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ABSTRACT
BACKGROUND: Deeper phenotyping may improve our understanding of depression. Because depression is het-
erogeneous, extracting cognitive signatures associated with severity of depressive symptoms, anhedonia, and af-
fective states is a promising approach.
METHODS: Sequential sampling models decomposed behavior from an adaptive approach-avoidance conflict task
into computational parameters quantifying latent cognitive signatures. Fifty unselected participants completed clinical
scales and the approach-avoidance conflict task by either approaching or avoiding trials offering monetary rewards
and electric shocks.
RESULTS: Decision dynamics were best captured by a sequential sampling model with linear collapsing boundaries
varying by net offer values, and with drift rates varying by trial-specific reward and aversion, reflecting net evidence
accumulation toward approach or avoidance. Unlike conventional behavioral measures, these computational
parameters revealed distinct associations with self-reported symptoms. Specifically, passive avoidance
tendencies, indexed by starting point biases, were associated with greater severity of depressive symptoms (R =
0.34, p = .019) and anhedonia (R = 0.49, p = .001). Depressive symptoms were also associated with slower
encoding and response execution, indexed by nondecision time (R = 0.37, p = .011). Higher reward sensitivity for
offers with negative net values, indexed by drift rates, was linked to more sadness (R = 0.29, p = .042) and lower
positive affect (R = 20.33, p = .022). Conversely, higher aversion sensitivity was associated with more tension
(R = 0.33, p = .025). Finally, less cautious response patterns, indexed by boundary separation, were linked to
more negative affect (R = 20.40, p = .005).
CONCLUSIONS: We demonstrated the utility of multidimensional computational phenotyping, which could be
applied to clinical samples to improve characterization and treatment selection.

https://doi.org/10.1016/j.bpsc.2024.02.005
In the United States, the number of adults experiencing
depression-related symptoms has quadrupled over the past 4
years (1,2). Probing distinctions between cognitive signatures
of depressive and anhedonic symptoms is crucial because this
differentiation not only enhances our comprehension of
anhedonia but also contributes to a deeper understanding of
depression. This is particularly significant because increased
anhedonia severity has been linked to worse trajectories in
depression (3–5), increased nonresponsiveness to treatments
(6–8), and poorer quality of life (9).

Depression and anhedonia have both been associated with
multiple affective states (10,11). Characterizing depression,
some studies have reported diminished positive affect and
excessive negative affect (12,13), while others have found
pronounced sadness but intact positive affect (11,14–16).
ª 2024 Society of Biological Psychiatry. Published by Elsevier Inc.
ical Psychiatry: Cognitive Neuroscience and Neuroimaging July 2024

Downloaded for Anonymous User (n/a) at Harvard University
2024. For personal use only. No other uses without permission
Characterizing anhedonia, some studies have reported flat and
blunted responses to pleasurable experiences (17,18), while
others have found shorter and/or more variable positive af-
fective responses to pleasurable experiences (19,20). Conse-
quently, this wide range of affective states often manifests in
diverse symptom profiles (i.e., phenotypes). Therefore, studies
are needed to deconstruct these heterogeneous symptom
profiles. For example, distinguishing anhedonia from other
symptoms of depression may improve diagnostics and treat-
ment selection, but to date, similarities and differences among
cognitive signatures of dimensional depression, anhedonia,
and affective states have rarely been explored.

Here, we characterize latent cognitive signatures of
depressive symptoms, anhedonia, and affective states by
decomposing behavior from (neuro)cognitive tests with
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process-oriented models. This approach is known as multidi-
mensional computational phenotyping (21–31). We focus on
symptom severities rather than diagnostic categories, consis-
tent with the conceptualization that mental health conditions
generally exist on a continuum rather than as categories
(24,31,32). First, we introduce the approach-avoidance conflict
(AAC) task as a promising probe for characterizing depressive
phenotypes (33–36), highlighting several novel features. Next,
we introduce sequential sampling models as powerful
process-oriented analytics.

Studying AAC Behavior

In AAC paradigms, participants decide to approach or avoid
offers that include both rewarding and aversive features (37).
Varying the relative magnitude of these rewarding and
aversive features produces offers with different conflict
levels. Recent studies found that individuals with major
depressive disorder were characterized by distinct neural
and behavioral patterns compared to individuals without
major depressive disorder (28,38). Specifically, Pedersen
et al. (28) found that people with major depressive disorder
were less sensitive to reward and had lower tendencies to
approach offers. However, past studies focused on cate-
gorical assessments and did not discriminate between
cognitive signatures of dimensional depression, anhedonia,
and affective states.

Using AAC paradigms to extract fine-grained signatures of
different depression-related constructs requires modification
of task specifics to increase their clinical sensitivity. This is
because reward and aversion responses in AAC paradigms
can be driven by multiple underlying constructs that need to be
dissociated. For example, participants’ experienced conflict
level depends on their so-called marginal rate of substitution
between reward and aversion—that is, the willingness to
accept an additional unit of aversion for an additional unit of
reward. Conversely, participants’ sensitivity to changes in
either reward or aversion depends on their marginal utilities.1

Ultimately, reward and aversion responses can also be influ-
enced by asymmetric costs of approach relative to avoidance
choices (28,39). All these concepts can affect decision-making
processes differently and may involve distinct neural pathways
and signaling (40,41).

We implemented a modified AAC task (Figure 1A) to
distinguish between the aforementioned concepts. First, offers
were composed of reward and aversion by using money and
shock as reinforcers. This allowed us to calibrate offers based
on individuals’ marginal rates of substitution and para-
metrically manipulate the amount of offered reward and pun-
ishment. Second, offers were created on a trial-by-trial basis to
separately probe individuals’ reward and aversion sensitivities.
Third, we distinguished between positive and negative do-
mains because reward and aversion sensitivity may depend on
the sign of an offer’s net value (42–45). Fourth, we distin-
guished between instrumental responses that are congruent
with Pavlovian approach/avoidance tendencies, making them
1The change in subjective value for a marginal increase in reward,
keeping constant aversiveness. Marginal utilities reflect the
relative change of consumed reward and aversion.
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more automatic than those that are incongruent with these
tendencies (Figure 1B) (39,46,47).

Sequential Sampling Modeling

We focused on a process-oriented account by fitting
sequential sampling models (SSMs) to behavioral data from
the AAC task (24,48). Conventional performance measures and
alternative cognitive models (e.g., signal detection theory
models) focus either on response times (RTs) or response
frequencies (24). Conversely, SSMs simultaneously account
for the entire RT distribution and the relative frequency of each
response option, thus providing richer analytical information
(49,50). SSMs simulate behavior with processes that sequen-
tially accumulate information up to a decision threshold
(49,51–53). This allows the decomposition of behavior into
distinct, quantifiable mental components with established
psychological interpretations.

The diffusion decision model (54) is a prominent SSM
(Figure 2A) with 4 main parameters (28,50). Specifically, drift
rate (v) reflects the quality of evidence accumulation. In our
context, higher drift rates indicate easier decisions, such that
evidence accumulates more rapidly, resulting in faster RTs and
more frequent approach choices. Boundary separation (a) re-
flects the required amount of evidence for reaching decisions.
Larger boundary separations yield more consistent choices
(i.e., less variability in choosing different actions for offers with
similar levels of evidence), resulting in slower (and more
skewed) RTs. Starting points (z) indicate initial response biases
(e.g., due to asymmetric costs of stimulus-response mapping).
In our context, larger starting points indicate greater biases
toward approach choices, which leads to large changes in the
tail and leading edge of the RT distributions. Finally, longer
nondecision time (Ter) indicates longer perceptual encoding
and response execution times that occur outside the decision
process, shifting the entire RT distribution but without affecting
its shape.

