietal activity during 
inhibition and hyperactivation during inhibition failures predict the 
initiation of substance use97. Structural MRI studies have converged on 
similar findings: both lower volumes and lower white-matter integrity 
in fronto-limbic regions involved in reward processing and decision 
making may be markers of susceptibility to substance use initiation 
and the development of SUDs98.

Biomarkers for prognosis and monitoring. With the rising number 
and larger sample sizes of studies with prospective and longitudinal 
designs, it has become possible to investigate relationships between 
neuroimaging parameters and subsequent clinical trajectories, ena-
bling the development of prognostic biomarkers, with 20 examples in 
our systematic review of study protocols. An important clinical use of 
these biomarkers would be to predict relapse in abstinent individuals 
more accurately than is possible using self-report or behavioral task 
performance alone. Task-based fMRI studies have shown that individu-
als who require high neural activation for response inhibition are more 
prone to relapse, even with normative behavioral task performance97, 
and baseline nucleus accumbens drug cue reactivity may predict 
relapse with an accuracy outperforming conventional measures85. 

Resting-state fMRI has further demonstrated that the weaker inter-
regional synchrony in the executive control network may account for 
poorer response inhibition and can predict relapse99.

Neuroimaging biomarkers that are measured over time can also 
be used as monitoring biomarkers, offering insights into the develop-
ment and abatement of neurocognitive pathology to complement the 
clinical picture. These biomarkers are difficult to develop since they 
require repeated neuroimaging measurements and a model of their 
correspondence with clinical states and clinically relevant phenotypes 
over time. None of the protocols or meta-analyses in our databases had 
the requisite structure to contribute to the development of potential 
monitoring biomarkers. Nevertheless, much of the research on using 
neuroimaging outcomes for putative monitoring markers has focused 
on neurological recovery during abstinence: longitudinal studies have 
shown that both gray and white-matter degeneration in the frontal cor-
tices of individuals with SUD can recover after abstinence100,101, and in 
PET and SPECT studies, striatal dopamine transporters downregulated 
in methamphetamine use disorder can recover during abstinence102,103. 
A striking finding is the observation that individuals with SUD expe-
rience an ‘incubation’ and accumulation of drug craving following 
abstinence, which may predispose them to relapse. Another study has 
revealed that this ‘craving incubation’ is reflected in the amplitude of 
the late positive potential, a marker of attention bias to drug cues that 
follows an expected parabolic trajectory during abstinence and a fea-
ture that would be missed by relying purely on self-report measures66.

Biomarkers for intervention
Perhaps even more important than diagnostic, prognostic, or suscepti-
bility assessment of SUDs would be the use of neuroimaging biomark-
ers in interventional contexts, for example, to develop or implement 
interventions, objectively assess their neurophysiological impact in 
clinical trials or psychiatric practice, or predict their outcomes and 
therefore serve to guide intervention selection. Furthermore, neuro-
imaging biomarkers of cognitive processes such as cue-induced craving 
and reward processing can directly become targets for intervention. 
According to our systematic review of ClinicalTrials.gov protocols, 
several multi-scale brain aberrations identified in observational studies 
of SUDs are under investigation as putative interventional biomarkers. 
Some of these are illustrated in Fig. 5. Protocols with potential inter-
ventional biomarkers constitute a majority of the protocol database 
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Fig. 4 | Putative neuroimaging biomarkers reported in registered protocols 
in various SUDs and neuroimaging modalities. Biomarker types are divided 
between the substance of interest and neuroimaging modalities used in the 
protocol (510 biomarkers across 409 protocols). The horizontally aligned 
bars represent the total number of each biomarker type. The gray shades in 
the heatmap represent varying intensities of the data values. Lighter shades 

indicate lower numbers and darker shades correspond to higher numbers in each 
category. Note that some of the protocols include more than one biomarker type. 
Some protocols did not report enough details for neuroimaging modalities in a 
way that fit any biomarker’s definition. Data were collected from ClinicalTrials.
gov on 17 November 2021.
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Table 1 | Meta-analytic neuroimaging markers that have been suggested across SUDs or contexts of use. Note that this table 
includes only findings supported by more than one meta-analysis across SUDs or contexts of use, and thus only 55 out of 
the 61 meta-analyses in the full database are included

Modality Number 
of meta-
analyses

SUD COU Observations References

Gray and white matter

  dMRI (last 
study white-
matter 
voxel-based 
morphometry)

6 Alcohol, stimulants, 
opioids

Diagnostic, response Macro- and microstructural evidence of white-matter 
degeneration across the corpus callosum, internal 
capsule, and frontal and limbic projections; evidence of 
white-matter recovery with abstinence at least in alcohol 
use disorder.

