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ABSTRACT
BACKGROUND: Delivery of effective antidepressant treatment has been hampered by a lack of objective tools for
predicting or monitoring treatment response. This study aimed to address this gap by testing novel dynamic resting-
state functional network markers of antidepressant response.
METHODS: The Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC)
study randomized adults with major depressive disorder to 8 weeks of either sertraline or placebo, and depression
severity was evaluated longitudinally. Participants completed resting-state neuroimaging pretreatment and again
after 1 week of treatment (n = 259 eligible for analyses). Coactivation pattern analyses identified recurrent whole-
brain states of spatial coactivation, and computed time spent in each state for each participant was the main
dynamic measure. Multilevel modeling estimated the associations between pretreatment network dynamics and
sertraline response and between early (pretreatment to 1 week) changes in network dynamics and sertraline
response.
RESULTS: Dynamic network markers of early sertraline response included increased time in network states
consistent with canonical default and salience networks, together with decreased time in network states charac-
terized by coactivation of cingulate and ventral limbic or temporal regions. The effect of sertraline on depression
recovery was mediated by these dynamic network changes. In contrast, early changes in dynamic functioning of
corticolimbic and frontoinsular-default networks were related to patterns of symptom recovery common across
treatment groups.
CONCLUSIONS: Dynamic resting-state markers of early antidepressant response or general recovery may assist
development of clinical tools for monitoring and predicting effective intervention.

https://doi.org/10.1016/j.biopsych.2022.03.020
Major depressive disorder (MDD) affects between 18% and
50% of individuals over the life span (1,2) and is associated with
high levels of distress, impairment (3), andmortality (4). Progress
in treatment development has yielded antidepressant medica-
tions that arewidely used, tolerable formost patients, and highly
effective for a subset of patients (5). However, up to 2 out of 3
patients receiving first-line antidepressant medications do not
respond adequately (6), and there are serious consequences
and costs of poorly treated depression (7). Accordingly, it is
critical to understand who will respond to antidepressant
medication and what are the mechanisms of early treatment
response to plan and monitor effective intervention.

The clinical import of predicting treatment responsiveness
has, in part, motivated precision medicine approaches to iden-
tify objective markers that predict who will benefit from a given
antidepressant treatment (8). In recent years, empirical investi-
gation into such markers has surged, with special interest in
resting-state functional brain network markers that predict or
track with treatment response. Resting-state network func-
tioning, e.g., the spatial organization, magnitude, and timing of
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synchronized activity across distributed brain regions, holds
information relevant to individual differences in cognition,
emotional processing, and mental health (9). In MDD, abnor-
malities have been observed in several resting-state networks
including the canonical default network (DN), comprisingmidline
and temporal regions involved in introspection and autobio-
graphical thinking; the salience (or ventral attention) network
(SN), including insula, midcingulate, and temporoparietal re-
gions engaged in salience-directed attention; the frontoparietal
network, including lateral prefrontal and posterior parietal re-
gions recruited during goal-directed attention; and corticolimbic
networks and sensorimotor regions involved in affective and
sensory processing (10). Building on this evidence, research has
suggested that individual differences in the magnitude of such
abnormalities may predict antidepressant treatment response,
although the nature and direction of such prediction is mixed
(11,12). For example, stronger positive pretreatment functional
connectivity among areas of theDNhas predicted both stronger
and weaker response to selective serotonin reuptake inhibitor
(SSRI) intervention (11,13), which may depend on the DN
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subnetwork (14) or themethod for operationalizing resting-state
network function. Other research has highlighted dysfunctional
connectivity between the insula and areas of the SN or DN, but
the specific circuits implicated and direction of effects are
inconsistent (15,16). Together, although resting-state bio-
markers may hold promise for predicting antidepressant
response, findings remain mixed.

There are other gaps in our understanding of treatment-
related resting-state biomarkers. First, there are few studies
that investigate both neural moderators of treatment response
(i.e., pretreatment resting-state markers of response) and
mediators of treatment response (i.e., resting-state network
changes that correspond with or precede improved mental
health) [related review in (11,12)]. While the former can provide
probability estimates for who will respond to an antidepressant
intervention, the latter is needed to understand mechanisms
and efficacy of treatment. For example, prior work has shown
that SSRIs have effects on several timescales (17), including
fast (within 3–10 days) effects on resting-state functional
connectivity (18), and SSRI response in the first week of
treatment can predict long-term treatment outcome (19).
Therefore, gaining a better understanding of early biomarker
mediators of treatment efficacy has translational implications.

A second gap in treatment biomarker research is incorpo-
ration of new methods for examining dynamic functioning of
resting-state networks. Prior work in this field has focused on
static network markers, e.g., abnormalities in networks defined
by estimates of the overall correlation in activity among brain
regions over extended periods of time. While this approach has
value, it cannot capture dynamic patterns of functional coor-
dination as transient networks form, persist, and dissolve, or
transitions among networks. Such dynamic patterns are
especially important for understanding MDD, a condition
characterized by abnormalities in temporal characteristics of
thinking and emotional experiences (e.g., intrusive rumination
over time) (20). Dynamic properties of resting-state networks
are reliable (21), and abnormalities in network dynamics
involving areas of the DN and SN have been associated with
depression (22,23). Some of the most promising dynamic
methods adopt data-driven approaches to identify transient
functional networks, which may help to clarify mixed biomarker
research in which static activity in the same regions is some-
times related to better, and sometimes to worse, treatment
outcome.

This study aimed to address these gaps in the context of
the Establishing Moderators and Biosignatures of Antide-
pressant Response in Clinical Care (EMBARC) study. The
EMBARC study recruited a large sample of medication-free
patients with MDD and randomly assigned participants to
either antidepressant medication (sertraline) or placebo for a
period of 8 weeks [phase 1; at 8 weeks, patients entered phase
2 (24)]. Participants completed resting-state neuroimaging at
baseline (pretreatment) and 1 week after initiating treatment
and were repeatedly evaluated for depression severity over the
8-week trial. Response to treatment was assessed using
multilevel mixed effects modeling. Network markers of interest
were dynamic measures of time spent in transient functional
resting network states at baseline and the change in time-
in-states from baseline to 1 week after initiating treatment.
Analyses tested pretreatment network dynamics that
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corresponded with pretreatment symptom severity or pre-
dicted recovery and early changes in network dynamics that
predicted and mediated sertraline-related recovery. We pre-
dicted that dynamic activity of transient networks that overlap
with canonical DN and SN would predict symptom change and
that changes in the dynamic activity of such networks would
mediate sertraline response. Analyses took a data-driven
approach to identify transient networks and evaluate associ-
ations between network dynamics and treatment outcomes.

METHODS AND MATERIALS

Participants

Participants were 309 adults with MDD recruited to the
EMBARC study at Columbia University (New York, NY), Mas-
sachusetts General Hospital (Boston, MA), the University of
Texas Southwestern Medical Center (Dallas, TX), and the
University of Michigan (Ann Arbor, MI). Of this sample, n = 259
completed clinical evaluations and resting-state neuroimaging
and passed initial motion thresholds (Table 1; Figure S1). The
institutional review boards at each site approved the research
protocol, and participants provided written informed consent.
[See (25) for detailed clinical trial design.]

Procedures

Participants were randomized to receive either sertraline or
placebo for a period of 8 weeks (phase 1). Participants
received no other form of intervention during the study period.
The dosage was titrated using a measurement-based care
approach, i.e., dosage was increased based on tolerability and
response with a maximum daily dose of 200 mg sertraline or
four capsules placebo. Participants completed resting-state
functional magnetic resonance imaging at baseline and
1 week after initiating treatment. The Hamilton Depression
Rating Scale (HAMD) (26) was administered at baseline, weekly
for weeks 1 to 4, and biweekly for weeks 4 to 8. At 8 weeks,
participants who were nonresponsive in phase 1 were crossed
over for phase 2 (placebo nonresponders assigned to sertra-
line; sertraline nonresponders assigned to bupropion).

