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A mesocorticolimbic signature of pleasure  
in the human brain

Philip A. Kragel    1,2  , Michael T. Treadway    1,2, Roee Admon    3,4, 
Diego A. Pizzagalli    3 & Evan C. Hahn1

Pleasure is a fundamental driver of human behaviour, yet its neural basis 
remains largely unknown. Rodent studies highlight opioidergic neural 
circuits connecting the nucleus accumbens, ventral pallidum, insula and 
orbitofrontal cortex as critical for the initiation and regulation of pleasure, 
and human neuroimaging studies exhibit some translational parity. 
However, whether activation in these regions conveys a generalizable 
representation of pleasure regulated by opioidergic mechanisms remains 
unclear. Here we use pattern recognition techniques to develop a human 
functional magnetic resonance imaging signature of mesocorticolimbic 
activity unique to states of pleasure. In independent validation tests, this 
signature is sensitive to pleasant tastes and affect evoked by humour. The 
signature is spatially co-extensive with mu-opioid receptor gene expression, 
and its response is attenuated by the opioid antagonist naloxone. These 
findings provide evidence for a basis of pleasure in humans that is 
distributed across brain systems.

Pleasure is central to human experience, and has served as a corner-
stone for philosophical, socio-economic and psychological frameworks 
for understanding human behaviour for thousands of years1. Despite 
its centrality for daily life and philosophical systems alike, the neuro-
scientific understanding of pleasure in the human brain remains in its 
infancy2,3. This stands in stark contrast to the study of human ‘reward’, 
which has largely focused on identifying neural systems that medi-
ate behavioural responses to reinforcing stimuli4. Such paradigms 
have yielded crucial insights into the circuitry underlying condition-
ing, learning and decision making, yet it is widely accepted that such 
behavioural manifestations of preference do not necessarily reflect 
the direct experience of pleasure5, and that pleasure is not necessary 
for reinforcement4,6. As such, the neural basis for subjective pleasure 
remains elusive.

Indeed, much of the known functional neuroanatomy of pleas-
ure in mammals2,3 has been derived from studies in rodents, which 
have established a critical role for mu-opioid signalling within a 
network of regions including the nucleus accumbens (NAc) shell, 
ventral pallidum (VeP), orbitofrontal cortex (OFC) and insula3,7,8. 

Critically, microinjections of mu-opioid agonists into specific zones 
in these areas, referred to as hedonic ‘hotspots’, enhance putatively 
pleasure-related behaviours involving relaxed facial expressions and 
rhythmic tongue and mouth movements3,7–13. These same injections 
also suppress pleasure-related behaviours in neighbouring hedonic 
‘coldspots’9,14. Importantly, the role of the mu-opioid system has been 
proposed as selective to pleasure-related behaviours and neurobiologi-
cally dissociable from putatively dopaminergic aspects of behavioural 
reinforcement, such as conditioning, craving and invigoration4,14.

Attempts to translate this pre-clinical literature to humans have 
been mixed. On the one hand, human neuroimaging studies have 
shown that the same set of regions are commonly activated by diverse 
rewards15–17, with positron emission tomography further highlighting 
the involvement of endogenous opioids18. However, the functional 
homology of this network in humans and circuits identified in rodents 
is contested—particularly in prefrontal cortex and insula19,20. Moreover, 
studies of opioid antagonism on pleasure responses have revealed 
inconsistent effects, with some evidence suggesting that opioid 
antagonism may exhibit more effects on motivation than pleasure in 
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or sensory modality43. By focusing on patterns of brain activity, we 
move beyond individual brain regions to characterize fine-grained 
topographies in distributed mesocorticolimbic circuitry that are defin-
ing features of hedonic systems. Training the model on data from  
28 independent studies facilitated prospective tests of two key predic-
tions from theories of hedonic function: (1) that a signature for pleasure 
should track the hedonic component of reward, as opposed to motiva-
tional or learning components, and further (2) that the response of such 
a signature should be sensitive to the distribution and manipulation of 
opioidergic circuits. Following training, we verified that the signature 
was sensitive and specific to pleasure in four fMRI studies (total n = 89), 
two that evoked states of pleasure using primary reinforcers and two 
that manipulated prospects for subsequent monetary reward but had 
relatively less hedonic impact. Further, we evaluated opioid involve-
ment in the signature response during a pharmacological challenge 
using the antagonist naloxone (n = 19). These validation tests provide 
a strong assessment of the hypothesis that human pleasure is partially 
mediated by a distributed opioidergic network.

Results
Towards a brain signature for pleasure
We used a latent variable multivariate regression technique, partial 
least squares (PLS) regression44, to predict states of pleasure from 
patterns of fMRI activity. This approach estimates the spatial layout 
and activation of multiple latent sources that explain both observed 
fMRI activity and affective variables of interest42. The model included 
signals from brain regions known to contain hedonic hotspots and 
interconnected areas involved in emotion, motivation and reward 
processing45 (for details, see Methods). We identified a pattern across 
these areas that predicts pleasure independent of its sensory origin 
(whether music, images of food, erotic images, monetary reward or 
social stimuli) while accounting for spatially overlapping signals that 
do not generalize across instances of pleasure or signals that are shared 
with other affective states (findings from cross-validation in the train-
ing dataset are shown in Extended Data Fig. 1).

The signature contained positive coefficients, which estimate 
the spatial layout of population activity associated with pleasure, 
in multiple regions including the anterior ventral insula, anterior 
agranular insula, midcingulate cortex, dorsomedial prefrontal 
cortex, basolateral amygdala, extended amygdala, globus pallidus, 
ventral striatum and substantia nigra (voxel-wise qFDR < 0.05, Fig. 1a 
and Supplementary Tables 1 and 2). Negative coefficients were pre-
sent in posterior insula, dorsal mid-insula, midcingulate cortex and 
supplementary motor area. In line with evidence of interdigitated 
population activity during appetitive and aversive behaviours46,47, 
most regions contained both positive and negative coefficients 
(Fig. 1b). Multiple regions differed in their balance of positive and 
negative coefficients. The habenula, anterior ventral insula, baso-
lateral amygdala, internal globus pallidus and midbrain regions 
contained more positive coefficients, whereas middle and poste-
rior insula contained primarily negative coefficients (qFDR < 0.05,  
Supplementary Table 2).

