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ABSTRACT

BACKGROUND: Reduced motivation is a core feature of major depressive disorder (MDD). Yet, the extent to which
this deficit persists in remitted MDD (rMDD) remains unclear. Here, we examined effort-based decision making as one
aspect of amotivation in rMDD using computational phenotyping to characterize decision-making processes and
strategies.

METHODS: Unmedicated adults with rMDD (n = 40) and healthy control (HC) participants (n = 68) completed the
Effort Expenditure for Rewards Task. Repeated-measures analysis of variance and computational modeling—
including hierarchical drift diffusion modeling and subjective value modeling—were applied to quantify decision-
making dynamics in effort allocation across different reward magnitudes and probabilities.

RESULTS: Relative to HC participants, participants with rMDD made overall fewer hard task choices, with an
attenuated effect when accounting for anhedonia. However, specific to high reward, high probability conditions,
participants with rMDD chose to expend effort more often than HC participants. This was supported by the drift
diffusion model results revealing that participants with rMDD showed a drift rate biased toward selecting the easy
task, counteracted by heightened influence of reward probability and magnitude. Probed with the subjective value
model, this was not driven by group differences in decision strategies with respect to magnitude and probability
information use.

CONCLUSIONS: Collectively, these findings suggest that while individuals with rMDD exhibit persistent motivational
deficits, they retain a heightened sensitivity to high-value rewards, requiring more substantial or certain rewards to
engage in effortful tasks. This pattern may reflect impairments in reward processing and effort-cost computations,
contributing to motivational dysfunction. Targeting reward sensitivity and effort allocation could be valuable for
interventions aimed at preventing MDD relapse.

https://doi.org/10.1016/j.bpsc.2025.02.006

Major depressive disorder (MDD) is characterized by pervasive
mood disturbances, cognitive impairments, and reduced

depressive symptoms (e.g., anhedonia) or current MDD are
characterized by reduced willingness to expend effort for re-

motivation. Anhedonia—the diminished ability to experience
pleasure or interest in activities—is a core impairment in MDD,
particularly when decisions require balancing effort against
potential rewards (1,2). Despite improvements in mood after
remission, individuals with remitted MDD (rMDD) continue to
exhibit some cognitive and motivational deficits, such as al-
terations in reward processing (3,4), impairing daily activities
and functional recovery (5). However, the extent to which
deficits specific to balancing effort against potential rewards
persists in rMDD remains unclear.

Effort-based decision-making tasks, which examine how
individuals weigh the potential benefits of rewards against the
cognitive or physical effort required to obtain them, provide
valuable insight into motivational processes underlying MDD.
These tasks have largely shown that individuals with elevated

wards, for example, due to reduced sensitivity to the reward
magnitude and reward probability (6-12); inconsistencies exist,
however, and some studies have reported no differences in
effort allocation in MDD (13). When deficits emerged, dys-
functions in reward-related neural circuitry, which impair the
ability to evaluate effort and motivation in pursuit of rewards,
have been postulated (14). While most existing research has
focused on acute depressive states, less is known about the
extent to which these motivational impairments persist into
remission. One study found no differences in expenditure of
cognitive effort in individuals with partially medicated rMDD
(15). Two other studies probing physical effort in medicated
individuals reported either no residual impairments (16) or a
lower willingness to expend effort in individuals with rMDD,
especially for low rewards (17). Using computational modeling,
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the latter study (17) identified increased effort sensitivity, but
no differences in reward sensitivity in rMDD. Thus, individuals
with rMDD may exhibit motivational impairments, potentially
requiring greater incentives to engage in effortful activities,
which may be linked to altered functioning of the dopaminergic
system underlying reward processing and motivation (14).
However, participants in these studies were partially or fully
medicated, which is an important confound considering that
antidepressants can blunt reward-related neural processes
(18). As such, the precise nature of motivational impairments in
individuals with unmedicated rMDD remains poorly under-
stood. Given the increased risk of relapse among individuals
with rMDD (19), understanding the nuanced motivational pro-
files in rMDD via approaches that tap into latent processes is
critical for understanding relapse risk and for developing tar-
geted prevention interventions.