39,47–49, 
207,208

 sMRI 18 Alcohol, nicotine, 
stimulants, opioids, 
cannabis

Diagnostic, response Reduction in cortical thickness and gray-matter 
volume across superior temporal, inferior parietal, 
precentral, insular, frontal, cingulate, hippocampal 
and parahippocampal cortices, and the striatum and 
thalamus; further, at least in the case of nicotine, 
agonists impact some of the brain areas where 
reductions in gray-matter volume are prominent.

39–45,177, 
197,209–217

Neurotransmitter systems and metabolites

 PET/SPECT 2 Stimulants Diagnostic Overall downregulation of striatal dopaminergic 
signaling, including decreases in dopamine release, 
reduced dopamine transporter density and availability, 
and reduced dopamine receptor density, availability, and 
binding potential.

73,74

 MRS 2 Alcohol, stimulants Diagnostic Lower N-acetylaspartate levels across frontal and 
cingulate regions suggesting decreased neuronal and 
axonal viability, lower cortical and higher subcortical 
creatine levels.

79,80

Electrophysiological activity

  EEG (response 
inhibition)

3 Alcohol, general 
(opioids, stimulants, 
nicotine, cannabis)

Diagnostic, response SUDs are associated with the attenuation of error-related 
negativity and EEG components such as N200; alcohol 
administration leads to acute reduction of error-related 
negativity.

182,191,218

  EEG (cue 
reactivity)

2 General (stimulants, 
opioids, alcohol, 
nicotine)

Diagnostic, response SUDs are associated with the enhancement of the 
salience-related P300 potential in response to drug-
related cues, which also shows signs of time-dependent 
recovery with abstinence.

181,182

  EEG (attention 
and surprise)

2 General (alcohol, 
opioids, nicotine, 
stimulants, others)

Diagnostic, susceptibility Reduced P300 amplitude in response to tasks that 
involve attention and surprise (such as the oddball 
paradigm) is associated with SUDs, and may indicate 
susceptibility to SUDs.

189,219

Hemodynamic activity

  fMRI/PET (cue 
reactivity)

11 Alcohol, nicotine, 
stimulants, opioids, 
cannabis, general

Diagnostic, susceptibility, 
response

SUDs are associated with higher fMRI drug cue reactivity 
(FDCR) across mesocorticolimbic and nigrostriatal 
regions, the precuneus, cingulate and insula, various 
frontal and temporal regions, sensory cortices, and the 
cerebellum. FDCR may indicate susceptibility as well, 
particularly striatal FDCR in adolescents.
Abstinence may lead to short-term hyperactivations in 
some of the regions, but in the long term, treatment can 
normalize FDCR across regions, particularly striatum, 
insula, and prefrontal regions.

96,178,183, 
184,220–226

  fMRI (Reward 
Processing)

4 Alcohol, general 
(alcohol, nicotine, 
stimulants, cannabis)

Diagnostic Both anticipation and receipt of reward and loss are 
associated with pervasive hypo- and hyperactivations 
across striatal, prefrontal, orbitofrontal, sensory, insular, 
and temporal cortices.

59,188,227,228

  fMRI (Response 
Inhibition)

3 Alcohol, general 
(stimulant, alcohol, 
nicotine, opioid)

Diagnostic In people with SUDs compared with healthy controls, 
response inhibition is associated with lower activations 
across cingulate, frontal, inferior parietal, insular, and 
temporal cortices.

192–194

 fMRI (Rest) 2 General (stimulants, 
heroin, alcohol, 
cannabis, nicotine)

Diagnostic Aberrant resting-state functional connectivity patterns 
across limbic, salience, frontoparietal, and default-mode 
networks.

229,230

This table includes only findings supported by more than one meta-analysis across SUDs or contexts of use, and thus only 55 out of the 61 meta-analyses in the full database are included. COU, 
context of use; dMRI, diffusion MRI.
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and contain 400 putative biomarkers. This is unsurprising since we 
reviewed ClinicalTrials.gov protocols, which consist mostly of inter-
ventional studies. Across meta-analyses, however, there were only 14 
examples of findings relevant to interventional contexts of use.