Given evidence of both positive and negative signature coeffi-
cients in most regions, we next examined whether coefficients exhib-
ited gradients similar to those identified in nonhuman animals.  
A mediolateral gradient was present in the NAc with larger coefficients 
in more medial portions that decreased laterally ( β̂ = −0.0135, z = −2.34, 
P = 0.0195, 95% confidence interval −0.0249 to −0.0021), linear regres-
sion between coefficients and their distance from midline; Fig. 1c). This 
gradient is consistent with human neuroimaging evidence that rewards 
activate medial portions of the NAc whereas aversive stimuli activate 
more lateral areas48,49. Fine-grained topography was also present within 
the midcingulate cortex. Coefficients exhibited a clear peak near the 
bank of the callosal sulcus (z = 4.06, Montreal Neurological Institute 
coordinate (MNIx,y,z) = [6, 8, 26], P < 0.0001, qFDR < 0.05), whereas 

humans21. Finally, the nature of pleasurable stimuli accessible for study 
in animal models does not extend to many important modalities of 
human pleasure, such as music and humour. Consequently, the gen-
eralizability of rodent models for understanding the full complement 
of human pleasures is uncertain.

Uncertainty about hedonic brain systems in humans is also due to 
the size and spatial configuration of affective circuitry in subcortical 
structures, as well as the limits of conventional imaging approaches. In 
rodents, hedonic hotspots in the NAc form a spatial gradient in which 
anterior areas are involved in appetitive and posterior areas in aversive 
behaviours22. A mirrored gradient is present in the VeP, in which activa-
tion of caudal areas enhances appetitive behaviours and rostral areas 
enhance avoidant behaviours11. These hotspots comprise only a small 
portion (~10%) of the subcortical structures in which they are situ-
ated, which contain functionally and neurochemically heterogeneous 
neural populations23,24. Accordingly, when assessed with conventional 
functional magnetic resonance imaging (fMRI), signals from different 
neural populations are blurred together, obscuring which affective vari-
ables (for example, autonomic arousal and reward value) are encoded 
in each region. This has limited efforts to characterize hedonic brain 
systems in humans, making it difficult to isolate neural substrates 
involved in different components of reward.

Due to these limitations, a growing number of researchers have 
turned to multivariate approaches to evaluate how affective variables 
are represented in human brain activity25,26. Unlike standard univariate 
analysis, multivariate methods are capable of estimating a spatial pro-
file of activity within and across regions that characterizes a variable of 
interest27,28, even in cases where multiple neural populations overlap in a 
single region. Indeed, pattern-based methods have revealed responses 
in orbitofrontal cortex and adjacent ventromedial prefrontal cortex 
that discriminate states of pleasure from displeasure26. Thus far, how-
ever, there is surprisingly limited evidence that neural populations in 
subcortical structures represent diverse pleasures using a common 
code, or that they form part of a distributed network mediated by 
opioidergic mechanisms positioned to influence learning and decision 
making as predicted by contemporary accounts of reward learning4. 
Moreover, because brain areas consistently engaged by rewards also 
respond to a wide array of motivationally salient, aversive and painful 
stimuli29, it is unclear whether these regions contain circuitry that 
regulates pleasure across contexts as opposed to other non-specific 
factors such as motivational salience or arousal14,29,30.

Understanding hedonic systems in humans has implications for 
translational research since altered regional activity in the ventral 
striatum, basal forebrain and amygdala have emerged as candidate 
biomarkers for many neuropsychiatric disorders31,32 and are common 
targets for clinical interventions33–35. Although specific regions of 
interest are often well motivated by pre-clinical research, recent work 
developing brain-based biomarkers of affective processes36,37 has 
shown that univariate measures often produce smaller effects38, and 
are less accurate and reliable than multivariate predictive models39–41.

In this Article, we aim to more precisely model human brain 
responses to diverse pleasures, with a specific focus on regions known 
to contain hotspots in rodents. We combined a mega-analytic approach 
and pattern recognition techniques to characterize brain responses 
across 28 fMRI studies (total n = 494, Methods). We used patterns of 
brain activity from ten studies that manipulated pleasure using music, 
images of appetizing food, erotic images, cues of monetary rewards, 
and socially relevant stimuli (two studies of each type, total n = 224) 
to develop an fMRI-based model, or brain signature, that predicts the 
hedonic state of an individual. Brain responses during manipulations 
of positive affect were differentiated from those acquired during affec-
tively salient, but not pleasurable experiences (18 studies, n = 270)42.

Modelling brain activity across diverse experimental manipu-
lations enabled us to tease apart signals that are consistent across 
instances of pleasure from those that are bound to a single stimulus 
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predominantly negative coefficients were present throughout the 
remainder of the midcingulate gyrus. A posterior-to-anterior gradient 
was present in the insular cortex ( β̂ = 0.0053, P < 0.0001, z = 4.63, 95% 
confidence interval 0.0031 to 0.0075), with a peak in ventral anterior 
insula (z = 4.80, MNIx,y,z = [−30, 26, −2], P < 0.0001, qFDR < 0.05; Fig. 1c). 
Rostro-caudal gradients similar to those observed in rodent studies3 
were not apparent in the VeP ( β̂ = −0.0100, P = 0.4815, z = −0.704, 95% 
confidence interval −0.0335 to 0.0135), although the sign and organiza-
tion of coefficients were roughly consistent with this layout (Extended 
Data Fig. 2). This is possibly due to the small size of this region, spanning 
roughly 6 mm along its rostro-caudal axis relative to the smoothness 
of model coefficients, estimated at ~4.5 mm full-width half-maximum 
(Extended Data Fig. 3)50. These findings demonstrate that, although 
the NAc, midcingulate and anterior insula are consistently activated 
by aversive, rewarding and salient stimuli29, states of pleasure are 
characterized by unique patterns of activity within each of these 
regions, consistent with pre-clinical findings3,12.

Validating the signature in independent studies
Accounts of hedonic function propose that certain stimuli, situations 
and behaviours are rewarding because they evoke pleasure6,51, which is 
thought to be mediated by a distributed mesocorticolimbic network3. 
Evolutionary theories of pleasure go further to suggest that there is a 
final common pathway in which diverse pleasures are expressed and 
represented similarly52. If the signature we identified captures such a 
common representation, then it should generalize across instances of 
pleasure whether they are produced by basic sensory stimuli or more 
complex cognitive processes. To test this prediction, we evaluated 
the signature response in multiple independent archival datasets. We 
first applied the signature to brain activity measured as participants 
consumed commercial beverages that ranged from hedonically neutral 
to mildly pleasant53. The signature response to the most pleasing bever-
age (self-report: 5.32 ± 0.186 standard error of the mean (s.e.m.), pat-
tern response: 0.0327 ± 0.0113 s.e.m.) and a beverage rated as neutral 
(self-report: 3.93 ± 0.274 s.e.m., pattern response: −0.00265 ± 0.0146 
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Fig. 1 | An fMRI-based signature for pleasure. a, PLS regression coefficients that 
define the signature. Warm colours indicate regions in which increases in brain 
activity contribute to predictions of pleasure, whereas cool colours indicate 
regions in which brain activity decreases classifications of pleasure. Extreme 
coefficients (magnitude >0.0001) are rendered in volumetric space, and heat 
map overlays show unthresholded regression coefficients. Amy, amygdala;  
AAIC, anterior agranular insula complex; AVI, anterior ventral insular area;  
PoI, posterior insular area; aMCC, anterior midcingulate cortex; SN, substantia 
nigra; NAc, nucleus accumbens. b, Alluvial flow plots depict the similarity of 
coefficients and anatomically defined regions of interest. Positive coefficients 
are depicted in orange and negative coefficients in blue. vmPFC, ventromedial 
prefrontal cortex; sgACC, subgenual anterior cingulate cortex; pMCC, posterior 
midcingulate cortex; pACC, perigenual anterior cingulate cortex; aMCC, anterior 