Using the Effort Expenditure for Rewards Task (EEfRT) (7),
we examined how individuals with unmedicated rMDD weigh
reward magnitude and probability when making decisions
about expending effort, using both behavioral and computa-
tional modeling approaches. Given the centrality of motiva-
tional factors in MDD, we hypothesized that participants with
rMDD would exhibit a reduced willingness to engage in
effortful tasks compared with healthy control (HC) participants.
Additionally, it remains unclear if reward magnitude or proba-
bility sensitivity is altered in individuals with unmedicated
rMDD. While generally blunted reward sensitivity to reward
variables could be expected based on studies in MDD, it can
be speculated that, to retain daily functioning in rMDD,
increased sensitivity to higher and more likely rewards might
be required. Finally, we explored whether alterations in effort
allocation may be driven by residual cognitive impairments in
integrating reward magnitude and probability information into
decision-making strategies.

To evaluate the first 2 hypotheses, we implemented both an
analysis of traditional measures of effort expenditure and
computational modeling via a hierarchical drift diffusion model
(DDM) (20). By analyzing both choices and reaction times, a
process model such as the DDM can uncover latent value-
based decision-making processes (and thus assess the influ-
ence of reward magnitude and probability, respectively) that
cannot be evaluated when examining choice behavior via
traditional analyses (21-23). As such, the DDM has been
successfully applied to effort-based decision making, unveiling
the underlying processes that drive cost/benefit decision
making (24-26). Finally, to complement DDM analyses, we
performed subjective value modeling (27) to probe individual
decision-making strategies, which may be reflected in differ-
ences in how an individual makes use of the available reward
magnitude and probability information.

METHODS AND MATERIALS

Participants

Participants comprised 114 adults, including 42 unmedicated
participants with rMDD and 72 HC participants ages 18 to 45
years, who were recruited from the greater Boston community.
For details of inclusion and exclusion criteria, see the
Supplement.
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The rMDD and HC groups did not differ on any de-
mographic measures except race. Although scores on clinical
scales were well below clinical cutoffs,® groups differed on
self-report measures of depression and anhedonia (Table 1),
which motivated separate control analyses. Participants
completed the EEfRT (see Supplement) as part of a larger
neuroimaging study, for which the sample size was determined
based on the design and objectives of the broader study.
Given evidence that antidepressants can blunt reward-related
neural processes (18), only unmedicated individuals with
rMDD were included to minimize potential confounding effects.
Six participants were excluded due to overlapping issues,
including inadequate task performance due to not selecting
any hard tasks (n = 1), failing to complete any of the hard tasks
(n = 5), or an overall completion rate of less than 50% (n = 4).
Accordingly, the final sample included 108 participants: 68 HC
participants and 40 participants with rMDD. All study proced-
ures were approved by the Mass General Brigham Human
Research Committee, which serves as the Institutional Review
Board for MclLean Hospital. Participants provided written
informed consent.

Statistical Analyses

Trials were excluded if no task was selected or selection re-
action times were less than 250 ms (27). Given the central role
of anhedonia in MDD, follow-up analyses explored the effects
of grand mean-centered Snaith-Hamilton Pleasure Scale
(SHAPS) scores using analysis of variance (ANOVA) as well as
their associations with model parameters from both compu-
tational approaches.

Repeated-Measures ANOVA. A repeated-measures
ANOVA examined the effects of reward probability, reward
magnitude, and group. Independent variables were 3 levels of
reward probability (low, 12%; medium, 50%; high, 88%), 3
levels of reward magnitude [following recent work (30), cate-
gorized as low, $1.24-$2.00; medium, $2.01-$3.00; high,
$3.01-$4.12], and 2 levels of group (HC, rMDD). To dissect a
possible 3-way interaction effect, 3 follow-up post hoc ANOVAs
examined group differences of proportion of hard task choices
under specific probability conditions, with Bonferroni correction
of criteria significance values (p = .0167 [.05/3]). Interaction