Biomarkers of intervention response and safety. The effectiveness 
of interventions for SUDs is generally assessed by measuring their 
impact on drug use, which provides little information about neurocog-
nitive recovery8. A paradigmatic group of interventional biomarkers 
is response biomarkers. In early phases of intervention development, 
‘pharmacodynamic’ response biomarkers can indicate the presence of 
a treatment effect on neuroimaging biomarkers of recognized impor-
tance in SUDs and provide some estimate of the intensity and location 
of this effect. In our systematic reviews, 365 neuroimaging outcomes 
were used as putative response/pharmacodynamic biomarkers across 
protocols, and 13 neuroimaging response markers were discovered 
across meta-analyses. Response biomarkers can be used to screen can-
didate therapeutics and prioritize those with plausible effectiveness, as 
in the ‘Fast-Fail’ initiative of the National Institute of Mental Health104. In 
this context, research could be focused on therapies that engage brain 
substrates of SUDs. For example, pharmaco-fMRI studies have shown 
that baclofen can dampen increased drug cue reactivity105,106, and PET 
imaging can directly measure the dose-dependent impact of various 
therapies on neurotransmitter systems107.

A narrower and more impactful subclass of response biomarkers 
is surrogate endpoints. These neuroimaging measures would not only 
correlate with the clinical effect of a therapy but causally lie along the 
physiological route between an intervention and its clinical effect in 
SUDs. A paradigmatic example of a surrogate endpoint in medicine 
is blood pressure, widely accepted as an outcome measure in clinical 
trials since it is known that antihypertensive medications offer clinical 
benefit through lowering high blood pressure, even though blood pres-
sure in itself is not a clinical endpoint108. Rigorous clinical trials might 
be able to establish that the impact of therapies such as dorsolateral 
prefrontal cortex stimulation on craving is mediated through the 

modulation of cue-related neural activation and connectivity, leading 
to the development of surrogate endpoints62.

Biomarkers assessed over time can be used as monitoring biomark-
ers in the context of interventions as well, establishing links between 
a neuroimaging biomarker and clinical response. For example, mul-
tiple imaging rounds in a trial of naltrexone for alcohol use disorder 
showed that naltrexone lowers ventral striatal fMRI drug cue reactivity 
from baseline and greater reduction is associated with a larger clinical 
response109, and event-related potentials recorded with EEG or MEG can 
be assessed during and after treatment to demonstrate the normaliza-
tion of event-related potential components associated with attention 
bias or error processing65.

While we classified markers that show the neural impact of novel 
compounds as response biomarkers since their protocols did not 
explicitly use them to indicate the safety of interventions, neuroimag-
ing biomarkers could also be used to gauge the safety and toxicity of 
various compounds of interest in addiction medicine. One example 
would be the use of neuroimaging to inform ongoing discussions on 
the safety of electronic cigarette products, where fMRI has been used to 
demonstrate that e-cigarette smoking may immediately induce activa-
tion across sensorimotor areas110, and sweet-tasting products may syn-
ergize with nicotine content to increase the influence of e-cigarettes on 
nucleus accumbens reactivity111. Another pertinent use case is assessing 
the abuse potential of analgesic medications. Many such therapeutics, 
and in particular opioid medications, may lead to addictive substance 
use in some individuals, and neuroimaging biomarkers of safety may 
serve as early warning signs during both drug development and treat-
ment112. Neuroimaging safety biomarkers may also be useful to assess 
the brain impact of alcohol and opioid medications in individuals with 
genetic susceptibility to addiction, such as those with certain variants 
of dopamine and opioid receptor genes113,114.

Biomarkers for treatment targeting and implementation. Data on 
the effectiveness of current interventions for SUDs remain inconsist-
ent, necessitating the development of more consistently efficacious 
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Fig. 5 | Multi-scale brain aberrations as putative neuroimaging biomarkers 
in trials for SUDs. Seven examples of brain aberrations identified in SUDs (dark 
gray boxes) that have been investigated as putative response or predictive 
biomarkers or intervention targets in protocols registered in ClinicalTrials.

gov (light gray boxes). The relevant literature is referenced in Supplementary 
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interventions and subtyping individuals with SUDs to develop person-
alized treatment protocols/plans115. Beyond providing information 
about the neural impact of treatment, neuroimaging biomarkers could 
enable individually targeted SUD treatment by reflecting a patient’s 
baseline or dynamically changing neural state. An example of this is 
targeting brain stimulation at important hubs of aberrant networks 
in each patient since electric and magnetic neuromodulation have 
connectivity-dependent effects116,117 and it has been proposed that 
both sMRI and fMRI can be used to optimally target the stimulation 
of the inhibitory frontoparietal network in patients with SUD118. The 
importance of targeting specific networks for intervention is further 
supported by recent observational evidence that brain lesions that 
affect areas functionally connected to cingulate, prefrontal, insular, 
and temporal regions can consistently induce remission in individuals 
with SUD119. In addition to using baseline neuroimaging, more sophisti-
cated technologies are paving the way for concurrent neuromodulation 
and brain imaging. These include transcranial magnetic stimulation 
and transcranial direct current stimulation with simultaneous EEG, 
MEG, fNIRS, or fMRI120–124. These methods provide immediate readouts 
of the effects of neuromodulation on network activity and can be used 
to develop ‘closed-loop’ stimulation systems where neuromodulation 
is dynamically adjusted for optimal impact125. Last, EEG and fMRI bio-
markers that are correlated with undesirable SUD-related symptoms 
such as craving have been successfully used in neurofeedback training, 
where patients with tobacco or alcohol use disorder learned to attenu-
ate these signals on the basis of dynamic feedback126,127.