midcingulate cortex; dmPFC, dorsomedial prefrontal cortex; CM, centromedial 
amygdala; BST, bed nuclei of the stria terminalis; AStr, amygdalostriatal 
transition area; LB, basolateral amygdala; Ig, insular granular complex;  
PI, para-insular area; MI, middle insular area; Hythal, hypothalamus; GPe, 
external globus pallidus; RN, red nucleus; VeP, ventral pallidum; GPi, internal 
globus pallidus; SNr, substantia nigra pars reticulata; Haben, habenular nuclei; 
SNc, substantia nigra pars compacta; PBP, parabrachial pigmented nucleus;  
VTA, ventral tegmental area; Mamm Nuc, mammillary nucleus; STN, subthalamic 
nucleus; Put, putamen; Cau, caudate. c, Spatial topography of coefficients in the 
NAc (left) and insular cortex (right). Surfaces depict topographies estimated with 
fitting thin-plate smoothing splines using the x and y coordinates of signature 
coefficients. Contours and vector fields of the surface gradient in x and  
y dimensions are depicted below each surface.
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s.e.m.) were discriminable with a medium effect size (area under the 
receiver operating characteristic curve (AUROC) = 0.80, d = 0.72, 
P = 0.0575, 95% confidence interval 0.624 to 0.973, Fig. 2), providing 
initial evidence of generalizability.

In a second generalization test, we examined the signature 
response during a positive mood induction that combines humour, 
decision making and social feedback54. In this task, participants viewed 
cartoons from the New Yorker Caption Contest and were instructed to 
select which caption was selected as the winner55. Regardless of their 
selection, participants received feedback that they had chosen the 
correct option in the majority of trials. We compared the signature 
response with humour captioning and a matched control task (descrip-
tive captioning) that equated the perceptual, decision making and 
motor aspects of captioning but did not involve humour. The signature 
response to humour captioning (0.137 ± 0.0119 s.e.m.) and the control 
task (0.1180 ± 0.0111 s.e.m.) were discriminable from one another with 
a large effect size (AUROC 0.82, P = 0.0035, d = 0.92, 95% confidence 
interval 0.704 to 0.944), providing further evidence of generalizability.

The sensitivity of the signature to both pleasant tastes and humour 
suggests it may reflect common coding of pleasure. However, its 
response to these stimuli could be driven by variables correlated with 
hedonic impact in the training data, rather than pleasure per se. In 
particular, the signature may have capitalized on signals related to 
incentive salience and/or reward value56 to classify brain states asso-
ciated with pleasure. On the other hand, if the signature captures 
processing predominantly related to pleasure, then it should provide 
good discriminability of hedonic experiences, and worse discrimina-
bility of less hedonically impactful monetary stimuli. To examine this 
possibility, we tested whether the signature is sensitive to differences 
in brain activity as participants viewed reward-predictive cues and dur-
ing reward receipt (that is, feedback about monetary gains and losses) 
that differed in terms of reward value but produced only minimal dif-
ferences in subjective pleasure.

We evaluated the signature response as participants performed an 
effort-based decision-making task that used visual cues to indicate the 
magnitude of rewards and the physical effort required to obtain them. 
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Fig. 2 | Validation of the pleasure signature. a, Group-average activation 
maps for four independent validation datasets (n = 26, 26, 13, 24 independent 
participants). Warm colours indicate increases and cool colours indicate 
decreases in brain activity during each condition compared with baseline. Pairs 
of experimental conditions are ordered by the predicted difference in signature 
response. b, Box-and-whisker plot shows differences in the signature response 
for each study. Black lines depict the mean response, light-shaded regions depict 

one standard deviation and darker-shaded regions depict two standard errors. 
Each point corresponds to the response of a single subject (n = 26, 26, 13, 24 
independent participants; *mean 0.0214, t12 = 1.826, P = 0.0929, d = 0.506, 95% 
confidence interval −0.0085 to 0.0512, **mean 0.0191, t23 = 3.191, P = 0.0041, 
d = 0.651, 95% confidence interval 0.0074 to 0.0308, uncorrected two-sided 
paired t-tests). c, Receiver operating characteristic curves for each of the four 
studies.
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We compared responses to cues on low-effort trials (<30% of maximal 
effort during a calibration procedure) that indicated participants 
could receive a large reward (US$5) to those indicative of small rewards 
(US$1). Focusing on these conditions ensured that differences in the 
signature response were related to reward magnitude, rather than 
the difficulty of the decision or negative value associated with effort.  
The signature response to large (0.0429 ± 0.0110 s.e.m.) and small 
reward cues (0.0215 ± 0.0127 s.e.m.) were only modestly discriminable 
from one another, with a small effect size (AUROC 0.68, P = 0.0830, 
d = 0.39, 95% confidence interval 0.535 to 0.827).

To further evaluate the possibility that the signature is sensitive 
to differences in value, we examined its response during a classic rein-
forcement learning task. In this task, participants learned which of sev-
eral cues were associated with monetary gains and losses to maximize 
monetary reward57. Computational models of reinforcement learning 
have demonstrated that momentary changes in positive affect are 
associated with positive reward prediction errors58, and are generally 
uncorrelated with objective reward magnitude. On the basis of this 
evidence, we predicted that if the brain signature responds to the 
hedonic impact of a stimulus, rather than its value or motivational sali-
ence, then it should weakly differentiate visual feedback about gains 
and losses. Consistent with this prediction, we found the signature 
response to gains (0.0435 ± 0.0152 s.e.m.) and losses (0.0288 ± 0.0129 
s.e.m.) exhibited low levels of discriminability (AUROC 0.68, P = 0.0746, 
d = 0.30, 95% confidence interval 0.533 to 0.825).