Measures

Hamilton Depression Rating Scale. The 17-item HAMD
is a widely used, clinician-administered interview measure of
depression severity. Each item of the HAMD was scored on a
range of 0 (absent) to 4 (severe), and total (summed) score at
each time point provided a measure of depression severity. The
following percentages of participants in this analysis completed
HAMD measurements: baseline, 100%; week 1, 89%; week 2,
82%; week 3, 81%; week 4, 84%; week 6, 81%; week 8, 80%.

Magnetic Resonance Imaging. See Table S1 for imaging
acquisition parameters. Protocols for functional scanning were
matched across sites. Resting-state functional magnetic
resonance imaging data were collected immediately after
anatomical scanning.

Analyses

General Image Preprocessing and Motion Corrections.
Functional data were preprocessed and motion corrected using
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Table 1. Demographics and Patient Characteristics

Characteristics
Sertraline,
n = 128

Placebo,
n = 131

Age, Years 36.52 (13.28) 35.73 (12.34)

HAMD, Baseline 18.52 (4.47) 18.83 (4.35)

HAMD, Week 8 10.32 (6.81) 12.10 (7.82)

Adherence Out of 7 Evaluations 5.86 (1.83) 6.10 (1.64)

Gender

Female 89 (69.53%) 83 (63.36%)

Male 39 (30.47%) 48 (36.64%)

Race

African American or Black 27 (21.10%) 20 (15.27%)

Other 19 (14.84%) 21 (16.03%)

White 82 (64.06%) 90 (68.70%)

Ethnicity

Hispanic 24 (18.75%) 24 (18.32%)

Not Hispanic or Other 104 (81.25%) 107 (81.68%)

Education

Partial high school or less 5 (3.91%) 4 (3.05%)

High school 18 (14.06%) 17 (12.98%)

Partial college or 2-year degree 40 (30.47%) 41 (31.30%)

College or 4-year degree 32 (25.00%) 38 (29.01%)

Advanced degree 31 (24.22%) 31 (23.66%)

Not reported 2 (1.56%) 0 (0.00%)

Income, Monthly

$1000 or less 22 (17.19%) 27 (20.61%)

$1000 to $2000 32 (25.00%) 32 (24.43%)

$2000 to $3000 22 (17.19%) 13 (9.92%)

$3000 to $4000 7 (5.47%) 7 (5.34%)

$4000 to $5000 7 (5.47%) 7 (5.34%)

$5000 to $6000 6 (4.69%) 5 (3.82%)

$6000 or higher 5 (3.91%) 17 (12.98%)

Not reported 27 (21.09%) 23 (17.56%)

Site

Columbia University 37 (28.91%) 41 (31.30%)

Massachusetts General Hospital 23 (17.97%) 23 (17.56%)

University of Michigan 28 (21.87%) 28 (21.37%)

University of Texas Southwestern
Medical Center

40 (31.25%) 39 (29.77%)

Values are presented as mean (SD) or n (%).
HAMD, Hamilton Rating Scale for Depression.
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SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and
Artifact Detection Tools (http://www.nitrc.org/projects/artifact_
detect/) (see the Supplement for details). Scans demonstrating
high levels of motion or artifacts (.15% of volumes censored)
were excluded from subsequent analyses. After these exclusions,
n = 259 eligible baseline resting-state scan series and n = 229
eligible week 1 resting-state scan series were retained.

Resting-State Coactivation Pattern Analysis. Coactivation
pattern (CAP) analysis is a data-driven analytic technique that
uses the spatial distribution and magnitude of activation at
each individual volume and location of whole-brain data as
input to a clustering analysis to identify recurring states of
Biological Ps
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relative coactivation across the brain. CAP analyses were
performed using MATLAB (version R2019; The MathWorks,
Inc.) and the same method we applied in prior work (e.g., in a
Human Connectome Project sample; Supplement) (21,23).
First, for each participant and each volume, activation (signal
relative to the within-participant global mean at that spatial
location) was calculated at each of 130 regions of interest in a
whole-brain parcellation of the cortex and striatum (27,28)
plus subcortical limbic regions as defined by the Automated
Anatomical Labeling atlas (details in the Supplement). This
step yielded a data vector of coactivation estimates for each
volume at each region of interest and for each participant.
Second, coactivation data were concatenated across vol-
umes and participants. Third, k-means clustering was used to
partition the data into k brain states that represented recur-
ring patterns of coactivation that emerged over participants
and over time. Based on (29) (discussion in the Supplement),
k values of 5 to 11 were tested, and silhouette scores (a
measure of cohesiveness within clusters) were compared
across solutions. There were no statistically significant dif-
ferences in silhouette scores between clustering solutions (p
values . .20); however, silhouette scores were relatively
higher for k = 7 or 8 (median silhouette score = 0.111) than
other k solutions (median silhouette scores = 0.089–0.10).
Therefore, and also guided by our prior work indicating 8-
cluster solutions in independent samples (21,23), k = 8 was
selected. Fourth, for each participant and each scan (base-
line, 1 week), we computed CAP time-in-state for each
network state as the proportion of volumes that the partici-
pant spent in that network state during the scan. Changes in
network state dynamics were computed by subtracting
baseline time-in-state from week 1 time-in-state. This yielded
the CAP variables 1) baseline time in each of the CAP states
and 2) change in time in each CAP state over the initial week
of treatment. All CAP variables were inspected for non-
normality or outliers, and any variables that violated as-
sumptions of normal distribution were natural-log trans-
formed (Table S2 and Supplement). Finally, associations
among time-in-state measures for CAP network states were
tested to identify spatially distinctive states that showed
similar dynamic patterns (Table S3). To mitigate potential
collinearity when network variables were entered together
into multilevel models, network variables that were highly
correlated were z-scored and averaged to create composite
baseline or early-change measures of network dynamics.

Multilevel Mixed Effects Modeling. Mixed effects
modeling was performed in R. All models covaried gender and
age. A simple model tested linear and nonlinear changes in
HAMD scores over the 8-week period, covarying age and
gender and including random intercepts and slopes for the
associations between time and HAMD scores. To test antide-
pressant effects, treatment group (sertraline vs. placebo) was
contrast-coded and included in the above model as a cate-
gorical moderator of the effect of time. Next, two complemen-
tary models tested experimental hypotheses. In the first model,
testing baseline network dynamics as predictors of treatment
response, baseline network dynamics were entered as mod-
erators of the interaction between time and treatment group
ychiatry October 1, 2022; 92:533–542 www.sobp.org/journal 535
sity from ClinicalKey.com by Elsevier on September 15, 
sion. Copyright ©2022. Elsevier Inc. All rights reserved.

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/artifact_detect/
http://www.nitrc.org/projects/artifact_detect/
http://www.sobp.org/journal


Network Biomarkers of Antidepressant Response
Biological
Psychiatry
predicting HAMD change. In the second model, testing early
network changesaspredictors of treatment response, changes
in network dynamics were entered as moderators of the rela-
tionship between time and HAMD change, controlling for
treatment group and baseline network dynamics. Together, a
total of three mixed effects models tested hypotheses. For
significant paths detected in the latter model, the indirect effect
of treatment on HAMD slope through network dynamic change
variables were tested (a total of three mediation models were
Figure 1. Transient resting-state networks. Coactivation pattern analysis yield
participants. State 1 involved corticolimbic regions andoverlappedwith anterior area
pole and limbic regions, orbitofrontal cortex, and medial prefrontal cortex. State 2 i
systems and angular gyrus, as well as middle temporal regions. State 3 was com
hippocampal cortex. State 4 was characterized by coactivation of occipital regions
lapped with posterior areas of the canonical affective and default networks, featurin
State 6 involvedmidcingulate and parietal regions, including the posterior dorsal ant
temporal gyrus.State7overlappedwithanterior areasof thecanonical saliencenetw
8was characterized by frontoinsular regions including coactivation of the anterior in
prefrontal cortex and temporal pole. Displayed network states were normed (so tha
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tested). All tests were two-tailed, and the p statistics are also
reported after false discovery rate (FDR) correction.