Biomarkers to predict treatment effect. The final potential use case 
of biomarkers in an interventional context would be to predict the 
impact of therapies. We identified 35 neuroimaging outcome measures 
in our systematic review of protocols that serve as putative predic-
tive biomarkers, although only one relevant marker was identified 
in the systematic review of meta-analyses. As the variability in the 
effectiveness of interventions for SUDs may be, in part, due to distinct 
baseline neurocognitive states, neuroimaging biomarkers could help 
the selection of interventions most likely to ameliorate the underlying 
pathology in each patient21,128. For example, among individuals with 
alcohol use disorder, a reduction of fMRI drug cue reactivity in both 
the left putamen and the right ventral striatum can predict the effec-
tiveness of naltrexone;109,129 for individuals with cocaine use disorder, 
greater persistence of the cue-triggered brain response across the cue 
task predicts poor drug use outcome130. Machine-learning algorithms 
using task-related and resting-state fMRI data have been able to predict 
treatment response and completion in individuals with stimulant and 
heroin use disorders131,132. Structural connectivity biomarkers may also 
have predictive value: reduced structural connectivity between the 
right anterior insula and nucleus accumbens at baseline can predict 
relapse to stimulant use up to 6 months after residential treatment133.

Arguably, a robust neuroimaging biomarker of SUDs would be 
valid in several different contexts of use. Further, if the biomarker 
reflects physiological changes that are broadly important in the etio-
genesis of SUDs and in recovery, such physiological changes would 
likely be detectable with different neuroimaging modalities and in 
different substance use disorders. Several neuroimaging markers with 
converging supporting evidence across meta-analyses have been dis-
cussed in Table 1, but a particularly promising set of examples are those 
that reflect the structure, function, and connections of the striatum. 
Box 1 is dedicated to a discussion of findings of striatal involvement 
across SUDs, evidence supporting the use of striatal markers across 
neuroimaging modalities, and contexts of use.

Challenges and future directions
Despite decades of research highlighting the potential of neuroimaging 
technologies for the development and validation of biomarkers of SUDs 
and the proposal of several promising biomarkers in recent years13,134,135, 

critics have noted that substantial investment in biomedical addic-
tion research has not yet led to the development of biomarkers with 
substantial clinical utility136. There is growing awareness of the myriad 
challenges ahead of pushing neuroimaging biomarkers through the 
‘translational gap’ and into drug development and clinical practice54,137, 
and we dedicate the following sections to a reflection on these scientific, 
technical, and regulatory challenges and solutions, which we believe 
are critical in developing clinically relevant biomarkers of SUDs.

Regulatory validation of neuroimaging biomarkers
The use of neuroimaging biomarkers in clinical and drug development 
contexts is contingent on approval by relevant regulatory bodies. These 
include the FDA in the United States and the European Medicines Agency 
in the European Union, which in recent years have developed structured 
frameworks within which biomarkers can be approved and endorsed for 
use, primarily in drug development and clinical trials138,139. In the United 
States, the 21st Century Cures Act adopted the process of qualification of 
drug development tools (including biomarkers) into US law in December 
2016. Before the establishment of the drug development tool qualifica-
tion program, FDA acceptance of biomarkers as drug development tools 
happened on a sponsor-by-sponsor, drug-by-drug basis. Biomarkers 
qualified under the current framework can be used by drug developers 
for the qualified context of use. Neuroimaging biomarkers submitted 
for approval through the FDA framework (and with some differences, 
the European Medicines Agency framework) should be precisely defined 
with descriptions of the neuroimaging protocol, target populations, 
and use context for which the biomarker is to be approved.