To test the prediction that the signature should respond more 
strongly to hedonic experiences than information about monetary 
reward, we next examined the response of the signature across studies. 
Across the four validation studies, the signature responded more 
strongly to differences in pleasure compared with monetary rewards 
( β̂ = 0.0248, t173 = 2.358, P = 0.0195, 95% confidence interval 0.0042 to 
0.0454; linear mixed-effects regression, Methods). Because functional 
gradients are a defining feature of hedonic systems, and multivariate 
predictive models can use information at multiple spatial scales, we 
additionally tested whether fine-grained patterns within regions that 
define the signature are necessary for accurate prediction. We con-
structed a model that replaced each coefficient in the signature with 
the average of all voxels in each region. Repeating the four validation 
tests revealed this constrained model did not respond more strongly 
to states of pleasure than other conditions during manipulations of 
reward ( β̂ = 0.0057, t173 = 0.4681, P = 0.6403, 95% confidence interval − 
0.0188 to 0.0294, Extended Data Fig. 4), demonstrating that variation 
in fMRI response within regions is necessary for identifying states  
of pleasure.

To verify that the pleasure signature is functionally dissociable 
from evaluative and anticipatory components of reward, we compared 
the pleasure signature with a recently developed brain signature 
designed to discriminate between monetary rewards and losses37. 
Whereas the pleasure signature was most sensitive to pleasant taste 
and humour, the reward signature robustly discriminated gain and loss 
outcomes during reinforcement learning (AUROC 0.85, P = 0.0010, 
d = 0.89, 95% confidence interval 0.743 to 0.957) and failed to differenti-
ate states of pleasure from other conditions ( β̂ = 0.004620, t173 = 0.6271, 
P = 0.5314, 95% confidence interval −0.0082 to 0.0206, Extended Data 
Fig. 5). Further, signatures trained to classify brain states associated 
with other functional domains (pain, cognitive control and negative 
affect) did not accurately discriminate states of pleasure from matched 
control conditions (Supplementary Table 3).

Cortical and subcortical representations of pleasure
Although it is widely accepted that many sensory cortical areas exhibit 
a high degree of modularity (that is, functional specificity) that can be 
consistently detected with fMRI, the extent to which brain areas encod-
ing affect exhibit a similar modular organization is debated14. Given 
that our training and validation studies included a range of reward 

modalities from primary taste/olfaction to more abstract monetary 
and humour rewards, we next sought to evaluate the extent to which 
cortical and subcortical areas contained representations of pleasure 
that generalized across stimulus types. First, we performed a repre-
sentational similarity analysis59 within the training dataset in regions 
hypothesized to contain hedonic modules to determine which areas 
showed modality-specific versus domain-general coding of pleasure. 
As predicted by the rodent literature10,11,13 we observed the clearest 
evidence for generalizable pleasure coding in the NAc ( ̂β  = 0.0095, 
P = 0.0088, z = 2.62, 95% confidence interval 0.0022 to 0.0168), VeP 
( ̂β  = 0.0124, P = 0.0154, z = 2.42, 95% confidence interval 0.0024 to 
0.0224) and ventromedial prefrontal cortex ( ̂β = 0.006, P = 0.0338, 
z = 2.12, 95% confidence interval 0.000512 to 0.0115), with evidence 
for subdomain-specific representational geometry within insula and 
ventromedial prefrontal cortex (Fig. 3 and Supplementary Table 4). A 
replication of this analysis including all features used to train the pleas-
ure signature revealed similar findings, with evidence for 
domain-specific representation of pleasure, representations related 
to social, musical and erotic subdomains, and several constructs from 
other domains (Supplementary Table 5).

Next, we used our validation datasets to determine the extent to 
which synthetic ‘lesions’ that excluded signals in cortical and subcorti-
cal areas impacted the classification of reward-related brain activity. 
Here we found that constraining predictive models to exclusively use 
signals from NAc, VeP, insula and ventromedial prefrontal cortex had 
little impact on the discrimination of pleasant taste (ΔAUROC −0.0680, 
P = 0.6501) and substantially impaired humour classification (ΔAUROC 
−0.3325, P = 0.0010). Conversely, excluding signals from putative 
hotspot regions did not impair discriminability for pleasant tastes 
(ΔAUROC −0.0947, P = 0.5515) and resulted in a modest improvement 
in humour classification (ΔAUROC 0.1450, P = 0.0470).

These results suggest that—as in rodents—putative hotspots in 
human NAc, VeP and OFC show generalizable coding of pleasure across 
a range of primary and secondary rewards. Indeed, models trained to 
detect states of pleasure generalized to predict pleasant tastes. How-
ever, distributed patterns in these regions were not sufficient to classify 
humour, which appeared to depend more strongly on the inclusion of 
medial prefrontal cortex—potentially reflecting the contribution of 
self-referential processing2 or more broadly theory of mind60. Taken 
together, this implies a distributed architecture for pleasure encoding 
rather than a highly modular organization and highlights distinctions 
between cortical and subcortical areas for pleasure associated with 
primary and secondary rewards.

Evaluating opioid contributions to the signature
Opioidergic mechanisms in mesocorticolimbic structures are thought 
to play a central role in driving and regulating appetitive behaviour, 
with mu-opioids being particularly involved in hedonic components 
of reward3,7–13. If this is the case, and the signature captures the activ-
ity of opioidergic neural populations, there should be a correspond-
ence between the magnitude of signature coefficients and the density 
of mu-opioid receptors. We tested this hypothesis by performing a 
spatial regression between the signature coefficients and neurotrans-
mitter gene expression data from the Allen Human Brain Atlas61. Due 
to the considerable overlap of dopaminergic and opioidergic popula-
tions in striatum24, amygdala62 and midbrain63, we included patterns 
of gene expression for dopamine receptors (DRD1, DRD2 and DRD3) 
and opioid receptors (OPRD1, OPRK1 and OPRM1) in a multiple regres-
sion to predict the signature coefficients (for spatial correlations of 
these maps, see Extended Data Fig. 6). Consistent with our hypothesis, 
this analysis revealed a positive relationship between the spatial pro-
file of signature coefficients and OPRM1 ( β̂  = 0.2529, z = 2.659, 
P = 0.0078, 95% confidence interval 0.0665 to 0.4392). Follow-up 
comparisons revealed this relationship was greater than associations 
with the expression of other genes, on average (Δ β̂ = 0.2952, z = 2.802, 
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P = 0.0051, 95% confidence interval 0.0887 to 0.5016) although not 
larger than DRD2 (Δ β̂  = 0.0915, z = 0.798, P = 0.425, 95% confidence 
interval −0.1333 to 0.3162); for details, see Fig. 4 and Supplementary 
Table 6. Confirmatory analyses using simple correlations provided 
similar results, revealing a positive association with OPRM1 (r  = 0.0659, 
z = 1.998, P = 0.0457, 95% confidence interval 0.0013 to 0.1306) that 
was larger than the association with other gene expression maps 
(Δr  = 0.0803, z = 2.4529, P = 0.0142, 95% confidence interval 0.0161 to 
0.1445). Exploratory analyses examining spatial correlations between 
gene expression maps and coefficients for other domain- and 
subdomain-specific terms showed that coefficients for the erotic 
subdomain were positively correlated with OPRM1 expression, whereas 
coefficients for the cognitive control domain and the working memory 
subdomain were associated with dopamine gene expression (Extended 
Data Fig. 7 and Supplementary Table 7).