Only a few studies have examined AAC behavior with
computational models, and most of them did not use SSMs
(55–59). The few studies that applied SSMs only used the
classic diffusion decision model and focused on categorical
assessments of depression (28,34,60,61). However, different
SSMs assume distinct dynamics in decision-making pro-
cesses that can lead to different behavioral predictions
(49,52,62,63). For example, collapsing boundaries (Figure 2B)
are used to model the declining need for additional evidence as
time passes (e.g., when participants become increasingly
impatient or when externally or internally imposed response
deadlines are imposed) (64–67). Therefore, we tested different
models to find the one that accounted best for the behavioral
pattern (24,68).

METHODS AND MATERIALS

Participants

Fifty adults were recruited through the Harvard Psychology
Community Study Pool. Inclusion was restricted to adults
between ages 18 and 45 years who were fluent in English and
not color blind; note that this study pool does not consist
solely of Harvard students. Participants were not preselected
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Figure 1. Approach-avoidance conflict task.
(A) Participants decided to approach or avoid
offers with monetary reward (magnitude repre-
sented by blue bars) and electrical shock
(magnitude represented by red bars). (B) Trials
were counterbalanced including either Pavlovian
response-congruent trials or Pavlovian
response-incongruent trials.
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based on clinical measures or evaluated using clinical in-
terviews. They received $22.50 for performing the AAC task
and completing the clinical questionnaires and a performance-
based bonus (maximal $27.10). For process-oriented compu-
tational analyses, all 50 datasets were used, whereas 2 par-
ticipants were omitted from questionnaire-based analyses
because they did not complete the self-report assessments.

AAC Paradigm

A total of 105 offers were presented one at a time. Each offer
was composed of a monetary reward component and an
aversive (electrical shock) component displayed by horizontal
bars (Figure 1). After a fixation period, response symbols (i.e., a
plus sign represented approach choices, while a square rep-
resented avoidance choices) were simultaneously presented
with the offer. Offers were dynamically created on a trial-by-
trial basis for each participant. See the Supplement for addi-
tional details.

Beck Depression Inventory-II

The Beck Depression Inventory-II (69) assesses the severity of
depressive symptoms (70,71). Participants rate each symptom
during the past 2 weeks on a scale from 0 (not feeling or
experiencing the symptom) to 3 (feeling or experiencing the
symptom to an extreme extent). Raw scores range from 0 to
63, with scores below 13 indicating minimal to no depression
728 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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severity. Scores from 14 to 19, 20 to 28, and.29 indicate mild,
moderate, and severe depression severity, respectively.

Snaith-Hamilton Pleasure Scale

The Snaith-Hamilton Pleasure Scale (72) assesses hedonic
capacity (41,73,74) and consists of 14 statements that assess
an individual’s capacity to experience pleasure. Participants
indicate their agreement with each statement, considering the
previous few days, on a scale from 1 (definitely agree) to 4
(definitely disagree). Total scores range from 14 to 56, with
higher scores representing more anhedonia.

Positive and Negative Affect Schedule

The Positive and Negative Affect Schedule (PANAS) (75) as-
sesses positive affect and negative affect. Respondents indi-
cate how strongly they identify with 20 descriptions on a scale
of 1 (very slightly or not at all) to 5 (extremely) based on their
mood during the past 2 weeks (75). The PANAS yields 2 scores
(PANAS–positive affect and PANAS–negative affect) ranging
from 10 to 50, with higher scores indicating greater levels of
positive or negative affect.

Visual Analog Mood Scale

The Visual Analog Mood Scale (76) assesses current mood
states. Participants view horizontal lines ranging from 0 to 100,
each corresponding to a bipolar mood spectrum: happy-sad,
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Figure 2. Computational account of behavior
in the approach-avoidance conflict task
decomposed decision processes into distinct
and quantifiable latent cognitive components.
(A) The diffusion decision model [Ratcliff (54)]
simulates decisions by noisy evidence pro-
cesses that evolve over time toward one of the 2
boundaries that represent the 2 response op-
tions. The set of model parameters (e.g., Ter, z, a,
v) reproduces behavior, whereby each param-
eter quantifies a distinct cognitive signature of
the decision dynamics. (B) An alternative
sequential sampling model with linear collapsing
decision boundaries that presumes different
decision dynamics than the diffusion decision
model.

Multidimensional Computational Phenotyping
Biological
Psychiatry:
CNNI
tense-relaxed, and friendly-hostile. Participants choose a point
on each line that best characterizes their current mood. We
converted the scores on each scale such that higher scores
indicated more negative affect.

Mood and Anxiety Symptom Questionnaire

The Mood and Anxiety Symptom Questionnaire (77) assesses
symptoms related to anxiety and depression. Participants rate
the presence of 62 symptoms during the past week on a scale
from 1 (very slightly or not at all) to 5 (extremely). We used the
anxiety-related subscores—general distress: anxiety and
anxious arousal—to account for anxiety-related symptoms.

Cognitive and Behavioral Avoidance Scale

The Cognitive and Behavioral Avoidance Scale (78) assesses
avoidance behavior associated with anxiety and depression.
Thirty-one items describe different avoidant behaviors that
participants rate on a scale from 1 (not at all) to 5 (extremely). A
higher score indicates more avoidance tendencies.
Biological Psychiatry: Cognitive Neuroscience and
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Questionnaire Assessment

All scales had excellent internal reliability (Cronbach’s alpha
ranging from 0.82 to 0.94) (see the Supplement and Figure S1).

Analytics

We fit different versions of SSMs to single-trial RTs and
choices within a Bayesian hierarchical framework using the
open-source toolbox HDDM (64,65,79) (see the Supplement).
Then, we selected the best model in terms of both deviance
information criterion and posterior predictive checks. Because
offers (i.e., presented reward, aversiveness, conflict) varied on
each trial, model parameters specified by these stimulus at-
tributes also varied on a trial-by-trial basis. We provide model
comparison in the Supplement and focus on clinical relation-
ships with the best-fitting model. The Supplement also pro-
vides parameter recovery assessments by generating
simulated data (using the participants’ offers and the estimated
model parameters as inputs) and then determining whether the
fitted parameters were recovered. We examined posterior
Neuroimaging July 2024; 9:726–736 www.sobp.org/BPCNNI 729
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2Follow-up analyses showed a strong positive association between
depression severity and severity of universal avoidance
behavior (R = 0.81, p , .001) as measured by the total score on
the Cognitive and Behavioral Avoidance Scale (see Methods
and Materials). Cognitive and Behavioral Avoidance Scale–
related avoidance severity was also solely associated with
longer nondecision time (R = 0.31, p = .031).
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distributions of estimated coefficients to assess their signifi-
cance in simultaneously predicting RTs and choices on a trial-
by-trial basis. For brevity, we report point estimates (posterior
means) and 95% CIs for all covariates in the Supplement.

Computational Phenotyping

To explore links between symptoms and computational model
parameters, we first conducted correlational analyses between
the parameters of the best-fitting model and raw questionnaire
scores. We examined the linearity of correlations with scat-
terplots (Supplement). After identifying statistically significant
associations, we assessed the clinical relevance of these as-
sociations with multivariate regression models. Specifically,
the questionnaire scores served as dependent variables, while
the model parameters served as predictors. Covariates were z
scored before entering the regression models. We compared
model performance with F test analyses. We provide additional
sensitivity analyses in Tables S8 and S9. To establish the
benefits of SSM parameters over conventional performance
measures, we estimated multivariate regression models with
mean RTs and choice frequencies as predictors (with severity
scores as dependent variables).

RESULTS

Our sample (n = 50) included 35 women (mean age = 29 years,
SD = 7 years) with a broad range of symptom severity related
to depression and anhedonia (but low levels of anxiety) (see
Table S1 and Figure S2).

Relative Frequency and Speed of Decisions
Depended on Domain Type

Figure 3 simultaneously presents choice frequencies and RT
quantiles. Offers with positive net values (reward minus aver-
siveness) comprise the positive domain, while those with
negative net values comprise the negative domain. Across
both domains, the frequency of approach decisions increased
as the offers’ net values increased. This pattern is consistent
with an evidence accumulation model wherein the strength of
net evidence accumulation (drift rate) for approach is propor-
tional to the difference between reward and aversion.