During the validation process, a biomarker’s analytical charac-
teristics, such as reliability, validity, and natural variation, need to be 
established. This is particularly important since despite some support-
ing evidence140, there are substantial concerns about the reliability 
of commonly used neuroimaging paradigms141. Such research could 
also aid in the choice of biomarker. For example, a recent fMRI alco-
hol cue-reactivity study demonstrated that brain activations during 
constituting contrast conditions ‘alcohol’ and ‘neutral’ have higher 
reliability than the ‘alcohol versus neutral’ difference contrast142. After 
analytical validation, the biomarker should be ‘clinically validated’ 
by elucidating its etiological link to an SUD and establishing that it 
is reliably associated with current or future disease or recovery, for 
example, by presenting evidence of the existence and role of neural 
aberrations in SUDs as was attempted in this Analysis. Finally, it should 
be demonstrated that the biomarker addresses a substantial gap and 
demonstrates cost effectiveness. As an example of how these require-
ments can be met for a putative neuroimaging marker, Box 1 includes 
a brief discussion of the relevant evidence and important gaps in the 
case of markers of striatal structure and function. Besides these formal 
qualification pathways, the use of biomarkers in clinical contexts can be 
facilitated by the endorsement of a constellation of other institutions 
that develop relevant guidelines and best practice recommendations 
for SUDs. Meeting qualification standards for neuroimaging biomark-
ers requires broad collaboration and public–private partnerships, 
extensive resource sharing, and rigorous research practices. These 
qualification steps are outlined in Fig. 6.

Large-scale collaboration and multiple stakeholders in 
biomarker development
The development, validation, and impactful use of neuroimaging 
biomarkers of SUDs will depend on the formation of large, multi-site 
consortia that can effectively direct resources toward biomarker discov-
ery with harmonized research designs, starting with the ‘low-hanging 
fruit’—biomarkers with substantial bodies of supporting evidence and 
greatest potential utility, such as in intervention development. Further-
more, while translational research in the field is conducted mostly by 
academics, the developed biomarkers need to be cost effective from 
the perspective of policymakers interested in reducing the societal 
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burden of SUDs, pharmaceutical companies developing interventions 
and seeking to reduce the duration and cost of drug development, and 
regulatory bodies interested in using scientifically validated neuroim-
aging markers in approval decisions143.

Importantly, the use of neuroimaging biomarkers and the interven-
tions they are used to develop should also be acceptable, accessible, 
affordable, and desirable for individuals with SUDs, and concerns about 
neuroscientific models of addiction should be addressed23. Multi-stake-
holder engagement is complicated by gaps in knowledge and terminol-
ogy between stakeholders, differences in expectations and interests, 
power imbalances and stigma associated with SUDs, and identifying 
representative stakeholders. Effective engagement of various stakehold-
ers in biomarker development for SUDs requires designing engagement 
plans and collaboration road maps, developing common terminology, 
clarifying and communicating the purpose of the engagement and stake-
holder roles, and investing in the necessary skills and resources144–146.

Rigorous research and reporting for biomarker discovery
An essential step in the development of neuroimaging biomarkers 
is to harmonize best practices in study design, analysis, and report-
ing, especially given recent concerns about the reliability of multiple 
neuroimaging modalities147–149. While there is considerable disagree-
ment over the best neuroimaging research design practices, certain 
factors would likely improve overall methodological quality19. Larger 
sample sizes and appropriate statistical power analyses, for example, 
would improve the reproducibility of fMRI cue-reactivity studies and 
enable the ascertainment of substantive effects150. One solution is the 
collation of neuroimaging data into ‘big data’ repositories, such as the 
sMRI database maintained by the Enhancing Neuroimaging Genetics 
through Meta-Analyses International Consortium151 and task-based 

fMRI datasets made available on platforms such as OpenNeuro152, which 
can be used for large-scale analyses, hypothesis generation, and model 
validation. A growing number of multi-center initiatives such as the 
Human Connectome Project, UK Biobank, and the Adolescent Brain 
Cognitive Development project collect neuroimaging data from thou-
sands of individuals using harmonized scanning and data management 
standards across sites and may prove highly useful for the identification 
of neuroimaging markers153–155. In the absence of large-scale studies, 
meta-analyses can be used to synthesize data across neuroimaging 
studies, discover convergent findings that replicate across SUDs and 
contexts of use, and disambiguate the influence of study design and 
confounders. A summary of neural markers that have replicated across 
SUDs or contexts of use is presented in Table 1.

Another issue is the methodological heterogeneity of neuroim-
aging research. The choice of hardware, data acquisition protocol, 
pre-processing steps, and analysis pipelines can have unexpected and 
substantial effects on the results of studies using a variety of neuroim-
aging modalities156–158. While it is impossible to prescribe a similar set 
of best practices for every study, the design should be appropriate to 
specific contexts of use if the results are to contribute to biomarker 
development. Furthermore, the clarity, interpretability, and replicabil-
ity of neuroimaging research would be enhanced with pre-registered 
protocols, carefully considering essential aspects of research design 
and comprehensive reporting of methodological details159. Various 
guidelines for research design and reporting have been developed in 
recent years with various degrees of generality, such as those devel-
oped by the Committee on Best Practice in Data Analysis and Sharing 
(COBIDAS) and COBIDAS MEEG160,161 and the Addiction Cue Reactivity 
Initiative of the addiction working group of the Enhancing Neuroimag-
ing Genetics through Meta-Analyses consortium54.