RESULTS

Resting-State Networks and Measures of Dynamic
Functioning

The eight CAP states are shown in Figure 1 (see also
Tables S2–S6 and the Supplement for data quality and
ed k = 8 resting-state networks that recurred across time, scan series, and
s involved in emotion regulation includingcoactivationof areasof the temporal
ncluded regions of the canonical default network and featured midline cortical
posed of coactivation among sensorimotor regions extending to the para-
and posterior parietal regions including the posterior cingulate. State 5 over-
g coactivation of temporal, limbic, orbitofrontal, and posterior cingulate areas.
erior cingulate cortex extending to the supplementarymotor area, and superior
ork, includinganterior insula, temporoparietal, andsomatomotor regions.State
sula, and anterior regions of the canonical default network, including themedial
t activation across the whole brain for that state was centered at zero).
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reliability). State 1 included corticolimbic regions involved in
emotion regulation and included coactivation of areas of the
orbitofrontal and medial prefrontal cortices, temporal pole, and
limbic regions. State 2 was characterized by coactive regions
of the canonical DN and included midline cortical systems,
angular gyrus, and middle temporal regions. State 3 consisted
of coactivation among sensorimotor regions extending to the
parahippocampal cortex and posterior parietal cortex. State 4
was characterized by coactivation of occipital and posterior
parietal regions including the posterior cingulate. State 5
overlapped with ventral and posterior areas of the canonical
affective network and DN, with coactivation of posterior
cingulate, orbitofrontal, and limbic areas. State 6 was char-
acterized by coactivation of midcingulate and parietal regions,
including the posterior dorsal anterior cingulate cortex
extending to the supplementary motor area, and the superior
temporal gyrus. State 7 overlapped with anterior areas of the
canonical SN, including the anterior insula and midcingulate,
temporoparietal, and somatomotor regions. State 8 was
characterized by coactivation of anterior frontoinsular regions
that overlapped with the DN, including coactivation of the
anterior insula, medial prefrontal cortex, lateral prefrontal cor-
tex, and temporal pole.

Correlation analyses on dynamic measures between CAP
states revealed shared dynamic patterns across network
states. Specifically, states 1 and 3, states 2 and 7, states 4 and
8, and states 5 and 6 showed consistent patterns of positive
correlations in time-in-state at baseline, in time-in-state at
1 week, and in changes in time-in-state (Table S3). Therefore,
to reduce collinearity in subsequent models, dynamic mea-
sures (at baseline or changes in time-in-state) were z-trans-
formed and averaged for each pair of network states with
shared dynamic patterns. Following these transformations,
correlations among composite scores were inspected and any
composite scores showing high anticorrelations were com-
bined by reverse scoring and averaging. Together, these pro-
cedures yielded the following dynamic variables for analyses:
baseline time-in-states: 1/3, 2/7, 4/8, and 5/6; changes in time-
in-states: 1/3, 2/5/6/7, and 4/8.
Effects of Time and Treatment on Depression
Severity

A simple mixed effects model evaluated changes in depressive
symptom severity over the 8-week period of treatment
(Figure S2). Results showed significant linear (F1,204 = 194.60,
p , .01 [FDR q , .01]) and quadratic (F1,204 = 59.91, p , .01
[FDR q , .01]) effects of time, in which HAMD scores
decreased over time and leveled off in later weeks.

Antidepressant group was added to the model to evaluate
whether decreases in depressive symptoms over the treat-
ment period differed for patients receiving sertraline versus
placebo (Figure S2). Results indicated that patients in the
sertraline group showed steeper linear improvement in
HAMD scores than patients in the placebo group (F1,201 =
4.37, p = .04 [FDR q = .05]) but no difference in quadratic
patterns of symptom change (F1,201 = 0.35, p = .55). How-
ever, it is noted that the treatment-related differences in
linear symptom improvement were relatively small (stan-
dardized B = 20.06).
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Baseline Transient Network Dynamics and
Depression Severity

The mixed effects model above was repeated including
baseline time-in-state measures as moderators of the effects
of treatment time, antidepressant group, and treatment time 3

group interaction. The model showed no significant associa-
tions between baseline time-in-CAP-states and initial depres-
sion or changes in depression over the study period, and
baseline time-in-CAP-states did not moderate the relationship
between treatment group and depression improvement (all
p values . .10).

Changes in Transient Network Dynamics and
Depression Severity

The mixed effects model was next repeated including changes
in time-in-state measures as moderators of the effect of
treatment time, controlling for baseline time-in-state and anti-
depressant group (Figure 2). Participants showing increasing
time-in-states 1 and 3 reported nonsignificantly steeper (linear)
declines in depression (F1,190 = 2.96, p = .08 [FDR q = .09]) that
more rapidly leveled off (quadratic) (F1,190 = 5.48, p = .02 [FDR
q = .03]). Participants showing increasing time-in-states 2 and
7 and decreasing time-in-states 5 and 6 reported significantly
steeper (linear) declines in depression (F1,190 = 6.25, p = .01
[FDR q = .03]) but no difference in quadratic patterns (F1,190 =
0.64, p = .43). Finally, patients showing increasing time-in-
states 4 and 8 reported comparable linear changes in
depression (F1,190 = 1.76, p = .18), but symptom improvement
leveled off more rapidly, indicating failure to sustain this rate of
improvement (quadratic) (F1,190 = 4.04, p = .04 [FDR q = .05])
(see the Supplement for model cross-validation).

Mediation: Treatment Effects on Depression
Through Changes in Transient Network Dynamics

Post hoc models were performed to evaluate indirect effects of
sertraline on depression severity through early changes in
network dynamics. Antidepressant treatment group failed to
predict changes in time-in-states 1 and 3 (F1,206 = 0.92, p =
.92), and the indirect effect of treatment group on HAMD
improvement through changes in states 1/3 was not significant
(estimate = 0.014, bootstrapped 95% CI = 20.016 to 0.060).
Patients across groups showed increased time-in-states 1 and
3 (Table S4).

However, relative to the placebo condition, patients
receiving sertraline showed significantly greater increases
in time-in-states 2 and 7 and decreases in time-in-states 5
and 6 (F1,206 = 25.40, p , .01 [FDR q , .01]) (Figure 3).
Mediation analyses revealed a significant indirect effect of
sertraline treatment on symptoms through these patterns
of network change (estimate = 0.060, 95% CI = 0.02 to
0.147) (Figure 4). Post hoc interrogation of these effects
clarified that patients receiving sertraline especially
showed increased time-in-state 2, and the indirect effect
of sertraline on symptom improvement through increased
time-in-state 2 was significant (estimate = 0.057, 95%
CI = 0.010 to 0.145).