Models With Linear Collapsing Boundaries
Performed Best

The SSM with linear collapsing boundaries outperformed other
SSM versions in terms of both the deviance information cri-
terion and posterior predictive checks (Tables S2, S3;
Figures S3, S4). Overall, simulations showed good parameter
recovery, particularly for the parameters that are included in
the main analysis presented below (Figure S5). The recovery of
drift rates for the positive domain was poorer than for the
negative domain, leading to lower power to detect effects in
the positive domain. Figure S6 shows that this was due to the
trial-by-trial creation of offers, which led to a higher sampling of
reward-aversion combinations for the negative domain (due to
less consistent choices of approach relative to avoidance) than
the positive domain. Therefore, we do not overly interpret the
difference between positive and negative domains.

The best-fitting model (Figure 3B; Figure S7) included linear
boundary collapses that varied by conflict (defined as the
730 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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absolute difference between reward and aversion). Drift rates
toward approach varied by reward, aversion, and domain type.
Higher conflict was associated with decreased boundary
separation (a: mean posterior point estimate b = 20.035, SD =
0.017) and slower collapsing rates (q: b = 20.031, SD = 0.012).
Statistics for posterior distributions are presented in Table S4,
and correlations between parameters are provided in
Figure S8.

Multidimensional Computational Phenotyping

The severity of depression and anhedonia were moderately
correlated (R = 0.51, p # .001). Correlational analyses between
best-fitting model parameters and questionnaire scores iden-
tified cognitive signatures of depression severity, anhedonia,
and affective states (Figure 4A). Figure 4B, C shows the linear
associations for 2 parameters (also see Figures S9 and S10).

Distinguishing Between Depressive and Anhedonic
Symptoms

Greater depression severity was associated with weaker
approach biases on a Pavlovian congruent (passive avoidance)
trial (zPBc: R = 20.34, p = .019) (Figure 4A), accounting for
asymmetric effects in the RT distributions of avoidance versus
approach choices. Moreover, greater depression severity was
associated with longer nondecision times (Ter: R = 0.37, p =
.011) (Figure 4A), accounting for right-shifted RT distributions
of both choice types.2

A multivariate regression model with depression severity as
the dependent variable and computational parameters (Ter,
zPBc) as independent variables showed that depression
severity was related to both nondecision time (Ter: coefficient
b = 0.319, SD = 0.134, p = .022) and passive avoidance ten-
dencies (zPBc: b = 20.286, SD = 0.134, p = .038), adjusted
R2 = 0.179. Subsequent F test analyses illustrated that this
multivariate model (M1), which included both parameters as
main effects, outperformed alternative, univariate models
(Table S5).

Dissecting Reward and Aversion Sensitivity and
Their Associations With Affective States

Increased reward sensitivity in the negative domain (Figure 4A:
vreward,neg) was associated with lower positive affect (p = .022)
and more sadness (p = .042). This means that for adults who
endorsed lower positive affect and more sadness, marginal
reward increases were less effective in switching choices from
avoidance to approach when offers had negative net values.

While positive affect and sadness were inversely related to
reward sensitivity in the negative domain, more tension was
associated with increased aversion sensitivity in that domain
(vaverse,neg: p = .025) (Figure 4A). More tension was also
associated with faster decision boundary collapses as conflict
increased (qconflict: p = .049) (Figure 4A). However, the
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Figure 3. Reducing conflict increased the frequency of approaches and enhanced the consistency of decisions. (A) Quantile-probability plot for offers that
were equally binned (for each domain separately) into 4 conditions (highest, higher, lower, lowest) based on their net values. Note that offers were binned for
illustration purposes only. The x-axis represents choice frequency of approach (filled symbols) and avoidance (unfilled symbols). Vertical columns represent the
quantile response times, referring to the 0.1, 0.3, 0.5 (median), 0.7, and 0.9 quantiles when moving from bottom to top. As conflict decreased, approaches
occurred more frequently, and their speed became less dispersed (more consistent). The 2 domains also induced distinct effects on the relative speed of
approach vs. avoidance decisions. (B) Graphical representation of the best-fitting model that included linear collapsing boundaries. Shaded nodes represent
observed variables, and nonshaded nodes represent estimated parameters. Circles represent continuous variables; squares represent discrete variables.
Conflict refers to the absolute difference between reward and aversion and is therefore computed and double bordered. Drift rates varied by offers and their
domains, while boundary separation and their linear collapses varied by conflict. Starting points varied by active/passive approach tendencies. q, angle of
linear collapse; a, boundary separation; Ap, approach; Av, avoidance; D, domain; P, Pavlovian congruency; PavBias, Pavlovian bias; RT, response time; S,
subjects; T, trials; Ter, nondecision time; v, drift rate; z, starting points.
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multivariate model (M1) with tension as the dependent variable
and both parameters (vaverse,neg, qconflict) as main effects did not
perform better than a univariate model (M2) with only vaverse,neg
as a covariate (Table S5). Therefore, tension seemed to be
predominantly associated with increased aversion sensitivity in
the negative domain.
Cognitive Signatures of Negative Affect

More negative affect was associated with decreased boundary
separation (a: p = .005) (Figure 4A), leading to less consistent
response patterns for offers close to the border of the positive
and negative domain. Additionally, more negative affect was
associated with more active approach tendencies (zPBi: p =
.023) (Figure 4A). Multivariate regression models revealed an
association between the magnitude of negative affect and a
main effect of boundary separation (a: b = 20.366, SD = 0.128,
p = .007) and its interaction with active approach tendencies
(a-by-zPBi interaction: b = 20.335, SD = 0.131, p = .014), but
the main effect of active approach was no longer significant
(zPBi: b = 0.137, SD = 0.135, p = .318), adjusted R2 = 0.272.
Therefore, participants with less cautious response patterns
exhibited more negative affect, even more so if they also
demonstrated active approach tendencies. Subsequent F test
analyses showed that the multivariate model (M1) that included
both model parameters and their interaction outperformed
alternative multivariate and univariate models (Table S5).
Biological Psychiatry: Cognitive Neuroscience and
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Computational Phenotyping Versus Summary
Statistics

Next, we evaluated whether computational parameters were
better predictors of clinically relevant constructs than con-
ventional performance measures. Figure 5 shows the esti-
mated coefficients from multivariate regression models with
clinical constructs (1 per subplot) as dependent variables.
Model A included conventional performance measures as
covariates, while models B and C included computational
parameters as covariates. As marked by the asterisks (indi-
cating statistical significance) in Figure 5, only the computa-
tional parameters were related to clinical constructs (except for
the case where mean RT was related to negative affect, shown
in Figure 5C). Additional statistics are provided in Tables S6
and S7.

DISCUSSION

In an unselected community sample with varying symptoms,
we probed cognitive signatures related to depressive symptom
severity, anhedonia, and affective states in an AAC task with
computational modeling. The SSM that accounted best for the
decision dynamics included linear collapsing boundaries that
varied by conflict, starting points that varied by response
modes, and domain-specific drift rates that distinguished be-
tween reward and aversion sensitivity. Critically, this process-
oriented account deconstructed behavior into separate and
Neuroimaging July 2024; 9:726–736 www.sobp.org/BPCNNI 731
sity from ClinicalKey.com by Elsevier on September 13, 
sion. Copyright ©2024. Elsevier Inc. All rights reserved.

http://www.sobp.org/BPCNNI


Figure 4. Different cognitive characteristics of depressive and anhedonic symptoms and affective states. (A) Depressive symptoms, anhedonia, and af-
fective states were correlated with distinct cognitive signatures as indexed by varying model parameters (a refers to boundary separation, cD refers to the
domains [positive, negative], PB refers to the Pavlovian response incongruent/congruent trials, Ter refers to nondecision time, q refers to angle of linear
collapse, v refers to drift rate, and z refers to starting points. Significant (p values , .05 and unadjusted for multiple comparisons) correlations are surrounded
by red boxes. For correlation pairs that showed a moderate to strong correlation strength (R$ 0.30), we also estimated p values adjusted using false discovery
rate correction. The correlations that showed an adjusted p value , .05 are also marked by an asterisk. Figure S9 shows the complete matrix including
significant and nonsignificant correlations. (B) Linear association between anhedonia and starting point bias for Pavlovian-congruent trials. Black dots indicate
data. Means (solid lines) and corresponding 95% CIs are shown as shaded intervals. (C) Linear association between sadness and drift rate for marginal reward
changes in the negative domain. BDI, Beck Depression Inventory; Corr, correlation; PANAS, Positive and Negative Affect Schedule; SHAPS, Snaith-Hamilton
Pleasure Scale; VAMS, Visual Analog Mood Scale.
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quantifiable components (cognitive signatures) that were
associated with distinct clinical constructs. We also demon-
strated the utility of computational phenotyping over conven-
tional performance measures by showing that, with one
exception, SSM parameters were more predictive of symptom
scores.