Box 1
Striatal neuroimaging biomarkers in SUDs

There is overwhelming evidence that the striatum is involved in 
the pathogenesis of SUDs. Meta-analyses have shown striatal 
atrophy across substance use disorders209,210, impaired dopamine 
neurotransmission73,74, and striatal dysfunction across substances and 
task paradigms, particularly in reward-related tasks and those that 
induce craving59,188,220,221,227,231. On the basis of these observations and 
studies in animal models, major neuroscientific theories of addiction 
feature striatal dysfunction as a central cause of the aberrant reward 
processing, impulsivity, and incentive sensitization that drive SUDs7,179.

This body of literature, paired with relevant findings across 
contexts of use, provides an extensive foundation to support the 
clinical validation of neuroimaging biomarkers of striatal structure 
and function. As an example, striatal fMRI drug cue reactivity 
might indicate individual susceptibility to alcohol use disorder232, 
diagnostically93 and prognostically85 demarcate clinically relevant 
subtypes of disease, predict treatment response86, and reflect 
treatment response233 or monitor it across time109. An important 
next step would be investigating analytical properties of striatal 
neuroimaging biomarkers, data on which are sparse. There is 
evidence supporting the longitudinal stability of striatal fMRI  
drug cue reactivity234,142. There is also evidence for reasonable  
test–retest reliability of striatal PET imaging235,236 and morphometry 
and cortico-striatal integrity measures237 in non-SUD samples, 
but these should be further replicated across larger samples with 
different SUDs.

Further, there is little formal guidance and consensus on 
best methodological practices for striatal neuroimaging, which 

may differ from those for cortical neuroimaging. For example, 
a 32-channel receiving coil may be more sensitive to cortical 
signals than an 8-channel coil but less sensitive to subcortical 
activations238, and fMRI with higher field strengths seems to be 
more crucial for imaging the striatum than the cortex239. Any striatal 
neuroimaging biomarker would need to be precisely specified, with 
methodological parameters, the target population, and standard 
operating procedures selected with respect to its context of use. This 
is because measures of striatal structure, function, and connections 
are impacted by image acquisition parameters240 and processing 
and reconstruction pipelines241, behavioral task design242, operating 
parameters such as time of day243, and participant characteristics 
such as sex244 and psychiatric comorbidity107. Further research is 
required to clarify how these factors impact the clinical validity and 
analytical properties of striatal markers in different contexts of use 
and guide biomarker specification.

Last, a putative striatal biomarker needs to be cost effective, 
but there has been virtually no cost–benefit analysis of any striatal 
neuroimaging biomarker. While most of the cited literature 
supporting the clinical use of striatal neuroimaging in SUDs has used 
functional neuroimaging paradigms, it is difficult to assess striatal 
function with relatively inexpensive neuroimaging modalities such 
as EEG, and structural scans are both more affordable and already in 
widespread clinical use. Functional striatal biomarkers would likely 
be most cost effective in clinical research settings, for example, in 
facilitating the design of novel interventions and candidate screening 
in drug development104.
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Technological advancements relevant to SUD biomarker 
discovery
A variety of innovations in neuroimaging technology, data manage-
ment, and analysis may pave the way for SUD neuroimaging biomark-
ers. Among promising advances are high-field MRI with increasingly 
stronger magnetic fields, which can offer greater spatial resolution in 
structural and functional scans;162 functional MRS, which can capture 
dynamic changes in metabolites;163 and new PET radiotracers, which 
can probe underinvestigated neurotransmitter systems of interest 
to addiction medicine164. Another emerging possibility is the use of 
neuroimaging to derive subject-specific ‘fingerprints’ of brain cir-
cuitry or function, such as ‘precision functional mapping’ to identify 

individual-level functional connectomes with fMRI165 or the use of EEG 
to identify participant-specific electrophysiological patterns166,167. 
Such subject-level (rather than group-level) neuroimaging markers 
are particularly useful for biomarker development since most contexts 
of use require biomarkers that can be used to make decisions for indi-
vidual patients, and the heterogeneity of brain structure and function 
across individuals renders the translation of group-level findings to 
the individual-level problematic168,169.