Finally, there was no significant difference between antide-
pressant groups in changes in time-in-states 4 and 8 (F1,206 =
1.80, p = .23), and the indirect effect of sertraline on depressive
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Figure 2. Early changes in network dynamics are associated with depression recovery over time. Patients showing early increases in time spent in network
states 1 and 3 showed marginally steeper linear improvements in depressive symptom severity (F1,190 = 2.96, p = .08) that leveled off more rapidly (F1,190 =
5.48, p = .02). Patients showing early increases in time-in-states 2 and 7, together with decreases in time-in-states 5 and 6, showed significantly steeper linear
improvement in depressive symptom severity that continued in later weeks of treatment (F1,190 = 6.25, p = .01). Patients showing early increases in (or failure to
decrease) time-in-states 4 and 8 showed a stronger quadratic pattern of symptom change in which symptoms leveled off or rebounded in later weeks of
treatment (F1,190 = 4.04, p = .04). Displayed are scatterplots showing Hamilton Depression Rating Scale (HAMD) scores for patients at all time points and
curvilinear within-subject changes in depression severity. To illustrate the moderating effects of changes in network dynamics, fit lines are estimated and
shown at more positive change in composite time-in-states (12 standard deviations above median change, red) or more negative change in composite time-
in-states (22 standard deviations below median change, blue) for each set of states (note that time-in-states 5/6 is reverse-scored). HAMD score was
residualized for covariates (age, gender, and baseline time-in-states) for graphical display. Time in weeks was z-scored, weeks 0–8. *p , .05, moderating
effects of time-in-states on depression change over time. resid, residualized.
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Figure 3. Antidepressant group differences in
early changes in network dynamics. Relative to pa-
tients receiving placebo, patients receiving sertraline
showed significantly greater increases in composite
changes in time-in-states 2, 5, 6, and 7 (F1,206 =
25.40, p, .01), indicating larger increases in time-in-
states 2 and 7 and decreases in time-in-states 5 and
6. Post hoc testing indicated significant sertraline-
related increases in time-in-state 2. There were no
differences between antidepressant treatment
groups in changes in time-in-states 1 and 3 or time-
in-states 4 and 8. Violin plots show distributions of
composite changes in time-in-state, with horizontal
lines indicating median within-group changes.
*p , .05, antidepressant group differences.
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Figure 4. Indirect effect of sertraline (SERT) treatment on depression re-
covery through early changes in network dynamics. Significant mediated
effects were observed (estimate = 0.060, 95% CI = 0.02 to 0.147) in which
SERT treatment was associated with steeper linear improvement in
depression through changes in network dynamics, including increased time-
in-states that overlapped with the canonical default network and salience
network (states 2 and 7) and decreased time-in-states that were charac-
terized by mid- and posterior cingulate regions in coactivation with ventral
limbic and temporal regions (states 5 and 6). Paths show standardized
coefficients (B) for the association between antidepressant group and early
changes in time-in-states; between early changes in time-in-states and
linear improvement in Hamilton Depression scores, controlling for group;
and between antidepressant group and linear improvement in Hamilton
Depression scores, controlling for changes in time-in-states. *p , .05. PLA,
placebo.
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symptom change through changes in states 4/8 was nonsig-
nificant (estimate = 0.003, 95% CI = 0.000 to 0.010). Patients
across groups showed decreased time-in-states 4 and 8
(Table S4).
DISCUSSION

Identification of objective neural markers that forecast anti-
depressant response and recovery is a critical goal for preci-
sion medicine. This study aimed to address this goal,
investigating dynamic resting-state network markers that
moderated or mediated response to sertraline in a large sam-
ple of adults with MDD. The focus on dynamics of resting-state
networks was motivated by evidence that such dynamics are
reliable (21) and correspond with severity of illness and mal-
adaptive cognitive style in depression (23); here, we extend
prior work to understand network dynamics as predictors or
mechanisms of antidepressant (and placebo) effects on
symptomatology. Several key results emerged. First, network
dynamics involving regions of (canonical) default network and
salience network mediated sertraline-related symptom
improvement, implying that dynamic functioning of these net-
works may serve as an indicator of treatment effect. Second,
network dynamics involving corticolimbic and frontoinsular
networks were broadly associated with patterns of symptom
change but not antidepressant treatment, suggesting that
dynamic functioning of these networks may more generally
track with recovery. We note that, counter to our hypotheses,
there were no significant associations between baseline
network dynamics and treatment outcome, which stands in
contrast to prior work on (static) resting-state functional con-
nectivity markers [e.g., (30,31)]. It may be that static versus
dynamic properties of network functioning hold different but
complementary information to guide treatment research.
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Sertraline response was associated with a pattern of
changing dynamics across transient networks that closely
matched canonical DN and SN (increased time-in-states 2 and
7) or that showed a spatial mixture of DN- or SN-like features
(mid- and posterior cingulate) in coactivation with limbic and
temporal regions (decreased time-in-states 5 and 6). Early
changes in the dynamic functioning of these networks medi-
ated the effects of sertraline on depression improvement. One
interpretation of this pattern is that sertraline effectively
sharpened network boundaries, eliciting increased dominance
of states that more closely match canonical DN and SN states
while dampening mixed states in which regions involved in
introspection and salience-directed attention coactivate with
affective and posterior regions. This interpretation aligns with
prior work showing that the first week of SSRI administration
elicits increases in extracellular serotonin in prefrontal and
subcortical regions but decreases in extracellular serotonin in
other frontal regions, i.e., starker contrasts in extracellular se-
rotonin across regions that may correspond with sharper
network boundaries (17). In turn, sharpening of network
boundaries may be associated with other potential mecha-
nisms of sertraline including better prefrontal regulation of
subcortical systems (32) or long-term structural changes in
prefrontal systems (33) [see related review in (34)]. Future
research may explore the associations among sertraline-
related neural changes.

The finding that resting-state networks related to canonical
DN and SN are associated with treatment response aligns with
prior work implicating these networks in the pathophysiology
of depression (11,12,35), but it may seem counterintuitive that
increased dominance of a DN-like network state was related to
better outcomes given evidence for DN hyperconnectivity and
hyperactivation in MDD (10,36). However, these results are
consistent with evidence for spatially overlapping DNs and
subnetworks that have different associations with depressive
symptoms (23). For example, antidepressant response has
been associated with higher resting-state activity in dorsal
regions but lower resting-state activity in ventral regions of the
anterior DN (14) and increases in regional synchrony of anterior
regions of DN over the course of treatment (37). This frac-
tionation of DN, which may relate to dynamic activities of
multiple overlapping DN-like networks, is obscured in tradi-
tional static analyses. For example, here, we identified multiple
transient networks that overlapped with canonical DN,
including state 2 (a more prototypical DN-like state) and state 8
(a state featuring coactivation across anterior insula and medial
prefrontal regions of DN). Whereas increased time in a proto-
typical DN state was an early marker that mediated better
treatment response, decreased time in a frontoinsular-DN
state was related to better recovery overall. The latter pattern
is consistent with our prior research, in which a frontoinsular-
DN state was related to more severe depression and the ten-
dency to ruminate (23), and emphasizes the importance of
dynamic approaches that make it possible to tease apart
spatially overlapping transient networks.

Along with dynamic network markers of treatment
response, this study also identified potential markers of re-
covery that were shared across treatment groups. Increased
time spent in states 1 and 3 was associated with marginally
more rapid symptom remission, which leveled off earlier in the
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period of treatment. In turn, failure to decrease time spent in
states 4 and 8 was associated with worse symptom remission,
in the form of initially comparable linear gains that also leveled
off earlier in the period of treatment (i.e., stalled recovery at a
higher level of severity). Findings for a relationship between
corticolimbic circuits involved in emotion regulation (state 1)
and depression recovery are consistent with other research
indicating that enhanced activity and synchrony of cortico-
limbic regions corresponds with affective change within person
(38), is elicited by SSRI administration (17), and predicts or
tracks with SSRI response in MDD (11). In addition, as noted
above, findings for a depressogenic effect of frontoinsular-DN
(state 8) dominance are consistent with prior evidence that
greater dominance of a similar network state was associated
with higher depression (23). Here, these network dynamics
were associated with patterns of symptom change and were
not significantly associated with medication status. It may be
that corticolimbic and frontoinsular-DN circuits constitute
general biomarkers that help to predict particular patterns of
depression recovery, irrespective of whether recovery is
associated with medication, placebo, or the passage of time.