Our adaptive AAC task, together with computational modeling,
allowed us to separate behavioral effects due to conflict and
impatience (indexed by boundary separation and boundary col-
lapses), response biases (indexed by starting points), and reward
and aversion sensitivity (indexed by drift rates). In previous
studies, estimated reward and aversion sensitivity could have
been influenced by individual differences in preferences, marginal
732 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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rates of substitutions, and/or differences in relative potency,
timing, and duration of reward and aversion (41,80).

Anhedonia and depressive symptoms were both associated
with more passive avoidance tendencies. However, greater
depressive symptoms were uniquely associated with longer
nondecision times. At first, this may seem to contradict find-
ings from previous studies that found depression character-
istics to manifest in drift rates and starting point biases (81,82).
However, these studies focused on categorical assessments
of depression and used tasks (e.g., perceptual discrimination
tasks) that are meant to tap into other cognitive constructs.
This is important to consider because task specifics determine
the precise interpretations of model parameters (24).
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Figure 5. Computational parameters were correlated with symptom scores, whereas summary statistics (mean frequency rates and mean response times)
were not. Shown are regression coefficients (means and SDs) of different models specified subsequently. Asterisks indicate significant regressors (p , .05).
Regression outputs are provided in Tables S5 and S6. (A) Models with depression severity as the dependent variable. Model A included main effects of mean
approach frequency (MAR) and mean response time (MRT) as covariates. Model B included main effects of nondecision time (Ter) and starting point bias on
Pavlovian-incongruent trials (zBiasi) as covariates. (B) Models with anhedonia severity as the dependent variable. Model A included main effects of MAR and
MRT as covariates. Model B included the main effect of starting point bias on Pavlovian-congruent trials (zBiasc) as covariate. (C) Models with negative affect
(NA) as the dependent variable. Model A included main effects of MAR and MRT as covariates. Model B included main effects of boundary separation (for
average conflict trials) and starting point bias on Pavlovian-incongruent trials (zBiasi) as well as their interaction as covariates. (D) Models with tension severity
as the dependent variable. Model A included main effects of MAR and MRT as covariates. Model B included the rate of the boundary collapse on trials with
higher conflict than average (qconflict) as covariate. Model C included aversion sensitivity (indicated by drift rate) in the negative domain (vaverse,neg) as covariate.
BDI, Beck Depression Inventory; PANAS, Positive and Negative Affect Schedule; SHAPS, Snaith-Hamilton Pleasure Scale; VAMS, Visual Analog Mood Scale.
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Therefore, the specifics of our task (i.e., forming a represen-
tation of reward relative to aversion by extracting the relative
size of horizontal bars without providing an explicit reference
point) might have made it more sensitive to detecting clinical
differences in early-stage components of decision processes.

Clinical measures of depression and anhedonia comprise
heterogeneous symptom profiles. Therefore, it is not surprising
that measures of more specific affective states show stronger
associations with reward and aversion sensitivities. Our find-
ings highlight that distinct latent cognitive signatures (quanti-
fied and estimated by the computational model parameters)
can help to define different phenotypes (e.g., decreased pos-
itive affect in a subgroup of people with depression) (83,84).

Higher positive affect was associated with decreased
reward sensitivity (in the negative domain). This is consistent
with previous research suggesting that positive affect can lead
to optimistic biases in negative contexts and therefore less
Biological Psychiatry: Cognitive Neuroscience and
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sensitive responses to changes in reward (85). Moreover, we
found that more sadness was associated with increased
reward sensitivity in the negative domain. Because depression
can lead to reduced positive affect (10,83) and/or increased
sadness (17), our study shows how these affective states are
linked to different decision-making biases, in addition to those
influenced by the severity of depression itself.

Higher negative affect was associated with both elevated
approach under active response mode and less consistent
choice patterns for offers with average conflict levels. It is
intriguing that positive and negative affect as measured by the
PANAS (75) mapped onto different model parameters. How-
ever, this finding is consistent with the notion that positive and
negative affect are divergent concepts rather than 2 sides of
the same coin (86–89).

Tension has been proposed as one of the defining com-
ponents of mood (90). We found more tension to be associated
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with increased urgency signals (more impatience) as conflict
increased (i.e., faster collapsing decision boundaries). This is
consistent with previous research that associated relaxation
(the opposite end of the Visual Analog Mood Scale spectrum
from tense to relaxed) with low urgency signals (90).

Limitations and Outlook

We focused on 2 widely used measures to assess severity of
depression [Beck Depression Inventory-II (69)] and anhedonia
[Snaith-Hamilton Pleasure Scale (72)] and a few affect and
mood measures known to be modulated by depression. More
research is needed to link cognitive processes to other clinical
measures that are sensitive to various aspects of depression
and anhedonia. Specifically, future studies should target larger
sample sizes and sample across the entire severity spectrum,
as well as consider categorical assessments, comorbid di-
agnoses, and sex differences to further increase the general-
izability of our results (74,77). While our sample showed only
marginal variability in anxiety severity, future studies that apply
multidimensional computational phenotyping are needed to
dissociate anxiety-related and depression-related cognitive
signatures as well as possible distinct neurobiological mech-
anisms. Finally, task design and model configurations should
be co-developed to guarantee optimal parameter recovery. We
emphasize that some model parameters showed better re-
covery in supplementary recovery analyses. While we focused
our interpretation on the model parameters that showed robust
recovery, other relationships may exist between parameters
and scores that we did not have sufficient power to detect
(e.g., measurement errors) due to a restricted range of
symptoms.

The main purpose of this study was to explore associations
between model parameters and symptom severity of depres-
sion, anhedonia, and affective states using an adaptive AAC
task and computational modeling. These associations need to
be tested more rigorously in future studies that also include
more representative samples as detailed above.

Understanding how different affective states map onto
distinct cognitive biases is important because it may help to
define phenotypes of depression as well as new mechanisms
that can be targeted in clinical interventions (26,74,91–93).
Identifying how different affective states manifest in behavior is
also critical for differential diagnostics and for assessing other
co-occurring disorders (e.g., attention-deficit/hyperactivity
disorder) that are often also characterized by mood distur-
bances but due to distinct hypothesized mechanisms
(26,31,94,95).
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Supplementary Materials 

Ethics 

All procedures of this work comply with the ethical standards of the relevant national and 

institutional committees on human experimentation and with the Helsinki Declaration of 1975 (1). 

Study procedures 

After the participant provided consent, the experimenter attached two rectangular surface 

electrodes (Coulburn Instruments, Holliston, MA, USA) to the participant’s right ankle. A 

calibration determined 10 stimulus intensities that induced shock levels from a slightly 

uncomfortable feeling that would still affect decision-making in the task (shock level 1) to a highly 

aversive (but not painful) feeling (shock level 10). After calibration, participants received task 

instructions displayed on a computer screen. 