It is also increasingly possible to integrate different neuroimaging 
technologies concurrently or in series and use multimodal data to probe 
multiple facets of brain structure and function in tandem: resting-
state fMRI and MRS can be utilized together to assess the relationship 
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Fig. 6 | Major steps in the development and validation of potential 
neuroimaging biomarkers for SUDs. Initially, the context(s) of use for the 
biomarker is specified, and the potential biomarker is precisely defined. 
Following analytical and clinical validation and cost–benefit analysis, the 
compiled evidence is presented for regulatory approval. The FDA evaluates the 
use of biomarkers for drug development through a biomarker qualification 
process involving submission of a letter of intent, a qualification plan, and a full 
qualification package, although a letter of support may be issued by the FDA 
to indicate its support for a biomarker before formal qualification. The use of 

neuroimaging biomarkers in clinical contexts requires initial approval by the 
FDA, but also the endorsement of a constellation of other institutions. NIDA, 
National Institute on Drug Abuse; NIMH, National Institute of Mental Health; 
NIAAA, National Institute on Alcohol Abuse and Alcoholism; SAMHSA, Substance 
Abuse and Mental Health Services Administration; APA, American Psychological 
Association; ASAM, American Society of Addiction Medicine. Figure adapted 
with permission from ref. 137. Copyright 2024 American Medical Association. All 
rights reserved, including those for text and data mining, AI training, and similar 
technologies.
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between neuromodulation-associated brain network changes and 
neurotransmitter concentrations170, functional diffuse correlation 
spectroscopy and fNIRS have been used along with EEG during and after 
brain stimulation to concurrently measure cerebral hemodynamics and 
electrical activity171, simultaneous EEG and fMRI neurofeedback might 
improve the quality of the provided neurofeedback using bimodal 
data172, and receptor maps obtained by PET can inform resting-state 
fMRI functional connectivity analysis173. These technological advances 
have co-occurred with rapid developments in informatics, data analyt-
ics, and computational infrastructure that facilitate data storage and 
sharing, biomarker discovery with increasingly sophisticated machine-
learning algorithms, and reproducible analytical practices174,175.

Theories and models of addiction
A notable challenge in biomarker development and theoretical progress 
in both addiction medicine and psychiatry as a whole is the fact that 
the Diagnostic and Statistical Manual of Mental Disorders4 is a descrip-
tive diagnostic manual, and its constructs are neither domain-based 
nor necessarily grounded in neurobiology176. SUDs are multifaceted 
disorders with complex comorbidity patterns and overlapping brain 
substrates177,178, and neuroimaging biomarkers will likely reflect the 
trans-diagnostic impairment and recovery of physiological processes 
that undergird specific cognitive domains. This highlights the impor-
tance of mechanistic models of disease (rather than manual-based 
diagnostic labels) in the development of neuroimaging addiction bio-
markers. Under most mechanistic accounts of addiction, addiction 
starts with positive reinforcement learning before other processes 
are involved7. These include excessive incentive sensitization179, for 
example, which can explain heightened reactivity to drug cues in func-
tional neuroimaging studies96,180–184. What happens later is subject to 
some contention: some emphasize a shift from initially goal-directed 
behavior to habitual and then compulsive substance use, reflected in 
neuroimaging findings of a shift in drug cue reactivity from the ventral 
to the dorsal striatum;185 while others highlight a shift from positive to 
negative reinforcement as withdrawal becomes more important, with 
some emphasizing goal-directed choice (rather than habit or compul-
sion) as individuals learn to relieve negative affect with substance use.

Other models focus on processes such as learning and executive 
control. The reward deficiency and allostasis models186, for example, 
highlight the importance of suppression and disruption of reward pro-
cessing circuits; while others focus on core deficits in value updates and 
reward learning187. These models can explain widespread neural aberra-
tions when individuals with various SUDs process non-drug gains and 
losses188 and the reduced salience of novel and surprising stimuli189. While 
the frameworks discussed in the preceding can account for frequent 
observations of impaired response inhibition190 (and corresponding 
neuroimaging aberrations during executive control tasks182,191–194), recent 
‘dual process’ accounts of addiction emphasize the broad disruption 
of top-down, deliberative processes in prefrontal and parietal regions 
together with deregulation and disinhibition of bottom-up automatic 
processes in mesolimbic circuits195. Further, recent observations suggest 
that general cognitive decline and a broad depletion of executive control 
in addiction may be particularly important to the course of disease and 
treatment196, in line with broad degenerations of cortical gray and white 
matter39,41,43,47,197. It must be emphasized that many of these contructs are 
not mutually exclusive, and multiple interacting processes may be in 
play in the development and maintenance of and recovery from SUDs.