The spatial correspondence between signature coefficients and 
gene expression is consistent with evidence that opioids mediate 
human pleasure64,65. To assess whether opioids influence the signature 
response, we tested it on a placebo-controlled cross-over study66 using 
the opioid antagonist naloxone (n = 19). In this fMRI study, partici-
pants performed an incentive delay task that required participants to 
make speeded button presses to either obtain monetary rewards or 
view erotic images. The task was performed in two scanning sessions, 
concurrent with fMRI and the administration of intravenous naloxone 
or saline placebo (brain maps showing the effect of naloxone in each 
condition are shown in Extended Data Fig. 8). Compared with placebo, 
naloxone reduced self-reported pleasure from erotic images (mean 
difference −9.223, z = −2.130, P = 0.0329, d = −0.4770, 95% confidence 
interval −17.918 to −0.528), but not monetary rewards (mean difference 
−4.342, z = −0.989, P = 0.3229, d = −0.2267, 95% confidence interval 
−12.032 to 5.192). Naloxone attenuated the response of the pleasure 
signature with similar effect sizes, reducing its response to erotic 

images (mean difference −0.0376, z = −2.037, P = 0.0416, d = −0.4927, 
95% confidence interval −0.075 to −0.00016), but not to monetary 
rewards (−0.0168, z = −1.350, P = 0.1771, d = −0.3215, 95% confidence 
interval −0.0081 to 0.0417), suggesting that opioids regulate the signa-
ture response and pleasure experience to a similar degree, particularly 
in response to primary rewards.

Discussion
Diverse forms of human pleasure are thought to be driven by brain 
systems that originally developed to support the attainment of basic 
rewards essential for survival—food, social interaction, sex and mater-
nal care. Under such modular, pre-adaptation accounts52, the same 
hedonic circuitry that mediates pleasure evoked by basic rewards has 
been co-opted for more abstract sources of pleasure, such as music, 
aesthetics and humour, which additionally involve cortical processing 
and are heavily influenced by learning. Our findings are broadly con-
sistent with such accounts, as the signature we developed is sensitive 
to both basic sensory and abstract pleasures, and it does not respond 
robustly to salient, positive events that lack hedonic impact, such as a 
cue indicative of a potential monetary reward. Although this suggests 
the signature may capture activity from a common pleasure pathway, 
we found that the prediction of humour depended on activity in pre-
frontal cortex and insula, demonstrating that subcortical modules are 
insufficient to characterize affective experience in humans.

Following a rich history of attempts to identify neural sources of 
pleasure67,68, our label of ‘pleasure signature’ is situated in the context 
of current theories of hedonic function and neuroimaging data avail-
able for training. Eight of the ten studies used to develop the signature 
verified that participants experienced pleasure using self-reported 
valence (five studies) or ratings of the appetitive nature of stimuli (three 
studies). The remaining training data comprised brain responses to 
reward cues (reflecting the magnitude and probability of gains and 
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Fig. 3 | Cortical and subcortical representations of pleasure. a, Volumetric 
rendering of regions of interest known to contain hedonic hotspots (yellow) on 
the ICBM152 template. b, Hierarchical representational similarity analysis reveals 
generalizable patterning related to pleasure in the VeP, NAc and ventromedial 
prefrontal cortex (vmPFC). Representations specific to social pleasure were 
identified in vmPFC, and representations specific to pleasure induced by music, 
images of appetizing food and erotic images were identified in the insula. 

Bootstrap distributions for regression coefficients are shown for the four general 
domains (pleasure, pain, cognitive control (Cog) and negative (Neg) affect) and 
five pleasure subdomains (music, food, erotic, monetary and social pleasure). 
vaIns, ventral anterior insula; daIns, dorsal anterior insula; dmIns, dorsomedial 
insula; dpIns, dorsal posterior insula. *P < 0.05, **qFDR < 0.05 (two-sided, 
bootstrap tests of coefficients from a spatial regression). Complete statistics are 
reported in Supplementary Table 5.
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losses in a mixed gambles task, and the magnitude of immediate and 
delayed monetary rewards in a delay discounting task) that typically 
evoke positive affect69–71. And even though the training data largely 
involved visual images (8/10 studies) and passive reward acquisition 
(8/10 studies), the signature generalized to pleasant taste/olfaction and 
a novel decision-making task involving humour. As such, the signature 
we developed is a step towards more precisely characterizing hedonic 
brain function in humans, taking the critical step of including types of 
pleasurable stimuli that cannot be easily studied in animals, such as 
music and humour.

Importantly, the ability of the model to generalize across different 
types of pleasurable experiences in independent samples does not nec-
essarily suggest that pleasure is undifferentiated or that it is modular 
in nature. Pleasure is inherently multidimensional, with a hierarchical 
structure43 in which unitary pleasure can be differentiated in terms of 
antecedent events, sensations and emotional responses. By design, we 
trained our model to characterize the apex of this hierarchy so that it 
would capture generalizable aspects of pleasure rather than stimulus- 
or situation-specific features. Future work focused on variation within 
and between different types of pleasure (for example, sensory, physical, 
aesthetic and social) is needed to determine how sensory information 
is transformed into a common representation.

Our results are consistent with neurobiological accounts that 
characterize affect as an emergent feature of coordinated population 

activity in distributed neural networks3. Rather than requiring only a 
single region, or depending on large-scale, global signals, we found that 
the signature’s ability to accurately predict pleasure was driven by local 
topography within regions. Although prior meta-analytic summaries 
have proven invaluable for identifying neural correlates of affect, the 
present findings suggest that coordinate-based methods lack the 
precision necessary to discriminate positively and negatively valenced 
states. It will probably be necessary to move from coordinate-based 
assessments of the literature to pattern-based frameworks to accu-
rately assess the brain basis of affective phenomena.