2Due to stringent exclusion criteria and clinical screening ensuring
that participants had no depressive symptoms, both groups
reported extremely low clinical scores (well below clinical cut-
offs). Specifically, the mean Beck Depression Inventory (BDI)
scores (possible range, 0-63) were 1.85 (rMDD group) and 0.63
(HC group). The lack of range in BDI scores prevented us from
entering these values as covariates in control analyses (77% of
HC and rMDD participants had a BDI score of 0 or 1). Similarly,
the mean Snaith-Hamilton Pleasure Scale (SHAPS) scores
[single missing SHAPS items for 2 HC participants were
imputed via Multivariate Imputation by Chained Equations
using the mice package in R (28)] (possible range, 14-56)
were low (participants with rMDD = 22.00, HC participants =
19.47) (see Figure S3 for SHAPS score group distributions)
and in agreement with a meta-analysis reporting no overall
differences in SHAPS scores between HC participants and
participants with rMDD (29).
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Table 1. Demographics and Clinical Measures of
Participants

rMDD

Group, HC Group, p

Measure n =40 n =68 Value

Age, Years, Mean (SD) 25.72 (6.25) 26.50 (5.74) .51

Sex, Female, % 87.50% 75.00% 19

Race, % .04
American Indian or Alaskan 0.00% 1.47%

Native
Asian 20.00% 29.41%
Black 0.00% 10.29%
White 77.50% 55.88%
Unknown 2.50% 2.94%

Hispanic or Latinx, % 17.50% 10.29% .37

Education, % .24
High school 0.00% 4.41%

Some college 30.00% 17.65%
4-Year college 35.00% 30.88%
Graduate or professional school 35.00% 47.06%

Income, % .32
<$50,000 22.50% 23.53%
$50,000-$100,000 52.50% 39.71%
>$100,000 22.50% 35.29%

Unknown 2.50% 1.47%
BDI, Mean (SD) 1.85 (2.61) 0.63 (1.47) .002**
SHAPS, Mean (SD)* 22.00 (6.32) 19.47 (6.06) .045*

2 tests were conducted for categorical variables. For categorical variables in
which there were cell counts of 0 or 1, Fisher exact test was conducted in place of
+2 test. Two-sample t tests were conducted for continuous variables.

*p < .05, *p < .01.

BDI, Beck Depression Inventory; HC, healthy control; rMDD, remitted major
depressive disorder; SHAPS, Snaith-Hamilton Pleasure Scale.

2Single missing SHAPS items for 2 HC participants, respectively, were imputed
via Multivariate Imputation by Chained Equations using the mice package in R (28).
See Figure S3 for the groupwise distribution of SHAPS scores.

effects were followed up via marginal means pairwise compar-
isons. Additionally, condition and group effects were assessed
for decision reaction times. For all ANOVAs, a Greenhouse-
Geisser correction was used, when applicable. To evaluate
the dependency of the observed effects on the categorization of
reward magnitude, a generalized linear mixed-effects model
was performed treating reward magnitude as a continuous
variable (see Supplement). All tests were performed in R (31)
using the afex (32), emmeans (33), and Ime4 (34) packages.

Hierarchical Bayesian Drift Diffusion Modeling. To fit
and simulate behavioral choices and response times, we used
the Python-based Bayesian hierarchical drift diffusion
modeling toolbox (HDDM) (21). DDMs and related evidence
accumulation models have been used extensively to study
latent processes underlying perceptual and value-based de-
cision making, wherein parameter estimates can be more
informative about clinical status than raw choices and reaction
times (20,22,35,36). In the context of the EEfRT, the upper
decision bound represents selection of the high reward, high
effort option. Thus, the decision variable serves as a proxy for
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evidence accumulation toward the high reward, high effort
option, with the drift rate increasing toward the upper boundary
parametrically with reward magnitude or reward probability to
overcome the effort cost (25). Regressor variables were
centered before model fitting. Convergence of Bayesian model
parameters was assessed by visually inspecting parameter
traces, confirming acceptable levels of mixing with low
amounts of autocorrelation. Convergence was formally
examined via the Gelman-Rubin statistic; all parameters had R
below 1.1, suggesting acceptable convergence. Each model
included was run with 4 chains and a minimum chain length of
2000 to ensure smooth posteriors. Model comparison was
performed by starting with a base DDM with static decision
bounds for both the HC and the rMDD groups and systemat-
ically determining if there were other DDM variants that
improved the fit to the empirical data, based on posterior
predictive checks (PPCs) and deviance information criterion,
using the likelihood approximation networks extension to the
HDDM tool for likelihood-free inference (37,38). The winning
model (Weibull model) estimated 2 additional parameters
beyond the standard DDM that allows for the decision
threshold to collapse nonlinearly over time, with the shape of
the collapse determined by the o parameter and the onset by
the B parameter. We fit separate Weibull models for each
group, allowing drift rate to vary as a function of both reward
probability and reward magnitude on a trial-by-trial basis (see
Supplement), and compared posteriors to estimate how the
latent DDM parameters differed between rMDD and HC groups
(22). Model validation via PPCs involved generating simulated
data from the winning DDM (sampling from the full posterior
distribution over parameters) and determining whether these
synthetic data successfully recapitulate the qualitative patterns
seen in the empirical data.