Shock calibration  

Electrical stimulation was generated by a Digitimer DG2A Train/Delay generator 

(Digitimer, Welwyn Garden City, UK) that generated pulse trains of 500ms at 50Hz and delivered 

shocks at this frequency via a DS8R (Digitimer DS8R Biphasic Constant Current Stimulator, 

Digitimer, Welwyn Garden City, UK). The two electrodes attached to the participant’s right ankle 

were used for stimulation. 

At the beginning of the shock level calibration procedure, participants were instructed that 

the procedure determines their individual level 1 stimulation (minimum) and level 10 stimulation 

(maximum). Participants were told that level 1 should be slightly uncomfortable (like a light pinch) 

but still carry some weight in their decision-making and that level 10 should be maximally 

uncomfortable without being painful. The calibration procedure started by applying a 1mA 

stimulation and then proceeding in steps of 1mA (or smaller increments if necessary) until the 
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participant expressed that the stimulation was slightly uncomfortable. At this point, participants 

were asked how they would feel about taking the slightly uncomfortable stimulation for 5 cents, 

to determine whether this level of stimulation carried some weight in their decision-making. If 

they reported that they would take this offer (stimulation level in question for 5 cents) 40% to 60% 

of the time (demonstrating that this stimulation carried some weight) this level was chosen as level 

1. Once the level 1 was determined, stimulation was gradually increased in intensity to determine 

the level 10. The stimulation was increased in intensity until the participant reported that the 

stimulation resulted in their maximum level of discomfort (that they would be willing to take 

during the task) without being painful. At this point, they were asked how they would feel about 

taking the highly uncomfortable stimulation for additional 5 to 50 cents. If they reported that they 

would take this offer 40% to 60% of the time (demonstrating that this carried some weight) this 

level was chosen as the level 10. In cases where participants offered responses that seemed 

inconsistent (such as agreeing to endure greater electric shocks for smaller monetary rewards than 

for larger shocks) or indicated changes in their willingness to accept a particular shock level for a 

given monetary incentive, we either re-administered the calibration process or made necessary 

adjustments to individual shock levels. Next, participants completed 15 practice trials of the task 

while supervised by the experimenter, allowing for readjustment of the shock level calibration in 

case participants should choose approach on all practice trials.  

Additional Task details 

The task was implemented in Psychtoolbox running on MATLAB 2020a. Shock intensity 

was controlled via MATLAB on the DS8R stimulation device, which was triggered via Matlab 

and a NI DAQ USB-6009 device (National Instruments, Austin, TX, USA) that triggered the 

DG2A train generator. 
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Participants used a joystick to indicate their responses. Specifically, on Pavlovian response 

congruent trials, approach decisions were indicated by pulling the joystick. On Pavlovian response 

incongruent trials, approach decisions were indicated by pushing the joystick. Pavlovian response 

congruent and incongruent trials were counterbalanced. For each presented offer, we collected 

participants’ choice and RTs that served as inputs into our computational models.  

The adaptive approach avoidance task (aAAC) is a novel task based on prior work in 

humans (2) and non-human primates (3). The aAAC was optimized to induce individually 

calibrated levels for aversion and used a trial-by-trial adaptive procedure to optimally induce 

variable levels of approach-avoidance conflict. Moreover, ecologically valid stimuli (i.e., 

physically aversive stimulation and monetary rewards) were introduced to generate individually 

adjusted degrees of conflict. The aAAC task’s design allows one to induce approach-avoidance 

conflict on a reward-aversion continuum with varying degrees of conflict, while adjusting for 

individual decision indifference points within this continuum.  

Offers were dynamically created on a trial-by-trial case and for each participant separately. 

Specifically, the first nine trials were randomly sampled from the reward-aversion space (i.e., 

rewards and aversion could each range from 10 to 100, in steps of 10). Afterwards, we estimated 

for each subsequent trial and for each participant their momentary indifference curve along which 

subjects are equally likely to approach or avoid. To do so, we used logistic regression and all 

choices (up to and excluding the current trial) as dependent variable (1=approach, 0=avoid) and 

the corresponding reward and aversion as independent variables. The offer for the current trial was 

then created by randomly sampling either with a probability of 0.4 from a range of the reward-

aversion space that was close to the estimated indifference curve, with a probability of 0.3 from a 

range of the reward-aversion space that was farther away from the estimated indifference curve, 



 

5 

or at pseudo-random with a probability of 0.3 from a range of space that lay in a 3x3 grid across 

the reward-aversion space. Specifically, subsequent trials were selected with respect to the 

decision boundary as follows: 30% “random” as above, 30% “variable” (following a Gaussian 

distribution of the normalized distance to boundary, 𝒩ௗሺ0, 20%)) and 40% “close” (𝒩ௗሺ0, 5%ሻ).  

Response symbols and offers were simultaneously presented for 4 seconds. When 

participants made a choice, the circle was locked at the target until the 4s were up. A fixation cross 

was then presented and if participants decided to approach an offer, they were administered the 

corresponding shock level for 500ms during this period (jittered after fixation cross onset, range 

0.5-10s; mean 1.77s). Following, participants received 2s feedback about the number of cents they 

earned in this trial (0 in case of avoid or no-response). 

Description of different versions of sequential sampling models 

Similarities and differences between these model versions have already been extensively 

discussed elsewhere (4–9). 

Diffusion Decision Model (DDM).  The DDM (10) assumes fixed decision boundaries 

and a path of evidence accumulation that follows a noisy Wiener process with a mean (known as 

drift rate) and a variance (known as diffusion coefficient). The model includes within-trial noise 

variability (s). Drift rate v is normally distributed with standard deviation ƞ, and nondecision time 

component (Ter) and starting point (z) are assumed to be uniformly distributed with ranges st and 

sz, respectively. 

Ornstein-Uhlenbeck Model (OUM).  The OUM (11) assumes fixed decision boundaries 

like the DDM. In contrast to the DDM, it assumes noisy evidence accumulation with a drift rate 

that is either leaky (less accumulation) or attractive (more accumulation) as the decision particle 

approaches the bound. 
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Angle Boundary Model (ABM).  The ABM is a popular modification of the DDM, 

assuming linearly collapsing decision boundaries over time (6,12,13). Collapsing boundaries are 

used to model the need for less signal strength in evidence accumulation to commit to a response 

as time passes, such as when participants become increasingly impatient, when externally or 

internally imposed response deadlines are imposed, or urgency signals become more pressing (14–

17). Moreover, the ABM is known to provide better fits than the classic DDM in some cases 

(12,13,18,19).  

Weibull Boundary Model (WBM).  The WBM is a popular modification of the DDM, 

assuming collapsing decision boundaries like the ABM. In contrast to the ABM, the WBM 

includes a Weibull-informed collapse that is determined by two parameters determining the shape 

and rate of the collapse, respectively (19–22).  

Details about model comparison 

We focused on the following four SSM versions: the DDM (10), OUM (11), ABM (23), 

and the WBM (20). Supplemental Table S2 provides specifications of these regression equations 

for all SSMs by following the conventional notations for mixed-effect regression models in the 

lme4 and brms packages in R (24–26). To find the model that accounts best for data from our AAC 

task, we proceeded in two steps: 

Comparison between SSM versions. Pedersen et al. (27) identified a best-fitting DDM for 

behavioral data from a similar AAC task. We therefore used their model (i.e., parameter 

specification) as the baseline for comparison with different SSM versions (e.g., DDM, collapsing 

bounds).  

Comparison within best SSM version. After establishing the best SSM version, we explored 

whether different parameter specifications would additionally improve the absolute model fit. We 
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selected the SSM version with the best fitting parameter specification, in terms of both deviance 

information criterion (DIC) and posterior predictive checks. This allowed us to account for the fact 

that the specifics of our AAC task (e.g., response-adaptive creation of offers across trials, 

individual-specific levels of electric stimulation as the aversive component of offers) differed from 

those in Pedersen et al. (27).  