The spatial layout of the pleasure signature is consistent with prior 
neuroimaging summaries of positive affect, assessments of mu-opioid 
receptor availability72,73, and observations of hedonic hotspots iden-
tified in rodent studies9,12. Beyond supporting existing descriptions 
of pleasure systems, it provides new insight into cortical areas not 
typically associated with hedonic function. For instance, we observed 
a peak in signature coefficients in ventral midcingulate cortex (along 
areas 24a′ and 33′), adjacent to the corpus callosum. Compared with 
dorsal aspects of the midcingulate, ventral portions of midcingulate 
have distinct cytoarchitecture74 and functional connectivity75 and are 
not consistently engaged by aversive and cognitively demanding tasks. 
Consistent with our findings, stimulation of the callosum near this area 
has been found to increase spontaneous expression of positive affect in 
awake humans76. Similar to variables encoded in the activity of adjacent 
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Fig. 4 | Opioid contributions to the pleasure signature. a, Normalized 
gene expression maps from the Allen Brain Atlas used to evaluate the spatial 
correspondence between neurotransmitter gene expression and the pleasure 
signature coefficients. b, Beta estimates from spatial regression indicate that 
DRD2 and OPRM1 expression was uniquely associated with coefficients of the 
pleasure signature (two-sided, uncorrected bootstrap tests). Complete statistics 
are reported in Supplementary Table 6. c, Naloxone challenge reduced self-

reported pleasure to erotic images, but not monetary rewards  
(n = 21 independent participants, two-sided, uncorrected bootstrap tests).  
d, Signature response (cosine similarity) was lower with naloxone compared with 
placebo. Error bars depict the standard error of the mean (n = 21 independent 
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depict bootstrap distributions (b = 10,000). *P < 0.05, **P < 0.001.
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populations in midcingulate cortex involved in pain affect and reward, 
hedonic signals could be used to compute the expected value and drive 
learning about rewards77, although this possibility remains to be tested.

A somewhat surprising result was the signature’s relatively weak 
categorization of monetary reward (Fig. 2b). Monetary reward tasks 
are widely deployed in population neuroimaging research and robustly 
modulate behavioural responses and corticostriatal activity78,79. Many 
such tasks have been explicitly designed to distinguish neural activity 
related to reward anticipation or decision making and activity related 
to rewarding outcomes (for example, see refs. 80,81). Importantly, the 
latter ‘consummatory’ phase of these tasks is often presumed to reflect 
activity driven by affective responses to monetary reward receipt. 
Contrary to this interpretation, we found little evidence to suggest that 
either the anticipatory or consummatory phases of the validation tasks 
assessed were associated with strong pleasure signals as compared with 
either primary sensory rewards or secondary pleasure derived from 
humour. Moreover, an alternative signature developed using a mone-
tary reward task was substantially better at classifying monetary reward 
from loss (Extended Data Fig. 4). This suggests that monetary reward 
tasks may primarily capture neural encoding related to reinforcement 
and instrumental actions, rather than pleasurable affective states. If 
true, this could have important implications for neuroimaging stud-
ies of psychiatric disorders associated with apathy and anhedonia82,83.

In sum, the current work identifies a distributed pattern of brain 
activity that is both sensitive and specific to pleasurable experiences. 
Strikingly, this signature shares many features with hedonic systems 
identified in non-human animals, including its anatomical distribution, 
sensitivity to mu-opioid receptor expression and function, and distinc-
tion from non-pleasure reward signals previously linked to dopaminergic 
pathways. This signature offers new insight into the distributed neural 
architecture underlying pleasure and can serve as the foundation for 
more sophisticated models and measures of hedonic function in humans.

Methods
Study selection and contrast specification
Because theories of hedonic function focus on the variety of sensory 
states that can produce similarly pleasurable subjective experiences, 
we used a mega-analytic approach to develop a generalizable signature 
for pleasure. This approach enables comparisons between a larger 
number of experimental conditions and generalization across scan-
ners and populations. To identify a distinct pattern of fMRI activity 
associated with pleasure, we systematically sampled neuroimaging 
data from 28 independent studies that manipulated affective valence 
or engaged cognitive control in healthy individuals (total n = 494). No 
statistical methods were used to pre-determine the sample sizes for 
each study, as they come from existing datasets.

Studies involving manipulations of positive affect were chosen 
to include five types of reward (images of appetizing food, visual cues 
of monetary rewards, pleasant music, images and videos depicting 
pleasant social interactions, and erotic images). Two studies of each 
reward type were selected for training (10 studies in total, n = 224). 
Activation maps included contrasts between images of appetizing 
food and baseline84,85, the average response to reward cues during a 
temporal discounting task and baseline86, linear variation in reward 
magnitude during a mixed gambles task87, contrasts between pleasant 
music and resting baseline88,89, activation as mothers viewed videos 
of their infants versus baseline90, images of social activities versus 
baseline following 24 h of social deprivation91, and contrasts between 
erotic images and baseline92,93.

We additionally included activation maps from an archival data-
set42 of 18 studies (n = 270) involving pain, cognitive control and neg-
ative affect. Activation maps from pain studies included contrasts 
between high (painful) and low (not painful) levels of thermal stimula-
tion94, high levels of painful thermal stimulation and baseline95, rectal 
distension trials and baseline96,97, and pressure applied to the thumb 

and baseline98. Activation maps from studies involving cognitive con-
trol included contrasts between blocks of an N-back task and a fixation 
baseline99,100, trials in stop signal tasks compared with baseline101,102, 
and congruent and incongruent trials from studies using the Eriksen 
Flanker103 and Simon104 tasks. Activation maps for the negative emo-
tions domain include contrasts between negative and neutral pictures 
from the International Affective Picture System105, negative pictures 
and baseline106, pictures of ex-partners and pictures of close friends107, 
images of others in pain and baseline108, and listening to unpleasant 
affective sounds and baseline42.

All participants in the studies described above provided informed 
consent in line with local ethics and institutional review boards. Sup-
plementary Table 8 contains descriptions of the ethics approval, image 
acquisition and analysis, and demographics for each study. Data col-
lection and analysis were not performed blind to the conditions of the 
experiments. Information about subject compensation, data acquisi-
tion and experimental paradigms are available in full detail in the corre-
sponding references. Data were accessed and processed using software 
from SPM12 v7771 (https://github.com/spm/spm12), CanlabCore Tools 
v1 (https://github.com/canlab/CanlabCore, accessed on 8 December 
2021) in addition to custom MATLAB code (see ‘Code availability’).