Subjective Value Modeling. The goal of a subjective value
model (SVM) of choice behavior during the EEfRT was to
specifically allow inferences about the individual’s choice
strategy characterizing how decisions are made, providing
important information beyond a repeated-measures ANOVA,
which examines what choices an individual makes (i.e., easy or
hard), and the DDM analyses, which examine the trialwise
dynamic process of decision making and its latent compo-
nents. In brief, following the approach by Cooper et al. (27), an
SVM probed the participant’s integration of the 3 presented
components of information (reward probability, reward
magnitude, and required effort) into the individual’s choice
strategy (see Supplement for details). Four possible models
were tested for each individual separately using maximum
likelihood estimation of underlying strategies that best fit the
observed trial-by-trial behavior: 1) a full SVM, which assumes
that participants consistently incorporate both trialwise reward
probability and reward magnitude information when deciding
how to allocate effort; 2) a reward-only SVM, which assumes
that participants consider only the magnitude of reward; 3) a
probability-only SVM, which assumes that participants
consider only the probability of reward; and 4) a bias model,
which assumes that participants do not consider the reward or
probability information at all, representing unsystematic and
random effort allocation, highly favoring one option over the
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other, or make choices that were inconsistent with the as-
sumptions of the SVM (e.g., favoring the hard effort task for low
reward/low probability trials).

Finally, following Cooper et al. (27), for a subset of partici-
pants who had the full SVM as the winning model, we per-
formed follow-up analyses to determine group differences in
the 2 model parameters (i.e., k, capturing perceived effort, and
h, capturing probability).

RESULTS

Task Performance

The mean (SD) task completion rate across all participants was
93.77% (8.54%) with a mean number of 63.3 (range, 34-84)
trials. Mean completion rates for the HC (93.08% [8.93%)
and rMDD (94.93% [7.79%]) groups did not differ (t10 = 1.09,
p = .280). Similarly, mean selection reaction times (1.624
[0.378] seconds) across all conditions did not differ between
the HC (1.634 [0.400] seconds) and rMDD (1.609 [0.342] sec-
onds) groups (t10e = 0.33, p = .740).

Willingness to Expend Effort Across Different
Levels of Reward Magnitude and Probability
(ANOVAS)

An omnibus repeated-measures ANOVA assessing effects on
the proportion of hard task choices revealed the expected
main effects of increased hard task selection with increasing
reward magnitude and probability and their interaction
(Table S1). Importantly, a significant group main effect (F1 106 =
4.04, p = .047) emerged, with estimated marginal means
averaged across levels of reward probability and reward
magnitude showing a reduced willingness to exert effort for
participants with rMDD (25.6%, SE = 2.46%) compared with
HC participants (31.9%, SE = 1.9%). In addition, the group X
reward probability X reward magnitude 3-way interaction was
significant (F3283475 = 3.79, p = .009). Post hoc repeated-
measures ANOVAs (Table S2) further dissecting this 3-way
interaction revealed a significant group effect in the medium
probability condition showing decreased expenditure of effort
for rMDD in the medium probability condition across all 3
reward magnitude levels (ps < .04). In addition, a 2-way
interaction of group and reward magnitude was observed in
the high probability condition that was driven by a significant
difference in the high reward magnitude condition (p = .03)
indicating higher reward expenditure for rMDD in this condition
(Figure 1). Treating reward magnitude as a continuous variable
in a generalized linear mixed-effects model, the 3-way inter-
action was confirmed, whereas the group effect was not sig-
nificant (Table S3).

No differences between groups and conditions emerged for
selection reaction times (Table S4; Figure S2). Finally, the
overall pattern of findings was confirmed when entering
SHAPS scores as covariate, although the group effect was
reduced to a trend (p = .057) (Table S4). No association with
SHAPS emerged.