Fitting Procedure 

We fit SSMs to data within a Bayesian hierarchical framework implemented through 

HDDM. Hence, the coefficients of the mixed-effect regressions of each model parameter 

(specified in Supplementary Table S2) were estimated separately for each participant, but where 

each participant was assumed to be drawn from a distribution across all participants (28). 

Hierarchical estimation improves parameter recovery and out of sample prediction, in general and 

for SSMs in particular (29,30). Model predictors were normalized before entering the regressions 

(except dummy-coded predictors). Models were run with 3 chains, each with 10,000 samples 

(including 5,000 samples as burn-in). We used the empirically-sourced and weakly informative 

priors from HDDM for all models (21,30). We ensured model convergence by examining trace 

plots and the Gelman-Rubin Ȓ statistic, which was below the threshold of 1.1 for all model 

parameters, indicating sufficient chain mixing and model convergence (31).  
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Supplementary Tables 

Supplementary Table S1. Sample Characteristics. 
Variables Mean/Ratio SD Min Max 

Demographics 
Age (in years) 28.79 7.43 18 44 
Sex (Male:Female) 13:35 na na na 
Clinical Measures 
PANAS Total Score 43.44 9.67 26 64 
  PANAS-PA 29.13 9.23 13 49 
  PANAS-NA 14.31 5.51 10 33 
VAMS - Friendly To Hostile 25.79 21.79 0 71 
VAMS - Happy To Sad 27.85 21.46 0 71 
VAMS - Tense To Relax 58.33 23.01 23 100 
BDI-II 10.81 9.46 0 41 
SHAPS 22.73 6.14 14 38 
MASQ Total Score 115.73 33.17 69 204 
  MASQ-GDA 18.10 6.32 11 39 
  MASQ-AA 21.31 5.54 17 43 
CBAS Total Score 58.83 20.91 32 124 
  CBAS-BS 15.73 6.75 8 38 
  CBAS-BN 12.23 4.69 6 25 
  CBAS-CS 12.98 5.45 7 28 
  CBAS-CN 17.9 7.08 10 37 
Task Performance Summary Statistics 
Mean Reaction Times (in ms) 1593 343 725 2251 
Approach Frequency 0.72 0.14 0.48 1 
Presented Reward 45.92 25.92 10 100 
Presented Aversion 62.78 26.29 10 100 
Amount of Received Shock (in mA) 6.93 4.68 0.6 22 

Note. Table is based on N=48 as the questionnaire data of two subjects was missing (see Methods). 
SD refers to the standard deviations of the means between subjects. Min refers to the minimum 
mean across subjects. Max refers to the maximum mean across subjects. We refer to the Methods 
for a description of measures and interpretation of scores. Abbreviations: PANAS = Positive and 
Negative Affect Schedule; SHAPS = Snaith-Hamilton Pleasure Scale; BDI = Beck Depression 
Inventory; VAMS = Visual Analogue Mood Scale; CBAS = Cognitive and Behavioral Avoidance 
Scale; MASQ = Mood and Anxiety Symptom Questionnaire (GDA and AA are the anxiety-related 
subscores). Three participants met the criteria for major depressive disorder according to the BDI.  
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Supplementary Table S2. Comparison of different versions and specifications of sequential sampling models (SSMs). 
Model descriptions Parameter specifications 

Model Version DIC 
Drift rate  

(v) 
Boundary 

separation (a) 
Starting 
point (z) 

Nondecision 
Time (Ter) 

Version-specific 
parameters 

Part II: within-model-specification comparison of selected model 
best abm 9005 1 + (rewardLog + averse)*cD 1 + conflict 1 + PB 1 θ ~ 1 + conflict 

2 abm 9010 1 + (reward + averse)*cD 1 + conflict*cD 1 1 θ ~ 1 
3 abm 9013 1 + (rewardLog + averse)*cD 1 + conflict 1 + PB 1 θ ~ 1 
4 abm 9024 1 + (rewardLog + averse)*cD 1 + conflict*cD 1 1 θ ~ 1 + conflict*cD 
5 abm 9045 1 + (rewardLog + averse)*cD 1 + conflict 1 1 θ ~ 1 
6 abm 9436 1 + rewardLog*averse 1 + conflict 1 1 θ ~ 1 
7 abm 9438 1 + rewardLog*averse 1 + conflict 1 1 1 + conflict 

Part I: between-model-version comparison with base specification 
8 abm 9526 1 + rewardLog + averse 1 + conflict 1 + PB 1 θ ~ 1 
9 wbm 9669 1 + rewardLog + averse 1 + conflict 1 + PB 1 α ~ 1; β ~ 1 

baseline ddm 10095 1 + rewardLog + averse 1 + conflict 1 + PB 1  
11 oum 10547 1 + rewardLog + averse 1 + conflict 1 + PB 1 δ ~ 1 

Note. Different SSMs (one model per row) with the best-fitting model represented in the first row (see Methods for details). Continuous 
variables were mean-centered at the subject-level before entering into the regression. We follow standard notation of regression-based 
models (i.e., y ~ x*z  y ~ 1 + x + z + x*z). cD indicates a dummy variable to distinguish between offers with positive (cD=1) and 
negative (cD=0) net values. PB indicates a dummy variable to distinguish between Pavlovian response-congruent and response-
incongruent trials. abm refers to models with a linearly collapsing boundary with parameter theta indicating the angle of the collapse. 
ddm refers to the diffusion decision model that was used by Pedersen et al. (2021) and that served as a baseline. wbm refers to models 
with Weibull-informed collapsing boundaries with parameters α indicating the rate of the collapse and β indicating the shape of the 
collapse. ou refers to the Ornstein-Uhlenbeck model with δ indicating the decay parameter of diffusion processes. Constant refers to 
one constant parameter throughout the task. 1 refers to intercepts. DIC refers to the deviance information criterion. We refer to the 
Supplement for posterior predictive checks (PPCs). 
 

 

 

 



 

13 

Supplementary Table S3. Additional Comparisons of different versions and specifications of sequential sampling model (SSMs). 
Model descriptions Parameter specifications 

Model Version DIC 
Drift rate  

(v) 
Boundary 

separation (a) 
Starting 
point (z) 

Nondecision 
Time (Ter) 

Model version-specific 
parameters 

1 abm 9445 1 + reward*averse 1 + conflict 1 1 θ ~ 1 
2 abm 9446 1 + reward*averse 1 + conflict 1 1 1 + conflict 
3 abm 9547 1 + rewardLog + averse 1 + conflict 1 1 θ ~ 1 
4 abm 9629 1 + reward + averse 1 + conflict 1 1 θ ~ 1 + conflict 
5 abm 9636 1 + reward + averse 1 + conflict 1 1 θ ~ 1 
6 abm 9670 1 + reward + averse 1 1 1 θ ~ 1 
7 ddm 9499 1 + rewardLog + averse 1 + conflict 1 1 st ~ 1; sz ~ 1; η ~1 
8 ddm 9508 1 + reward + averse 1 + conflict 1 1 st ~ 1; sz ~ 1; η ~1 
9 ddm 9590 1 + reward + averse 1 1 1 st ~ 1; sz ~ 1; η ~1 
10 wbm 9679 1 + rewardLog +averse 1 + conflict 1 1 a ~ 1; β ~ 1 
11 wbm 9776 1 + reward +averse 1 1 1 a ~ 1; β ~ 1 + conflict 
12 wbm 9796 1 + reward + averse 1 1 1 Α ~ 1 + conflict; β ~ 1 
13 wbm 9795 1 + reward + averse 1 + conflict 1 1 α ~ 1; β ~ 1 
14 oum 10559 1 + rewardLog + averse 1 + conflict 1 1 δ ~ 1 
15 oum 10664 1 + reward + averse 1 1 1 δ ~ 1 
16 oum 10634 1 + reward + averse 1 + conflict 1 1 δ ~ 1 
17 oum n.a. 1 + reward + averse 1 1 1 δ ~ 1 + conflict 

Note. Different SSMs (one model per row) that are detailed in the Methods of the main manuscript. Continuous variables were mean-
centered at the subject-level before entering the regression. We follow standard notation of regression-based models (i.e., y ~ x*z  y 
~ 1 + x + z + x*z). cD indicates a dummy variable to distinguish between offers with positive (cD=1) and negative (cD=0) net values. 
PB indicates a dummy variable to distinguish between Pavlovian congruent (PB=1) and incongruent (PB=0) trials. abm refers to models 
with a linearly collapsing boundary with parameter theta indicating the angle of the collapse. ddm refers to the classical diffusion 
decision model with parameters st indicating variability in nondecision time; sz indicating variability in starting point; η indicating across-
trial variability in drift rate. weibull refers to models with Weibull-informed collapsing boundaries with parameters α indicating the rate 
of the collapse and β indicating the shape of the collapse. ou refers to the Ornstein-uhlenbeck model with δ indicating the decay parameter 
of diffusion processes. Constant refers to one constant parameter throughout the task. 1 refers to intercepts. DIC refers to the deviance 
information criterion. Posterior predictive checks of selected models are shown in Supplementary Figure S2. 
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Supplementary Table S4. Posterior distributions (means and corresponding) credible intervals 
of group estimates for the best-fitting model. 