Feature selection
When selecting features for the development of PLS models, we 
included regions known to contain hedonic hotspots, namely NAc45, 
VeP45, insular cortex109 and ventromedial prefrontal cortex including 
orbitofrontal cortex42. We also incorporated several other regions 
that have connectivity with hedonic hotspots, and several that are 
involved in processing variables that are often correlated with hedonic 
impact (for example, reward value, motivation and attention) and other 
effortful and/or aversive affective states. These regions include medial 
prefrontal cortex (subgenual cingulate, perigenual cingulate, anterior 
midcingulate, posterior midcingulate, ventromedial prefrontal cortex 
and dorsomedial prefrontal cortex)42, amygdala (central amygdala, 
basolateral amygdala, superficial amygdala and amygdalostriatal 
area)110, basal forebrain structures (extended amygdala and mammil-
lary nucleus)45, striatum (caudate, putamen and globus pallidus)45, 
hypothalamus45, habenula45 and multiple midbrain nuclei (red nucleus, 
ventral tegmental area and substantia nigra)45.

To assess the average response in each domain, activation maps 
showing the average effect of each domain controlling for study were 
estimated in separate mass-univariate analyses. These regression 
models included an intercept and separate terms modelling the effect 
of each study that were centred and scaled to unit variance. Consistent 
with the objective of feature selection (selecting studies and regions 
consistently activated by rewards), these regression models revealed 
that studies manipulating positive affect generally yielded increases 
in signal across all regions. All domains exhibited increased activity in 
the striatum, insula, and midcingulate cortex (Supplementary Fig. 1).

PLS specification and estimation
To identify a single pattern of brain activity associated with diverse 
instances of pleasure that does not respond during other manipulations 
of affect, we specified a PLS regression model to predict different levels 
of a functional hierarchy. The hierarchy included four levels: subject, 
study, subdomain and domain. The input data matrix consisted of 
contrasts from all 494 subjects in the development sample and the 
output matrix consisted of 46 dummy coded variables (28 studies,  
14 subdomains and 4 domains, with values of +1/−1 based on inclusion/
exclusion for each term, Supplementary Fig. 2). PLS models were fit 
using SIMPLS111 as implemented in MATLAB. This produced a matrix of 
PLS regression coefficients of size 35,292 (the number of voxels selected 
for training plus an intercept term) by 46 outcome variables. The pleas-
ure signature comprised the pattern of coefficients corresponding 
to the dummy coded variable for the positive affect domain. A block 
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bootstrap procedure was used for inference on PLS regression coeffi-
cients (3,000 samples). In this procedure, observations from individual 
studies were resampled with replacement to account for dependencies 
within studies. Normal approximations were made on the basis of the 
mean and standard deviation bootstrap distributions for each voxel, 
producing z-maps and associated P values. PLS regression coefficient 
maps were thresholded using false discovery rate correction on P values 
(two-sided) from the bootstrap procedure (q < 0.05).

Estimation of spatial gradients
We used linear regressions to examine whether coefficients exhib-
ited gradients similar to those identified subcortical structures 
in non-human animals. In particular, the rodent NAc exhibits a 
rostro-caudal gradient, with rostral involvement in defensive behav-
iour, and caudal involvement in ‘liking’. Translating these findings to 
humans, neuroimaging studies show that rewards activate more medial 
‘core-like’ portions of the NAc, whereas aversive stimuli activate more 
lateral ‘shell-like’ areas48,49. If the pleasure signature we developed is 
consistent with this gradient, then a linear regression of signature 
coefficients onto their distance from midline (mm in MNI space) should 
produce a negative beta estimate. We tested this hypothesis by tak-
ing the full bootstrap distribution used for voxel-wise inference and 
running a spatial regression on each bootstrap sample, producing a 
bootstrap distribution of beta estimates that were used to compute 
z-scores and corresponding P values using normal approximation. The 
same procedure was used to identify anterior-to-posterior gradients 
in the VeP, which would produce a positive beta estimate if consistent 
with rodent topography, and in insular cortex, which would produce 
a negative beta estimate, although this is contentious as the structure, 
connectivity and cytoarchitecture of the insula differ between species9.

Generalization tests
To evaluate the generalizability of the pleasure signature, we examined 
its response in four independent datasets (Studies 1–4 in Supplemen-
tary Table 9), making classifications based on cosine similarity between 
PLS regression coefficients estimated during training and test data. 
The first two of these studies were selected to test model specificity, 
as they included contrasts that primarily differed in terms of reward 
value rather than hedonic impact. They included gain versus loss tri-
als in a standard reinforcement learning task57 and high versus low 
reward trials in a task requiring participants to make decisions about 
expending effort for rewards of varying magnitude112. The second pair 
of studies was chosen to evaluate the sensitivity of the model, as they 
included contrasts between decision-making about humourous versus 
non-humourous content55 and between pleasant versus neutral tastes53. 
Cohen’s d and area under the receiver operating characteristic curve 
(AUROC) were used to index discrimination within individual studies, 
using randomization tests with 10,000 iterations.

To evaluate the signature response across all four validation stud-
ies, a linear mixed effects model was specified with study and a con-
dition × study interaction as fixed effects, and random intercepts for 
subjects nested within studies. The interaction term in this model was 
specified to test whether the signature response was larger between con-
ditions for studies that included a manipulation of pleasure (pleasant ver-
sus neutral tastes and humour versus neutral captioning) and those that 
did not (large versus small reward cues and gain versus loss feedback). The 
model was fit using maximum likelihood estimation through MATLAB’s 
fitglme function. Inference was made using a two-sided t-test against 
zero and confirmed using a parametric bootstrap (10,000 iterations).

Spatial mappings with neurotransmitter receptor gene 
expression
We compared the pleasure signature with gene expression maps for dopa-
mine receptors (DRD1, DRD2 and DRD3) and opioid receptors (ORPM1, 
ORPK1 and ORPD1) from the Allen Brain Atlas61. We performed a multiple 

regression using the 6 normalized gene expression maps (35,291 voxels 
by 6 genes) to predict the PLS regression coefficients that define the 
pleasure signature (35,291 voxels), producing beta estimates that reflect 
the unique association between gene expression for each receptor type 
and the pleasure signature. To estimate the variability of betas estimates, 
a bootstrap procedure was performed using the same bootstrap distribu-
tion used to make inference on PLS regression coefficients. Inference was 
performed using a two-sided test with normal approximation following 
visual inspection (full distributions are shown in Fig. 3).

Signature response to naloxone challenge
To assess the effects of opioids on the pleasure signature, we evaluated 
the effect of naloxone on mesocorticolimbic activity and self-reported 
pleasure in a placebo-controlled crossover study66. As with the other 
four generalization tests, we computed the cosine similarity between 
the signature and maps contrasting the placebo manipulation and for 
erotic images and visual cues indicating they would receive money 
after the scanning session. Because some activation maps varied in 
signal quality and coverage, images that were extreme outliers based 
on Mahalanobis distance (three for erotic image contrasts and two 
for monetary reward contrasts) were excluded from this analysis. We 
computed differences in average pattern expression and self-reported 
pleasure between the naloxone and saline sessions for both types of 
stimuli. Bootstrap resampling with normal approximation was per-
formed for both measures, using two-sided tests for inference.