Hierarchical Bayesian Drift Diffusion Modeling

The winning Weibull model (Figure 2A) captured qualitative
patterns in both HC and rMDD groups well (see PPCs)
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Figure 1. Proportion of hard task selections by reward magnitude and
probability levels. The proportion of hard task selections (%) for healthy
control (HC) and remitted major depressive disorder (rMDD) groups, catego-
rized by different levels of reward magnitude (low, medium, high) and reward
probability (12%, 50%, 88%). For illustration, the values are based on esti-
mated marginal means extracted from the full analysis of variance (ANOVA)
model (Table S1). Follow-up ANOVAs (Table S2) revealed a significant group
effect in the medium probability condition, while a significant group X reward
magnitude interaction was observed in the high probability condition driven by
a significant group difference in the high reward magnitude condition. Error
bars represent the SE of the mean. Note that for the MDD group at low
reward (12% probability), the SE exceeds the mean value, leading to unob-
servable negative values, and is therefore omitted. *p < .05, *p < .01.

(Figure 3). Drift rate increased with reward magnitude and
reward probability in both HC and rMDD groups. As the
HDDM tool is a Bayesian estimation framework, null hy-
pothesis testing can be conducted via directly comparing
Bayesian posteriors (21,22,39). Specifically, we can ask
statistically meaningful questions by examining the propor-
tion of the posteriors that overlap or are above or below 0 to
extract the probability of a hypothesis being true. Notably,
the group drift rate intercept (reflecting the overall propensity
to select the hard task) was considerably more negative for
participants with rMDD than for HC participants, indicating
an increased preponderance to accumulate evidence toward
the low effort option in participants with rMDD compared
with HC participants (Figure 2B), whereas the positive effects
of reward probability (Figure 2C, E) and reward magnitude
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Figure 2. Drift diffusion model analysis and group comparisons. Hierarchical Bayesian drift diffusion modeling analysis comparing healthy control (HC) and
remitted major depressive disorder (rMDD) groups. (A) Schematic of the drift diffusion model illustrating key parameters: drift rate, starting point, and boundary
separation (indicators for angle and starting point of boundary collapse are omitted). (B) Density plot of the drift rate intercept for HC and rMDD groups,
showing the distribution of intercept (i.e., the propensity to choose the hard task). (C) Density plot showing the effect of reward probability information on drift
rate for HC and rMDD groups. (D) Density plot of the effect of reward magnitude information on drift rate for HC and rMDD groups. (E) Posterior distribution
plot indicating the difference between groups in the reward probability information effect on drift rate. (F) Posterior distribution plot showing the difference
between groups in the reward magnitude effect on drift rate.

(Figure 2D, F) on drift rate toward the high effort option angle of collapse) did not differ meaningfully between groups
were increased in participants with rMDD at the population (data not shown). A supplementary DDM for binned reward
level. magnitude confirms the observations how drift rate varies as a

The posteriors of the other DDM parameters (i.e., starting function of reward probability and magnitude (see Supplement;
point, boundary separation, or the 2 parameters of start and Figure S4).

Figure 3. Posterior predictive checks (PPCs)—comparison of empirical and simulated data for remitted major depressive disorder (rMDD) and healthy
control (HC) groups using Weibull models. PPC density plots comparing empirical data (red) and simulated data (blue) for both rMDD (left panel) and HC (right
panel) groups, modeled using Weibull distributions. Each subplot represents combinations of reward magnitude (low, medium, high) and reward probability
(low, medium, high). The alignment of empirical and simulated data within each condition indicates a good model fit and the accuracy of the Weibull parameter
estimations across different reward probability scenarios for both groups. med, medium; prob, probability.
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Notably, there were no significant correlations with the DDM
parameters (i.e., drift rate intercept, reward probability sensi-
tivity, reward magnitude sensitivity) and SHAPS.

Subjective Value Modeling

Across groups, the majority of participants employed a strat-
egy that fully integrated both reward magnitude and probability
information (full SVM) (n = 98, 90.7%), while only a few par-
ticipants chose either a reward-only approach (n = 4, 3.7%) or
a probability-only approach (n = 2, 1.9%) or employed no
choice strategy based on the task information (bias) (n = 4,
3.7%). A similar pattern was observed within groups (Table 2),
and Fisher’s exact test indicated that groups did not signifi-
cantly differ in choice strategy (p = .570).