Parameter Coefficient Mean Lower Upper 

drift rate (v) intercept 0.437 0.207 0.678 

 cD(positive) 0.801 0.590 1.011 

 reward 0.604 0.528 0.677 

 aversion -0.536 -0.624 -0.447 

 reward:cD(positive) -0.410 -0.490 -0.331 

 aversion:cD(positive) 0.247 0.140 0.354 
boundary separation (a) intercept 1.874 1.719 2.048 

 conflict -0.035 -0.069 -0.004 
starting point bias (zBias) intercept 0.552 0.524 0.580 

 PB(incongruent) 0.003 -0.014 0.019 
rate of linear collapse (θ) intercept 0.546 0.489 0.600 

 conflict -0.031 -0.055 -0.008 
nondecision time (Ter) intercept 0.634 0.574 0.693 

Note. Lower and Upper refer to the corresponding bounds of the 95% highest density intervals of 
the posterior group distribution. cD refers to the domains (positive, negative) while PB refers to 
the Pavlovian response incongruent/congruent trials.  
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Supplementary Table S5. Regression Coefficients of model parameters on Depression severity (BDI total score) and Anhedonia 
severity (SHAPS total score), negative affect severity (PANAS-NA score), and tension severity (VAMS sadness score). 

  Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) 
Variables B SE P B SE P B SE P B SE P 

Dependent Variable: bdi total score           

Constant 0.000 0.136 1.000 0.000 0.137 1.000 0.000 0.131 1.000 -0.013 0.134 0.921 
Ter 0.037 0.137 0.011    0.319 0.134 0.022 0.289 0.144 0.051 
zBias_i    -0.338 0.139 0.019 -0.286 0.134 0.038 -0.255 0.144 0.084 
Ter-by-zBias_i          -0.083 0.138 0.552 
Adjusted R2 0.115   0.095   0.179   0.167   

Comparison M2 & M3: F(1, 46) = 5.668, p = 0.022                   
Dependent Variable: shaps total score           
Constant 0.000 0.140 1.000 0.000 0.130 1.000 0.000 0.128 1.000 0.031 0.128 0.809 
Ter 0.274 0.142 0.060    0.205 0.131 0.125 0.276 0.138 0.052 
zBias_i    -0.451 0.132 0.001 -0.417 0.131 0.003 -0.490 0.139 0.001 
Ter-by-zBias_i          0.194 0.133 0.150 
Adjusted R2 0.055      0.211   0.231   

Comparison M2 & M3: F(1,46) = 2.444, p=0.125                   
Dependent Variable: PANAS negative 
affect           
Constant 0.000 0.134 1.000 0.000 0.138 1.000 0.000 0.131 1.000 -0.075 0.127 0.557 
a -0.396 0.135 0.005    -0.339 0.136 0.016 -0.366 0.128 0.007 
zBias_c    0.329 0.139 0.023 0.251 0.136 0.070 0.137 0.135 0.318 
a-by-zBias_c          -0.335 0.131 0.014 
Adjusted R2 0.139   0.089   0.182   0.272   

Comparison M4 & M1: F(1, 45) = 5.226, p = 0.001          
Comparison M4 & M2: F(1, 45) = 6.808, p = 0.002          
Comparison M4 & M3: F(1, 45) = 6.581, p = 0.014                   
Table continues. 
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Table continued.           
  Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) 

Variables B SE P B SE P B SE P B SE P 

Dependent Variable: VAMS tension           
Constant 0.000 0.138 1.000 0.000 0.140 1.000 0.000 0.135 1.000 -0.012 0.141 0.934 
v_reward_neg 0.334 0.139 0.020    0.294 0.138 0.039 0.319 0.159 0.051 
theta_conflict    0.285 0.141 0.049 0.235 0.138 0.096 0.225 0.143 0.124 
v_reward_neg-by-
theta_conflict 

        0.070 0.210 0.739 

Adjusted R2 0.092   0.061   0.128   0.111   

Comparison M4 & M1: F(1, 46) = 1.473, p = 0.240          
Comparison M4 & M2: F(1, 46) = 2.269, p = 0.115          
Comparison M4 & M3: F(1, 46) = 0.112, p = 0.739                           

Note. N=48. We examined the impact of nondecision time (Ter) and starting point bias for Pavlovian incongruent trials (zBias) on 
depression severity as measured by BDI total score (top part) and anhedonia severity as measured by SHAPS total score (bottom part). 
p values smaller than 0.05 are in bold. All variables were z-scored before entering the regression. We also estimated models with Ter-
by-zBias interaction terms. However, these models did not provide evidence for any significant interactions and they were outperformed 
by M3 in terms of their ability to account for variability in the respective dependent variable.  
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Supplementary Table S6. Regression Coefficients of mean reaction time and mean frequency of approach decisions on 
Depression severity (BDI total score) and Anhedonia severity (SHAPS total score), negative affect severity (PANAS-NA 
score), and tension severity (VAMS sadness score). 

  Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) 
Variables B SE P B SE P B SE P B SE P 

Dependent Variable: BDI-II total score 

Constant 0.000 0.146 1.000 0.000 0.145 1.000 0.000 0.146 1.000 0.042 0.154 0.788 
MRT 0.063 0.147 0.672    0.120 0.158 0.450 0.061 0.173 0.724 
MF(AP)    0.017 0.146 0.429 0.160 0.158 0.316 0.211 0.170 0.219 
MRT*MF(AP)          0.119 0.142 0.406 

Adjusted R2 
-0.018     

-
0.008 

    -0.017     -0.024     

Dependent Variable: SHAPS total score 

Constant 0.000 0.146 1.000 0.000 0.145 1.000 0.000 0.146 1.000 0.042 0.154 0.788 
MRT 0.063 0.147 0.672 0.120 0.158 0.450 0.061 0.173 0.724 
MF(AP)    0.017 0.146 0.429 0.160 0.158 0.316 0.211 0.170 0.219 
MRT*MF(AP)          0.119 0.142 0.406 

Adjusted R2 
-0.018     

-
0.008 

    -0.017     -0.024     

Dependent Variable: PANAS negative affect 
Constant 0.000 0.137 1.000 0.000 0.146 1.000 0.000 0.138 1.000 0.014 0.147 0.925 
MRT -0.343 0.139 0.017    -0.383 0.149 0.014 -0.403 0.165 0.019 
MF(AP)    0.003 0.147 0.866 -0.113 0.149 0.454 -0.095 0.161 0.558 
MRT*MF(AP)          0.040 0.135 0.769 

Adjusted R2 
0.098     

-
0.021 

    0.090     0.071     

Table continues. 
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Table continued.     
  Model 1 (M1) Model 2 (M2) Model 3 (M3) Model 4 (M4) 