Some limitations to this study should be noted. First, the
generalizability of results is limited to patient populations that
match the eligibility, demographic, and treatment-adherence
characteristics of this study. Other research should explore
biomarkers of antidepressant response in community or pri-
mary care settings or in other demographic or developmental
groups. Second, it is unknown whether resting-state mediators
of sertraline response are shared or distinct from those of other
antidepressant medications or therapies. Studies comparing
biomarkers across interventions, and replicability or relative
utility of biomarkers related to interventions or general recov-
ery, may test this question. Third, the use of a novel dynamic
method for identifying resting-state markers is both a strength
of this study and a limitation. The data-driven approach made
it possible to extract transient network states without imposing
a spatial network organization, and this approach has been
shown to have good test-retest reliability (21). In addition,
these results align with other analyses using standard resting-
state functional connectivity methods in the same sample (30).
However, in light of concerns regarding the reliability of widely
used neuroimaging measures (39) and the relative novelty of
dynamic approaches, these results should be replicated.

In conclusion, this study investigated novel dynamic
resting-state network markers of treatment response in a
randomized, placebo-controlled trial of sertraline response in
adults with MDD. Key findings included identification of tran-
sient networks involving canonical default and salience re-
gions, in which early functional changes mediated sertraline
response, and a set of networks involving corticolimbic and
frontoinsular regions that predicted general patterns of re-
covery from depression. Dynamic characteristics of resting-
state network function may hold promise as biomarkers of
early treatment efficacy, and future research in this area may
further clinical and translational goals for precision medicine.
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Supplementary Methods 
 
Analyses 
 

General image preprocessing. Functional data were preprocessed using Statistical 

Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) with the 

standard spatial preprocessing steps of slice-time correction, realignment, segmentation, 

normalization in Montreal Neurological Institute (MNI) space, and smoothing with a 6-mm 

kernel. 

Regions of interest. Cortical and striatal regions of interest were defined by a publicly 

available parcellation map that is based on functionally coupled regions in 500 healthy adult 

subjects and was replicated in an independent sample of 500 healthy adult subjects (1,2). 

Subcortical limbic regions were defined by the AAL atlas. There were a total of 130 ROIs in the 

spatial map. We (3–5) and others (6) have used the same spatial ROI map in prior co-activation 

pattern analyses. We note that prior research comparing CAP states derived using different ROI 

maps (including a map using the network parcellation used here from (1)) showed good spatial 

reproducibility of CAPs across parcellations (7). 

Motion thresholding and exclusions. We used SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) to evaluate head motion by translation and 

rotation in x, y, z directions, and Artifact Detection Tools (ART, 

www.nitrc.org/projects/artifact_detect/) to calculate time points of significant head motion or 

fluctuations in the magnetic field (>0.5 mm motion from previous frame, global mean intensity 

>3 standard deviations from mean intensity across functional scans) for each participant. For any 

scan in which high levels of motion or artifacts across the time series was observed (>15% of 

volumes contaminated by motion or artifact, according to the thresholds above), that scan was 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.nitrc.org/projects/artifact_detect/
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excluded from subsequent analyses. After these exclusions, n=259 eligible baseline resting-state 

scan series, and n=229 eligible week 1 resting-state scan series, were retained.  

Co-activation pattern analysis. As reported in the main text, ks of 5 to 11 were tested. 

This range was selected based on prior evidence that reliable dominant co-activation patterns 

were detected in resting-state and task fMRI data in this range, but not at k<4 or k>12 (8).  

 
Supplementary Results 
 
Coactivation Pattern Analysis (CAP): Quality Controls and Reliability 

Information on the spatial organization of CAP-derived transient network states is 

reported in the main text.  

Descriptive statistics. Descriptive statistics for CAP states are reported in 

Supplementary Tables. Any CAP states showing high skew and kurtosis (states 4 and 8; Table 

S2) were natural-log transformed1 before subsequent analyses.  

Cluster cohesion. To test cluster cohesion, we calculated silhouette scores (a measure of 

how similar each volume of data is to the cluster in which it is grouped) for each co-activation 

state. Ranges of silhouette scores were comparable to other research using CAP analysis (3,4). 

Motion checks. To compare brain states with motion estimates, we calculated the 

average framewise displacement associated with each brain state and there was no evidence that 

any brain states were contaminated by motion (average framewise displacement <0.2mm for all 

states). To further evaluate potential associations between motion and specific CAP states, we 

tested for differences between CAP states on average framewise displacement (mean FWD is 

 
1 An alternative transformation for proportion data is the arcsine transformation (although this has been critiqued 
(9)). Exploratory testing of the arcsine transformation as an alternative indicated that arcsine transformation 
performed more poorly in correcting skew and kurtosis in these data, therefore we retained natural-log 
transformation. 
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reported in Table S2). There were no differences between CAP states in motion (ps>0.05, Figure 

S3).  

As an additional check, we censored the timeseries for each participant at a conservative 

threshold (movement >0.3mm) and tested whether there were differences in time-in-states 

between the censored and uncensored timeseries. There were no significant changes in time-in-

states for any CAP state after censoring (ps>0.05). In addition, we tested the reliability of time-

in-states across the censored and uncensored timeseries by correlating time-in-states estimates 

derived from censored and uncensored data. Correlations between proportional time-in-states of 

the censored relative to uncensored timeseries ranged from r=0.97 to r=0.99, (Figure S3), 

indicating that individual differences in time-in-states were stable across censored and 

uncensored data. Together, these control analyses support that CAP states and time-in-state 

measures were robust to motion.  

Finally, we repeated group-level mixed effects analyses controlling for data quality 

(volumes affected by motion or spikes in global signal). The results of these augmented models 

were consistent with models reported in the main text, i.e., no changes in the nature or 

significance of any effects (changes in ps<0.002). 

State frequency checks.  We evaluated the timing of CAP states over the timeseries by 

estimating the interval between recurrences of each state. If one or more CAP states tended to 

recur at frequencies that are associated with noise signals (e.g., respiration, 0.1-0.5 Hz, cardiac 

activity, 0.6-1.2 Hz, drift, <0.008 Hz (10)), this could suggest that activity of this CAP state is 

driven by non-neuronal processes.  

On average across participants and over the timeseries, the mean interval between state 

recurrences ranged from 7.17 to 33.54 volumes (14.43 to 67.08 seconds per cycle, or 0.015 to 
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0.070 Hz) (Figure S4). Average recurrence frequencies for all states fell within the standard 

band-pass filter for resting-state functional connectivity analyses, of 0.008 to 0.090 Hz (11), and 

are below high-frequency signals related to cardiac or respiratory activity (10) or low-frequency 

signals related to scanner drift.  

Comparing spatial organization of CAP states across samples. Reliability of the 

spatial organization of CAP states was evaluated by comparing the spatial organization of the 

eight CAP states detected in this sample with the spatial organization of the eight CAP states that 

were reported in a sample of participants from the Human Connectome Project using the same 

methods for deriving co-activation patterns (HCP; (4)). Spatial overlap was computed in the 

form of Dice similarity coefficients, in which values approaching 1.0 indicate high spatial 

consistency in co-active regions. Results showed high levels of spatial overlap between network 

states estimated in the present sample and network states that were independently estimated in 

the HCP sample (Table S5). (See also (4) for additional analyses showing high reliability of 

spatial network organization within-subject in the HCP sample). Comparing across samples, 

three out of eight CAP states in the present study showed Dice coefficients >0.80 with states 

derived from the HCP dataset, and seven out of eight CAP states in the present study showed 

Dice coefficients >0.70 with states derived from the HCP dataset.  

Of note, three states derived in the present sample showed spatial overlap >0.70 with 

more than one HCP state. State 2 in this study (corresponding with the canonical default 

network) showed highest overlap with HCP state 3, but also high overlap with 1. State 3 in this 

study (characterized by activation in sensorimotor and temporal regions) showed highest overlap 

with HCP state 6, but also high overlap with 4. State 7 in this study (corresponding with the 

canonical salience network) showed highest overlap with HCP state 5, but also high overlap with 
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4. These patterns are consistent with the finding (both here and within the HCP dataset), that 

there are multiple e.g., default network-like and salience network-like states with overlapping 

spatial characteristics. However, these findings also point to the complexity of comparing 

transient networks across samples: there was not a one-to-one match for all networks derived 

from the present sample and the HCP sample, and one state failed to show a Dice coefficient 

>0.70 with any HCP state. Differences may stem from differences in transient networks that 

characterize depressed compared with healthy individuals, but also highlight the importance of 

replication within a population. 