Follow-up analyses were run to evaluate putative group
differences in the 2 model parameters. For k, with higher values
reflecting higher perceived costs in effort, a multiple regression
yielded significant main effects of group, SHAPS, and a
group X SHAPS interaction (Table S7). Following up the main
effect of group with pairwise comparison of estimated marginal
means (corrected for SHAPS) showed no significant difference
between HC and rMDD groups (HC emmeans = 1.81, SE =
0.124; rMDD emmeans = 1.70, SE = 0.159; HC-rMDD = 0.117,
p = .563). The significant main effect of SHAPS indicated that
higher residual anhedonic symptoms are significant predictors
of higher perceived costs in effort. For the group X SHAPS
interaction effect, simple slope analyses were employed,
highlighting a significant difference in the association of k with
SHAPS scores between HC and rMDD groups (difference =
0.081, SE = 0.032, tg4 = 2.55, p < .012) (Figure 4A). Specif-
ically, the slope of SHAPS for HC participants was significantly
positive (B = 0.047, SE = 0.021, ts5 = 2.20, p < .032), while the
slope for participants with rMDD was not significant
(B = —0.034, SE = 0.022, t35 = —1.55, p = .129). For h, which
captures individuals’ weighing of the probability information, a
significant group difference was observed (2-sample t test:
tos = 2.291, p = .024) (Figure 4B), with rMDD demonstrating a
higher weight on the probability information. No associations
of h emerged with SHAPS.

Exploration of Convergence Between Modeling
Approaches

Because a conceptual convergence between the model pa-
rameters from the DDM and the SVM analyses emerged, we

Table 2. Distribution of Winning Subjective Value Models by
Group

Model HC Group rMDD Group
Full SYM 60 (88.2%) 38 (95%)
Reward-Only 3 (4.4%) 1 (2.5%)
Probability-Only 1 (1.5%) 1 (2.5%)
Bias 4 (5.9%) 0 (0%)

Total number (%) of winning subjective value models within each group are
reported. Full SVM includes models incorporating both reward and probability;
reward-only, models based solely on reward; probability-only, models based
solely on probability; and bias, models that include bias without consideration of
reward or probability.

HC, healthy control; rMDD, remitted major depressive disorder; SVM,
subjective value model.
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explored further targeted hypotheses about parameter
convergence. Specifically, exploratory linear regression ana-
lyses tested 2 hypotheses: 1) drift rate is negatively predicted
by effort discounting (k), as higher perceived costs reduce
evidence accumulation toward the hard task; and 2) reward
probability sensitivity is related to the weight of reward prob-
ability in the SVM. Results confirmed that drift rate was
significantly negatively predicted by perceived effort cost (k),
with a trend for a k X group interaction (Table S8). Similarly,
individual reward probability weighting (h) significantly pre-
dicted the probability sensitivity effect on drift rate, with a
significant h X group interaction, showing a significant asso-
ciation in the HC group, but not rMDD group (Table S9). See
full results in the Supplement.

DISCUSSION

This study examined motivational and cognitive aspects of
decision-making processes underlying effort expenditure in
unmedicated individuals with rMDD. While no significant group
differences emerged in global task performance metrics (task
completion rates, selection reaction times), differences
emerged in traditional measures of willingness to expend effort
as a function of varying reward probabilities and magnitudes
as well as latent decision-making processes identified via
computational modeling.

The lack of significant group differences in overall task
completion rates and selection reaction times indicate that the
cognitive capacity to engage in the task itself was preserved in
rMDD. However, this does not imply that motivational factors
are equivalent between groups.

Specifically, the group effect in the ANOVA points to a
reduced willingness to exert effort in individuals with rMDD,
particularly in conditions of ambiguity about receiving the
reward. These findings extend prior observations in which
medicated individuals with rMDD showed reduced willingness
to exert effort, especially when reward is low (17). This blunted
response may be driven by residual motivational symptoms (7),
although no relation to self-reported levels of anhedonia
emerged here (possibly due to a truncated range).

Interestingly, a reduced effort in participants with rMDD was
not uniform across reward conditions. While participants with
rMDD were less likely to choose hard tasks in the context of
moderate reward probability, they showed a higher accep-
tance rate and greater drift rates in high magnitude/high
probability conditions compared with HC participants. This
finding suggests that individuals with rMDD retain sensitivity to
high value incentives, but require a significantly larger and
certain reward to overcome the perceived effort cost, as they
may undervalue potential rewards or overvalue the effort
required, which could be linked to a persistent blunted sensi-
tivity to reward and diminished motivation (1,3-5,40).