Representational similarity analysis
We constructed model-based representational dissimilarity matrices 
(RDMs) reflecting the psychological domains and subdomains involved 
in each study (following methods developed in ref. 42, Supplemen-
tary Fig. 3). For each RDM, we calculated dissimilarity as 1-Pearson’s 
r between multivoxel patterns of brain activity. First, we modelled 
each of the 28 studies individually to assess differences in pattern 
generalizability across studies. Then, we modelled the 14 subdomains 
(food reward, musical reward, monetary reward, social reward, sexual 
reward, visceral stimulation, thermal stimulation, mechanical stimula-
tion, response conflict, response selection, working memory, visual 
negative emotion, social negative emotion and auditory negative 
emotion) to assess patterns that generalize across studies but differ 
across subdomains. Lastly, we modelled each of the four psychological 
domains (positive affect, pain, cognitive control and negative affect) 
independently to account for response patterns that generalize across 
studies and subdomains but differ across the four general domains.

We used binary vectors based on study membership to model the 
observed brain RDMs as a linear combination of individual studies (28 
RDMs), subdomains (14 RDMs) and psychological domains (4 RDMs). 
We then created a set of vectors from the intersubject dissimilarities 
of these 46 RDMs and a constant RDM, which were used as regres-
sors in a linear regression model. On-diagonal elements, which have 
zero dissimilarity, were excluded from all analyses. We used a block 
bootstrap procedure42 to obtain P values because the general linear 
model assumes independent errors while dissimilarity matrices exhibit 
complex dependencies. Positive regression coefficients thus reflect 
similarities in brain responses that generalize across a psychological 
domain and cannot be explained by features unique to any subdomain, 
study or individual. Two-sided tests were performed for inference.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data used to train and validate the signature are available at  
https://osf.io/vs84r/. Data from the Allen Brain Atlas are available at 
https://neurosynth.org/genes/ and http://portal.brain-map.org/.
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Code availability
Code for reproducing the findings presented in this manuscript is 
available at https://github.com/ecco-laboratory/PMA. SPM can be 
downloaded from https://www.fil.ion.ucl.ac.uk/spm/software/down-
load/, and the CanlabCore Tools are available at https://github.com/
canlab/CanlabCore.
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Extended Data Fig. 1 | Multivariate models discriminate brain states during 
manipulations of pleasure, pain, cognitive control, and negative affect.  
(a) Rendering of z-scores for beta estimates from Partial Least Squares regression 
fit on training data (n = 499) overlaid on the ICBM152 template. Warm colors 
are positively associated with predictions of each domain, whereas cool colors 
are negatively associated with each domain. (b) Confusion matrix estimated 

using stratified 5-fold cross-validation in the training dataset (4-way accuracy = 
47.17%, all four classes are statistically distinguishable at p < .05). Rows have been 
normalized to sum to 1. (c) Clustering of domains based on classification errors. 
Dendrogram shows clustering of errors using Ward’s linkage. Dashed vertical line 
depicts the optimal cut point, in which all four domains are assigned to separate 
clusters.
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Extended Data Fig. 2 | Signature coefficients within ventral pallidum and 
nucleus accumbens. (a) Volumetric rendering of anatomically defined regions 
of interest overlaid on the ICBM152 template. (b) Signature coefficients (beta 
estimates from Partial Least Squares regression) within the ventral pallidum that 

predict states of pleasure. Warm colors are positively associated with predictions 
of pleasure, whereas cool colors are negatively associated with pleasure. MNI 
coordinates (mm in the y dimension) are shown next to each section.  
(c) Signature coefficients in the nucleus accumbens.
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Extended Data Fig. 3 | Estimated spatial smoothness of the pleasure signature. The empirical spatial autocorrelation of the pleasure signature (black) and 
estimates using both Gaussian (green) and mono-exponential fit (red) are shown. Figure generated from the AFNI program 3dFWHMx.
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Extended Data Fig. 4 | A simplified, region-average model of the signature 
response is neither sensitive nor specific to pleasure. (a) The simplified 
model defined by the average of coefficients from the optimized signature. 
Warm colors indicate regions in which increases in brain activity contribute to 
predictions of pleasure, whereas cool colors indicate regions in which increased 
brain activity leads to fewer classifications of pleasure. (b) Box and whisker 
plot shows differences in the region-average signature response for each study 

(ns = 26, 26, 13, 24 independent participants; *mean = .0412, t25 = 2.948, p = .00685, 
d = .578, 95% Confidence Interval = [.0138 .0686], uncorrected two-sided paired 
t-test). Black lines depict the mean response, light-shaded regions depict one 
standard deviation, and darker-shaded regions two standard errors. Each 
point corresponds to the response of a single subject. (c) Receiver operating 
characteristic curves for each of the four studies.
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Extended Data Fig. 5 | Brain reward signature is sensitive to reward feedback, 
but not pleasure. (a) Reward signature trained to discriminate gains and losses 
in a monetary incentive delay task. Warm colors indicate regions in which 
increases in brain activity contribute to predictions of greater reward, whereas 
cool colors indicate regions in which increases in brain activity lead to lower 
levels of reward. (b) Box and whisker plot shows differences in the region-average 
signature response for each study (ns = 26, 26, 13, 24 independent participants; 

*mean = .0279, t25 = 3.221, p = .00353, d = .632, 95% Confidence Interval = [.0109 
.0448], uncorrected two-sided paired t-test). Black lines depict the mean 
response, light-shaded regions depict one standard deviation, and darker-
shaded regions two standard errors. Each point corresponds to the response of 
a single subject. (c) Receiver operating characteristic curves for each of the four 
studies.
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Extended Data Fig. 6 | Spatial correlation of neurotransmitter gene expression maps from the Allen Brain Atlas. Heatmap depicts the Pearson correlation 
coefficient between pairs of gene expression maps, with cool colors indicating negative correlations and warm colors positive correlations.
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Extended Data Fig. 7 | Spatial correlation between Partial Least Squares regression coefficients and neurotransmitter gene expression maps from the  
Allen Brain Atlas. *p < .05; **qFDR < .05, two-sided bootstrap test. Full statistics are reported in Supplementary Table 7.
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Extended Data Fig. 8 | Group-average contrast maps showing the effect of 
naloxone on brain activity during the presentation of erotic images and 
feedback about monetary rewards. Warm colors indicate greater activity 

during saline placebo administration compared to naloxone, whereas cool 
colors indicate a greater response during naloxone administration compared to 
placebo.
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