Simulated data. We tested whether CAP network states could be detected in a simulated 

dataset, and whether network states derived from real data would outperform states derived from 

simulated data. Simulated data were created from the real dataset by shuffling the timeseries of 

activation of each ROI with respect to other ROIs (random shuffle of 1:length(vols)), but 

maintaining the integrity of the timeseries within each ROI. Next, the same approach to co-

activation pattern analysis that is described in the main text was performed on the simulated data, 

with a k=8 clustering solution.  

Silhouette scores for CAP states derived from simulated data versus real data were 

compared. It is noted that silhouette scores tend to be lower in higher-dimensional data (12); 

therefore, because the simulated data retained all characteristics of real data except for true 

patterns of spatial co-activation, this provides a useful benchmark for interpreting cluster 

cohesion. Results showed that across participants, silhouette scores were significantly higher for 

real data CAP states than for simulated data CAP states, t(228)=62.30, p<0.01, (Fig S5). In real 

data, average silhouette scores for each cluster ranged from 0.03-0.15, whereas in simulated data 

silhouette scores were <0.01 for all clusters.  
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Spatial overlap was computed between simulated data CAP states and states derived in 

the independent HCP sample (4), and compared with the estimates of spatial overlap between 

real data CAP states and HCP states. The maximum Dice coefficients, reflecting the best spatial 

matches with HCP states, were significantly higher for real data than for simulated data, 

t(18)=7.07, p<0.01. In addition, there was significantly higher variance in Dice coefficients for 

real data relative to simulated data CAP states, t(18)=4.99, p<0.01, suggesting better specificity 

of spatial matches in real data (Fig S5). 

Together, results of these simulations support the validity of network states emerging 

from co-activation pattern analyses in this study. 

Reliability of dynamic functioning of CAP states within subject. We previously 

reported on within-subject reliability of dynamic measures, including time-in-state, in the HCP 

sample (4). In that normative sample, we observed high reliability in time-in-state and other 

dynamic measures over consecutive scans (see (4) for discussion).   

To evaluate within-subject reliability of network dynamics in the present sample, we 

calculated the Spearman Brown corrected correlation coefficient for split-half time-in-state (odd 

and even volumes) for each state and timepoint (rest 1, rest 2) (13). Reliability was high for time-

in-state for all states and both timepoints of evaluation, rs>0.93 (Table S6). 

Finally, we performed analyses to test whether changes in time-in-state between 

timepoints (change from rest 1 to rest 2) were significantly larger than split-half differences in 

time-in-state within timepoints. Because this study tested the hypothesis that network dynamics 

change over the course of early treatment, it is important to demonstrate that such changes are 

distinguishable from e.g., measurement error. Results of a paired-samples t-test showed that the 
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magnitude of time-in-states changes from baseline to week 1 was significantly greater than split-

half differences in time-in-states, t(228)=17.04, p<0.01, Cohen’s d=1.13 (Figure S6). 

Together, these analyses show adequate reliability of within-subject measurement of 

time-in-state, and highlight that changes in time-in-state from baseline to week 1 are significantly 

larger than the variance in resampled (split-half) data. Results support that observed differences 

over the course of early (placebo or sertraline) treatment are meaningful, but these tests should 

be replicated in independent samples. 

Summary of Data Quality and Reliability. Together, these quality and reliability 

checks performed within the present sample and across independent samples support reliability 

and validity of the CAP analytic approach, and the potential for dynamic measures to provide 

information about individual differences in network activity and the extent to which such 

network activities change as a function of symptom remission or effective treatment. A next step 

for this research will be to evaluate in large matched independent samples the replication of 

spatial organization and dynamic properties of CAP states, and their associations with 

psychopathology and treatment. Although the control analyses above generally support the 

reliability of the method and of most network states, it remains unknown if distinctive transient 

networks or distinctive patterns of dynamic functioning emerge in different psychiatric 

conditions, at different developmental stages, or as a function of other group or individual 

difference characteristics. If such differences emerge, it will be important to replicate those 

effects, along with estimating reliability of network dynamics within a population and within a 

person over time (4). Future research may address these questions. 
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Exploratory Models and Control Analyses 

At the request of an anonymous reviewer, we performed the following exploratory 

models. 

Site control analyses. We repeated mixed-effects models after covarying site. Results 

showed that the addition of site covariates did not alter the nature or significance of any effects 

(changes in ps<0.008). 

Week 8 outcomes. We performed an exploratory linear model in R to test whether 

changes in time-in-state predicted differences in depression severity at the final (week 8) 

timepoint, controlling for baseline symptom severity. Results indicated a non-significant trend in 

which participants who showed the largest increases in time-in-states 2 and 7, and largest 

decreases in time-in-states 5 and 6, reported marginally lower depression severity at week 8, 

B= -1.05, F(1,197)=2.89, p=0.09. There were no significant differences in week 8 depression 

severity as a function of other network state dynamics. Together with analyses reported in the 

main text, these results imply that early changes in transient network state dynamics are 

primarily associated with the shape of recovery from depression over time (e.g., more rapid 

recovery) rather than symptom outcomes at the final timepoint of assessment. 

Cross-validation analyses. We performed cross-validation analyses to evaluate, in held-

out data, the performance of the mixed-effects model testing early network changes as predictors 

of treatment response.  

In the first cross-validation, we evaluated the performance of the model generalizing to 

new subjects. First, we randomly selected 80% of subjects (by ID code) as a training dataset. In 

the training dataset, we fitted the mixed effects model testing changes in network dynamics, 

linear and non-linear effects of time, and interactions between network changes and time effects, 
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predicting HAMD scores (controlling for treatment group, baseline network dynamics, age and 

gender). Second, we predicted the model on the held-out test dataset (remaining 20% of subjects) 

and calculated RMSE of the predictions as a measure of out-of-sample error. We also estimated 

in-sample error, by predicting the model on the training dataset and calculating RMSE. We 

iterated the above steps ten times, selecting new random subsets of subject data (80%/20%) for 

training and test datasets on each iteration. Average out-of-sample RMSE and average in-sample 

RMSE were computed (for interpretability we also report on RMSE divided by the HAMD 

range, as RMSE scales with the dependent variable). Finally, we plotted fitted curves for the 

predicted model (with 90% confidence interval estimated with model-based parametric 

bootstrapping), together with curves fitted to the test data (model trained on the test data), for 

each of the ten iterations of testing (Figure S7). 

In the second cross-validation, we evaluated the performance of the model generalizing 

to new levels of observation within subjects. First, we randomly selected 80% of timepoints (by 

week number) as a training dataset, and fitted the mixed effects model in the training dataset. 

Second, we predicted the model on the on the held-out test dataset (remaining 20% of 

timepoints). Out-of-sample RMSE and in-sample RMSE were calculated, as described above. 

We iterated the above steps ten times, selecting new random subsets of timepoint data 

(80%/20%). Average out-of-sample RMSE and in-sample RMSE are reported, and plots were 

generated displaying fitted curves for the predicted model and fitted curves for a model trained 

on the test data. 