Variables B SE P B SE P B SE P B SE P 
Dependent Variable: VAMS 
tension           
Constant 0.000 0.146 1.000 0.000 0.143 1.000 0.000 0.144 1.000 -0.070 0.151 0.647 
MRT -0.064 0.147 0.665    0.014 0.156 0.942 0.109 0.169 0.521 
MF(AP)    0.206 0.144 0.160 0.210 0.156 0.185 0.125 0.166 0.455 
MRT*MF(AP)          -0.198 0.138 0.159 
Adjusted R2 -0.018     0.022     0.000     0.023     

Note. N=48. We examined the impact of mean reaction times (MRT) and mean frequency of approach decisions (MFAP) 
on depression severity as measured by BDI total score (top part) and anhedonia severity as measured by SHAPS total 
score (bottom part). p values smaller than 0.05 are in bold. All variables were z-scored before entering the regression.  
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Supplementary Table S7. Sex differences in clinical scores and cognitive model parameters 
(based on the best-fitting model reported in the main manuscript). 

  females (n=35) males (n=13) 
  M SD M SD 
Clinical scores     

  Depression (BDI) 11.09 9.78 10.08 8.86 
  Anhedonia (SHAPS) 23.09 5.96 21.77 6.76 
  Positive Affect (PANAS) 27.46 9.09 33.62 8.35 
  Negative Affect (PANAS) 14.34 6.10 14.23 3.68 
  Tension (VAMS) 58.43 23.06 58.08 23.83 
  Sadness (VAMS) 29.89 22.74 22.38 17.15 
  Hostility (VAMS) 26.37 22.60 24.23 20.19 
Cognitive model parameters     

  Theta(conflict) -0.03 0.02 -0.04 0.01 
  Theta(intercept) 0.55 0.11 0.55 0.12 
  Ter 0.63 0.14 0.65 0.24 
  zPBc 0.56 0.07 0.54 0.06 
  zPBi 0.00 0.03 0.00 0.03 
  a(conflict) -0.04 0.01 -0.03 0.01 
  a(intercept) 1.85 0.29 1.94 0.41 
  v(averse):cD(positive) 0.25 0.19 0.26 0.15 
  v(averse) -0.51 0.18 -0.62 0.23 
  v(reward):cD(positive) -0.41 0.02 -0.40 0.03 
  v(reward) 0.60 0.19 0.62 0.13 
  v_cD(positive) 0.70 0.58 0.92 0.50 
  v(intercept) 0.51 0.70 0.39 0.78 

Note. The description of the clinical scores can be found in the Method section and Supplementary 
Table S1. Moreover, the description of the parameters and their labels are introduced above (see 
also Supplementary Table S2 & S4). We do not provide any statistics on inference due to the large 
difference in sample size between females and males. This is merely a descriptive summary that 
serves for future research to study sex differences more systematically. 
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Supplementary Table S8. Regression-based analyses associating symptom scores with best-fitting model parameters. 

 

Note. The description of the clinical scores can be found in the Method section and Supplementary Table S1. Moreover, the description 
of the parameters and their labels are introduced above (see also Supplementary Table S2 & S4). 
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Supplementary Table S9. Regression-based analyses associating symptom scores with drift rates from best-fitting model. 

 

Note. The description of the clinical scores can be found in the Method section and Supplementary Table S1. Moreover, the description 
of the parameters and their labels are introduced above (see also Supplementary Table S2 & S4). 
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Supplementary Figures 

 
Supplementary Figure S1. Distribution and reliability measures across all clinical questionnaires. We refer to the Methods for a 
description of measures and interpretation of scores. Abbreviations: PANAS = Positive and Negative Affect Schedule; SHAPS = Snaith-
Hamilton Pleasure Scale; BDI = Beck Depression Inventory; VAMS = Visual Analogue Mood Scale; CBAS = Cognitive and Behavioral 
Avoidance Scale; MASQ = Mood and Anxiety Symptom Questionnaire (GDA and AA are the anxiety-related subscores). All scales 
had excellent internal reliability (Cronbach’s alpha ranging from 0.82 and 0.94. Note that since each VAMS score is a single item, 
measures of internal reliability are not needed.   
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Supplementary Figure S2. a. Mean approach rates (MAR) for presented reward-aversiveness offers (aggregated across subjects). The 
grey-dotted line represents the forty-five-degree line, dividing the positive (below the grey line) and negative domains (above the grey 
line) based on offers’ net values. b. Mean reaction times (MRT) for presented reward-aversiveness offers (aggregated across approach 
and avoidance decisions and across subjects).  
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Supplementary Figure S3. Posterior Predictive Check of best-fitting model and selected models reported in the Supplementary Table 
s2 that show worse fits. For interpretation of quantile-probability plots, see main manuscript. Empirical behavioral choices and reaction 
time (RT) quantiles are represented as squares (unfilled for avoidance choices and filled for approach choices) and simulated choices 
and RTs from the posterior predictive check are represented as plus signs. RT quantiles are calculated for each subject separately and 
then averaged to obtain group quantiles. Ellipse widths (represented by dotted lines) index SD of the posterior predictive distribution 
from the model, indicating estimation uncertainty. 
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Supplementary Figure S4. Posterior Predictive Check of selected alternative models reported in 
Supplementary Table S2. For interpretation of quantile-probability plots, see main manuscript. 
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Empirical behavioral choices and reaction time (RT) quantiles are represented as squares (unfilled 
for avoidance choices and filled for approach choices) and simulated choices and RTs from the 
posterior predictive check are represented as plus signs. RT quantiles are calculated for each 
subject separately and then averaged to obtain group quantiles. Ellipse widths (represented by 
dotted lines) index SD of the posterior predictive distribution from the model, indicating estimation 
uncertainty. 
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Supplementary Figure S5. Results from simulations comparing input parameters (x-axis) and 
recovered parameters (y-axis). Overall, these plots show good parameter recovery with better 
recovery for parameters in the negative than the positive domain.  
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Supplementary Figure S6. Number of trials for presented reward-aversion offer (averaged across 
all participants). 
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Supplementary Figure S7. Graphical representation of the DDM specification (left) introduced 
by Pedersen et al. (2021) and used as the baseline model (see Methods); and the best-fitting Angle 
model (right). Shaded nodes represent observed variables, non-shaded nodes represent estimated 
parameters (a=boundary separation, z=starting points, v=drift rate, Ter=nondecision time, θ=angle 
of linear collapse). Circles represent continuous variables; squares represent discrete variables. 
Conflict refers to the absolute difference between reward and aversion and is therefore computed 
and double-bordered. Variable subscripts: S=subjects, D=domain, P=Pavlovian-congruency, 
T=trials. 
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Supplementary Figure S8. Relationship between parameters of the best-fitting model discussed 
in the main manuscript. Only significant correlations (Corr) are shown. The parameter labels 
(along the y-axis) correspond to the same parameter labels in the Supplementary Table S4 which 
shows the posterior statistics of each parameter (i.e., θ=angle of boundary collapse, 
Ter=nondecision time component, zPB=starting point bias as a function of Pavlovian-congruent 
response mapping, a=boundary separation, v=drift rates). The number labels along the x-axis 
correspond to the same numbers along the y-axis. 
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Supplementary Figure S9. Scatterplots of all significant associations shown in Figure 3 of the 
main manuscript. Black dots indicate data. Shown are means (solid lines) and corresponding 95% 
confidence intervals as shaded intervals (R=correlation coefficient; p=p-value).  
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Supplementary Figure S10. Relationship between model parameters (of the best-fitting model discussed in the main manuscript) and 
clinical scores. The first correlation matrix from left shows associations for the best-fitting model discussed in the main manuscript (see 
also Supplementary Table S4 which shows the posterior statistics of each parameter). The other four correlation matrices show 
association for the three next models based on posterior predictive checks shown in Supplementary Figure S2. The model labels 
correspond to those introduced in Supplementary Table S2. The significant (p-values < 0.05 and unadjusted for multiple comparisons) 
are surrounded by red boxes.  
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