Overall, the briefly discussed models (see ref. 10 for detailed dis-
cussion) and theories have been developed in tandem with advances 
in addiction neuroimaging and provide promising starting points for 
the development of neuroimaging biomarkers. Frameworks such as 
the impaired response inhibition and salience attribution model11, the 
Addictions Neuroclinical Assessment framework8, and the Alcohol and 
Addiction Research Domain Criteria198 aim to map addictive disorders to 
specific axes of impairment and neuroimaging research by facilitating 

hypothesis generation and the development of interpretable neuro-
imaging biomarkers linked to formal theories of addiction. Despite 
differences, these frameworks converge on the involvement of positive 
valence, negative valence, and cognitive control systems in SUDs and 
have been used to propose neuroscience-informed classifications of 
interventions10,199. Complementing these theoretical developments, 
computational modeling of processes of interest in addiction neuro-
science (such as drug cue reactivity and aberrant decision making) can 
mechanistically represent the interplay between neural mechanisms 
and behavior and link neuroimaging markers, underlying neurocogni-
tive pathology, and signs and symptoms of SUDs200,201.

Conclusion
Modern neuroimaging technologies can probe brain structure and 
function at unprecedented resolution and have already produced new 
insights into the neurocognitive mechanisms of addiction and recovery. 
The rapid pace of technological advancement, increasing availability, 
and growing recognition of neuroimaging paradigms in recent years has 
contributed to an explosion in their use within clinical and translational 
addiction medicine: from 2015 to 2021, an average of 35 protocols with 
neuroimaging as one of the registered outcome measures in people 
with SUDs were registered on ClinicalTrials.gov every year, more than 
10 times the average number from 2000 to 2006. Especially popular are 
fMRI (268 protocols) and EEG (50 protocols), which dynamically assess 
brain function; PET (71 protocols) and MRS (35 protocols), which probe 
neurotransmitter systems and their interactions with radioligands; and 
structural MRI (35 protocols), which can be used to investigate brain 
structure at various scales. These paradigms can be systematically 
utilized to discover and develop biomarkers, measures that objec-
tively reflect biological processes involved in both the progression of 
substance use and SUDs and the physiological and clinical impact of 
interventions for these disorders. Particularly promising are several 
neuroimaging markers that have replicated in meta-analyses across 
contexts of use and disorders. Technological and scientific advance-
ments, rigorous research practices, and multi-stakeholder engagement 
can facilitate the development of institutionally approved neuroimag-
ing biomarkers that enable impactful, personalized interventions for 
SUDs to be used in clinical practice in the foreseeable future.

Methods
The present Analysis is informed by two systematic reviews. The first 
covered SUD clinical research protocols that include neuroimag-
ing outcome measures, obtained by querying the ClinicalTrials.gov 
repository between inception and 17 November 2021 (Supplementary  
Fig. 1a). This systematic review yielded a final result of 409 protocols. 
The second systematic review was conducted on PubMed, focusing 
on meta-analyses of neuroimaging studies of SUDs and finding 61 
meta-analyses from which 83 meta-analytic findings were extracted 
(Supplementary Fig. 1b). Please refer to the Methods section of the Sup-
plementary Information for more details on the methods, and to the 
OSF repository202 for the search protocol and analysis scripts. Although 
we used widely known and inclusive databases of protocols and meta-
analyses, we did not triangulate the results with other databases. Our 
approach likely leads to some missing protocols and papers, and in 
particular an under-representation of protocols from countries that 
use registration platforms other than ClinicalTrials.gov.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The protocol and data for this systematic review are available on the 
open science framework (OSF) website (https://osf.io/79uc3/?view_onl
y=1d92a6fd769f40119464b156f0c88912). The ClinicalTrials.gov search 
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engine was used through the Study Fields query URL (https://Clinical-
Trials.gov/api/gui/ref/api_urls) for searching the clinical trial protocols. 
For full-text screening, all available records were downloaded from 
the Aggregate Analysis of ClinicalTrials.gov (AACT) Database, Clinical 
Trials Transformation Initiative (CTTI) database203 (https://aact.ctti-
clinicaltrials.org/) for the second stage. For searching the systematic 
reviews and meta-analyses, studies were identified using the Medline/
PubMed database (https://pubmed.ncbi.nlm.nih.gov/).

Code availability
All codes are available on the study’s OSF project repository at the 
following link: https://osf.io/79uc3/?view_only=1d92a6fd769f4011
9464b156f0c88912. Data analyses and illustrations were conducted 
using R version 4.0.5204, with dplyr205 and ggplot2206 packages. The 
codes for data illustrations are freely available on the OSF repository 
of this project.
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