Cross-validation results. For the first cross-validation that evaluated generalizability of 

the model to new subjects, analyses yielded an average out-of-sample RMSE=5.71 

(RMSE/rangeHAMD =0.17) and an average in-sample RMSE=3.08 (RMSE/rangeHAMD =0.09). For 
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the second cross-validation that evaluated generalizability of the model to new levels of time 

within subjects, analyses yielded an average out-of-sample RMSE=4.56 (RMSE/rangeHAMD 

=0.13) and an average in-sample RMSE=2.65 (RMSE/rangeHAMD =0.08). Together, out-of-

sample RMSE was higher than in-sample RMSE both when generalizing to new subjects and to 

new timepoints. But, in support of model performance, both out-of-sample RMSE and the 

differences between out-of-sample and in-sample RMSE were low relative to the scale of the 

dependent variable. There is no universal threshold for RMSE, and caution is warranted when 

comparing out-of-sample and in-sample estimates given differences in sample sizes for training 

and test datasets (14,15).  

In further support of model performance, estimated effects fitted to each held-out dataset 

(new subjects, or new levels of time within a subject) were within the 90% confidence interval of 

predicted effects for every iteration (Figure S7). Together, results of these cross-validation 

analyses provide initial support that the model generalizes to new data, but these findings should 

be validated in future studies. 
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Supplementary Tables 

Table S1. Neuroimaging parameters 

 Columbia 
University 

Massachusetts 
General Hospital 

University of 
Michigan 

  University of 
Texas 

Southwestern 
Medical Center 

Scanner     
Type General Electric 3T Siemens 3T Phillips 3T Phillips 3T 
Structural Scan     
Series IR FSPGR MPRAGE TFE MPRAGE 
Repetition time/Echo 
time (TR/TE) 

6.0ms/2.4ms 2.3s/2.54ms 8.1ms/3.7ms 8ms/3.7ms 

Flip Angle 9o 9o 12o 12o 
Thickness 1mm 1mm 1mm 1mm 
Resolution 1x1x1mm 1x1x1mm 1x1x1mm 1x1x1mm 
Duration 5.00 minutes 4.30 minutes 5.29 minutes 4.24 minutes 
Functional Scan     
Repetition time/Echo 
time (TR/TE) 

2000ms/28ms 2000ms/28ms 2000ms/28ms 2000ms/28ms 

Flip Angle 90o 90o 90o 90o 
Thickness 3.1mm 3.1mm 3.1mm 3.1mm 
Resolution 3.2x3.2x3.2mm 3.2x3.2x3.2mm 3.2x3.2x3.2mm 3.2x3.2x3.2mm 
Matrix 64x64 64x64 64x64 64x64 
Duration 6 minutes 6 minutes 6 minutes 6 minutes 
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Table S2. Transient network state descriptive statistics. 
 

 State QA Baseline Time in State  
(As Proportion of Scan Series) 

One-Week Time in State  
(As Proportion of Scan Series) 

 Mot 
(mm) 

Silht Min Max M SD Skew Kurt Min Max M SD Skew Kurt 

State 1  0.118 0.148 0.028 0.361 0.177 0.060 0.003 0.219 0.006 0.389 0.187 0.058 0.036 0.852 
State 2 0.106 0.118 0.017 0.328 0.171 0.066 -0.002 -0.432 0.039 0.333 0.179 0.063 -0.001 -0.487 
State 3 0.144 0.128 0.000 0.217 0.086 0.042 0.238 -0.434 0.000 0.211 0.097 0.043 0.091 -0.348 
State 4 0.150 0.032 0.000 0.378 0.078 0.088 1.642 1.740 0.000 0.389 0.064 0.074 2.063 4.286 
State 5 0.171 0.059 0.000 0.156 0.035 0.029 0.952 0.844 0.000 0.128 0.040 0.028 0.566 -0.266 
State 6 0.121 0.130 0.033 0.478 0.220 0.062 0.005 1.241 0.056 0.378 0.220 0.059 -0.156 0.080 
State 7 0.117 0.104 0.006 0.383 0.165 0.057 0.009 0.417 0.028 0.328 0.160 0.053 0.018 0.287 
State 8 0.122 0.073 0.000 0.361 0.067 0.094 1.665 1.486 0.000 0.344 0.054 0.072 1.873 2.838 

Note: Mot. = average motion (in mm) associated with a transient network state. Slht. = average silhouette score for each transient 
network state, a measure of how cohesive is a cluster of data partitioned together in clustering analysis. Min = minimum, Max = 
maximum, M = mean, SD = standard deviation, Skew = skewness of the distribution, Kurt = kurtosis of the distribution. Quality 
assurance checks showed that network states 4 and 8 showed unacceptably high skewness and/or kurtotic distribution. Therefore, 
time-in-states for these network states were natural log transformed before inclusion in subsequent analyses.  
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Table S3. Correlations among dynamic measures at baseline, one-week, or changes over time. 
 

Baseline Time in State  
(As Proportion of Scan Series) 

State 1 2 3 4 5 6 7 8 
BASE r r r r r r r r 
State 1  1.00 -0.01 0.68 -0.60 0.09 0.20 0.01 -0.57 
State 2  1.00 -0.21 -0.52 -0.26 0.19 0.65 -0.55 
State 3   1.00 -0.55 0.62 0.20 -0.15 -0.49 
State 4    1.00 -0.39 -0.65 -0.52 0.95 
State 5     1.00 0.55 -0.19 -0.36 
State 6      1.00 0.16 -0.67 
State 7       1.00 -0.57 
State 8        1.00 

One-Week Time in State  
(As Proportion of Scan Series) 

State 1 2 3 4 5 6 7 8 
1-WK r r r r r r r r 
State 1  1.00 -0.32 0.67 -0.46 0.07 0.01 -0.05 -0.46 
State 2  1.00 -0.32 -0.39 -0.29 0.09 0.59 -0.43 
State 3   1.00 -0.50 0.61 0.01 -0.22 -0.44 
State 4    1.00 -0.34 -0.56 -0.47 0.93 
State 5     1.00 0.42 -0.35 -0.29 
State 6      1.00 0.07 -0.54 
State 7       1.00 -0.53 
State 8        1.00 

Change from Baseline to One-Week Time in State  
(As Proportion of Scan Series) 

State 1 2 3 4 5 6 7 8 
CHNG r r r r r r r r 
State 1  1.00 -0.39 0.54 -0.30 -0.22 -0.13 -0.28 -0.36 
State 2  1.00 -0.37 -0.03 -0.35 -0.34 0.31 -0.09 
State 3   1.00 -0.42 0.38 -0.13 -0.35 -0.35 
State 4    1.00 -0.36 -0.40 -0.05 0.65 
State 5     1.00 0.54 -0.32 -0.26 
State 6      1.00 -0.31 -0.28 
State 7       1.00 -0.16 
State 8        1.00 

Note: Reported are Pearson’s correlation coefficients (r) for time-in-state at baseline, time-in-state at one week after initiating 
treatment, or changes in time-in-state from baseline to one-week. Network states for which dynamic measures were consistently 
highly correlated are indicated by bolded and shaded cells. 
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Table S4. Transient network state dynamics descriptive statistics by antidepressant group. 
 

 Sertraline 
 

Placebo  
 

Overall 

 Baseline 
(n=128) 

One-Week 
(n=110) 

Change 
(n=110) 

Baseline 
(n=131) 

One-Week 
(n=119) 

Change 
(n=119) 

Change 
(n=229) 

 Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
State 1  0.176 0.059 0.188 0.052 0.010 0.067 0.179 0.062 0.186 0.064 0.005 0.058 0.008 0.062 
State 2* 0.166 0.061 0.181 0.059 0.016 0.059 0.176 0.070 0.178 0.068 0.003 0.063 0.009 0.061 
State 3 0.086 0.040 0.100 0.046 0.013 0.042 0.087 0.044 0.094 0.041 0.008 0.038 0.010 0.040 
State 4 0.077 0.087 0.060 0.071 -0.017 0.049 0.077 0.089 0.066 0.075 -0.014 0.044 -0.016 0.046 
State 5 0.038 0.031 0.043 0.027 0.005 0.033 0.032 0.027 0.038 0.029 0.008 0.026 0.006 0.029 
State 6* 0.225 0.066 0.216 0.063 -0.007 0.067 0.217 0.058 0.224 0.053 0.012 0.060 0.003 0.064 
State 7 0.165 0.061 0.163 0.053 0.002 0.055 0.164 0.054 0.158 0.053 -0.006 0.048 -0.004 0.051 
State 8 0.066 0.094 0.049 0.072 -0.018 0.046 0.067 0.093 0.055 0.071 -0.014 0.045 -0.016 0.045 
Note: SD = standard deviation. Bolded and shaded cells represent significant change in time-in-state from baseline to one week 
after initiating treatment, within each treatment group or across the sample (within-subject t-tests, p<0.05). Asterisked state labels 
represent networks for which the change in time-in-state was significantly different between treatment groups (between-subjects 
t-tests, p<0.05). These tests are post-hoc and intended to expand upon main hypothesis-testing models. 
 
  



 18 

Table S5. Spatial reliability of CAP states across independent samples. 
 

 Dice Coefficients Across Independent Samples 
 EMBARC 
HCP State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8 

 DSC DSC DSC DSC DSC DSC DSC DSC 
State 1  0.81 0.77 0.22 0.41 0.71 0.28 0.27 0.61 
State 2 0.58 0.58 0.24 0.29 0.45 0.40 0.33 0.63 
State 3 0.74 0.86 0.22 0.46 0.63 0.29 0.10 0.51 
State 4 0.25 0.17 0.72 0.49 0.33 0.70 0.80 0.47 
State 5 0.62 0.43 0.35 0.26 0.60 0.41 0.57 0.72 
State 6 0.20 0.28 0.79 0.69 0.33 0.72 0.67 0.31 
State 7 0.37 0.42 0.69 0.58 0.47 0.58 0.58 0.41 
State 8 0.35 0.25 0.59 0.42 0.43 0.61 0.73 0.52 

Note: Reported are Dice similarity coefficients (DSC) for spatial organization of network states independently derived in the 
present sample (EMBARC) and a sample drawn from the Human Connectome Project (HCP; see (4)). DSC values approaching 
1.0 indicate high spatial overlap. To indicate potentially “matching” states across samples, DSC values >0.70 are bolded and 
shaded, with values >0.80 in darker shading. 
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Table S6. Within-subject split-half reliability  
of transient network dynamics. 
 

 Split-Half Reliability of Time-in-State  
 Baseline One-Week 
 SB r SB r 
State 1  0.93 0.93 
State 2 0.95 0.94 
State 3 0.95 0.95 
State 4 0.99 0.99 
State 5 0.97 0.95 
State 6 0.93 0.93 
State 7 0.93 0.94 
State 8 0.99 0.99 

Note: Reported are reliability statistics computed as Spearman  
Brown corrected correlation coefficients (SB r) for split-half  
time-in-state for each state and timepoint (12). 
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Supplementary Figures 
 
 

 
Figure S1. Consort diagram. 
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Figure S2. Depression recovery over time and as moderated by antidepressant treatment 
group. Patients showed linear and quadratic patterns of symptom change over the eight-week 
period of treatment, including linear improvement in depression symptom severity that was 
steepest in early weeks of treatment. Patients in the sertraline group (SERT) showed a steeper 
linear improvement in depression severity relative to patients in the placebo group (PLA). Note: 
Displayed are scatterplots showing Hamilton Depression scores for patients at all timepoints, and 
curvilinear within-subject changes in depression severity. Group-level fit lines show symptom 
change across the full sample (left), or symptom change within the sertraline or placebo groups. 
Hamilton Depression scores (resid HAMD) are residualized for covariates (age and gender). 
Time in weeks z-scored, weeks 0 to 8. *p<0.05, effects of time, moderating effect of 
antidepressant treatment. 
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Figure S3. Motion checks. To ensure that head motion did not influence estimated time-in-
states, we censored the timeseries for each participant at a threshold of framewise displacement 
>0.3mm. Proportional time-in-states of the censored relative to uncensored timeseries were 
highly correlated (upper panel, r=0.97 to r=0.99). There were no significant changes in time-in-
states for any CAP state after censoring (ps>0.05). In addition, there were no differences 
between transient network states in framewise displacement associated with each state (lower 
panels; horizontal line indicates median framewise displacement for that state). 
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Figure S4. Interval between state recurrences. Average intervals (number of volumes) between 
state recurrences (transition into that state, after time spent in any other state) are displayed. The 
mean intervals between state recurrences ranged from 7.17 to 33.54 volumes (14.43 to 67.08 
seconds per cycle, or 0.015 to 0.070 Hz). Recurrence frequencies for all states fell within the 
standard band-pass filter for resting-state functional connectivity analyses, of 0.008 to 0.090 Hz 
(11). Typical noise frequency bands are displayed for respiration, 0.1-0.5 Hz (yellow), cardiac 
activity, 0.6-1.2 Hz (pink), and scanner drift, <0.008 Hz (green) (10). Horizontal lines within 
boxplot indicate median interval between state recurrences for each state and timepoint. 
 

  



 24 

 
 
Figure S5. Comparing co-activation pattern (CAP) network states derived from real versus 
simulated (shuffled) data. Simulated data were created from the real dataset by shuffling the 
timeseries of activation of each ROI with respect to other ROIs but maintaining the integrity of 
the timeseries within each ROI, and then performing the same CAP analysis on simulated data. 
The top panel shows silhouette scores and Dice coefficients for the eight CAP states presented in 
this study; the bottom panel shows silhouette scores and Dice coefficients derived from 
simulated data. (Dice coefficients indicate spatial overlap between network states and 
independent states derived in the Human Connectome Project data using the same analytic 
approach (4)). Comparing silhouette scores between real and simulated data, silhouette scores 
were significantly higher for real data CAP states than for simulated data CAP states, 
t(228)=62.30, p<0.01. The maximum Dice coefficients, reflecting the best spatial matches with 
HCP states, were significantly higher for real data than for simulated data, t(18)=7.07, p<0.01, 
and there was significantly higher variance in Dice coefficients for real data relative to simulated 
data CAP states, t(18)=4.99, p<0.01, suggesting better specificity of spatial matches in real data. 
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Figure S6. Comparing within-subject changes in network dynamics: Changes over time versus 
reliability of measures. Upper panel shows average within-subject change in time-in-state from 
baseline to week 1 of treatment for each network state (purple; rest2-rest1), together with 
average within-subject differences in time-in-state between split-halves at either baseline (red; 
rest1, odd-even volumes) or week 1 (blue; rest2, odd-even volumes). To support the validity of 
the measure and interpretation of effects, magnitude and range of changes over early treatment 
should exceed magnitude of differences within a timepoint. Indeed, magnitude of time-in-states 
changes from baseline to week 1 was significantly greater than split-half differences in time-in-
states, t(228)=17.04, p<0.01, Cohen’s d=1.13. Lower panel shows the correlation in time-in-
states between split halves at each timepoint, and Spearman Brown corrected correlation 
coefficients indicated high reliability for all states and both timepoints (Table S6). 
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Figure S7. Model performance. Cross-validation analyses evaluated the performance of the 
mixed-effects model that tested early network changes as predictors of treatment response. The 
first cross-validation tested generalizability of the model to new subjects (upper panels) and the 
second tested generalizability of the model to new levels of observation within subjects (lower 
panels). In each of ten iterations of analysis for each cross-validation, we randomly selected 80% 
of the data (80% of subjects, or 80% of timepoints) as a training dataset and fitted the mixed 
effects model, then predicted the model on the held-out test dataset (remaining 20% of subjects 
or timepoints). Displayed are fitted curves for the predicted model (blue or cyan dashed lines) 
with 90% confidence interval estimated with model-based parametric bootstrapping (blue or 
cyan solid lines), together with fitted curves for a model trained on the test data (red lines). 
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