These patterns are supported by the DDM analyses. Both
HC participants and participants with rMDD demonstrated in-
creases in drift rate as reward magnitude and probability
increased. However, participants with rMDD showed a signif-
icantly lower drift rate, indicating a general bias away from
selecting the hard task, while the positive effects of reward
probability and reward magnitude on drift rate toward the high
effort option were increased. While this may seem paradoxical,
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Figure 4. Relationship between  Snaith-
Hamilton Pleasure Scale (SHAPS) scores and
model parameter k as well as group differences
in model parameter h for healthy control (HC)
and remitted major depressive disorder (rMDD)
groups. (A) Scatter plot with regression lines
showing the relationship between SHAPS scores
and the parameter k (n = 98). A significant
positive association between k and SHAPS
emerged for the HC group (B = 0.047,
SE = 0.021, tsg = 2.20, p < .032), while there
was no significant association for rMDD
(B = —0.034, SE = 0.022, t35 = —1.55, p = .129).
Shaded areas represent 95% Cls for the
regression lines. (B) Bar graph comparing
the parameter h (n = 98) between HC and

rMDD groups, demonstrating that the weight on reward probability information is significantly higher in the rMDD group than the HC group (tgs =

2.291, p = .024). Error bars represent SE. *p < .05.

it must be considered in light of reduced drift intercept in
participants with rMDD indicating that participants with rMDD
have a tendency to accumulate evidence away from the high
effort option unless the reward benefits are substantial
enough. In contrast, HC participants required less incentive to
overcome effort costs. In other words, participants with rMDD
showed blunted sensitivity to lower levels of reward, but intact
sensitivity when reward is high enough, reinforcing the idea
that individuals with rMDD require higher incentives to engage
in effortful tasks, consistent with an effort-avoidant decision-
making strategy.

Finally, SVM analysis revealed that most participants,
regardless of group, employed a strategy that integrated both
reward magnitude and probability when making decisions
about effort expenditure, indicating an absence of cognitive
deficits in rMDD for the use of such information. However,
participants with rMDD demonstrated a higher weight on
probability information than HC participants, in line with the
ANOVA and DDM findings, which identified a higher proba-
bility sensitivity for effort expenditure decisions. This again
suggests that participants with rMDD may place greater
emphasis on the likelihood of receiving a reward when
deciding whether to exert effort and a heightened sensitivity
to certainty, where the prospect of a guaranteed outcome
may serve as a stronger motivator compared with HC
participants.

Notably, only HC participants exhibited higher perceived
costs of effort in relation to SHAPS scores, indicating that
anhedonia shapes effort-based decisions. The absence of a
significant SHAPS effect on probability sensitivity in rMDD
suggests that while they show altered effort-cost computa-
tions, their ability to factor in probability remains relatively
intact. Further, this observation is intriguing because no as-
sociations with  SHAPS and parameters from the DDM
emerged, which suggests that these models may in fact cap-
ture distinct processes, with anhedonia potentially exerting
differential effects on the specific aspects of decision making
assessed by each approach.

Our findings have important implications for understanding
the lingering motivational deficits in individuals with rMDD. The
reduced willingness to expend effort for moderate rewards
suggests that motivational impairments may persist even when

other symptoms of depression, such as mood and cognitive
functioning, have improved. Future research should further
explore the underlying mechanisms, particularly the role of
neurobiological systems implicated in reward processing.
Additionally, longitudinal studies should determine whether
these motivational deficits persist over time or fluctuate with
depressive symptoms. This study further highlights that
computational modeling approaches are valuable tools. Spe-
cifically, findings that drift rate negatively predicted effort dis-
counting and reward probability sensitivity were related to the
weight an individual placed on reward probability in the HC
group (but not rMDD group) point to residual impairments in
reward processing, cognitive flexibility, and neural circuitry in
rMDD.

Some limitations should be noted. First, the exclusion of
medicated individuals limits generalizability. It is possible that
our sample reflects a healthier subpopulation of individuals
with rMDD who do not require maintenance treatment to
remain in remission. Second, the observed behavioral pattern
might reflect a self-selection bias, with individuals exhibiting a
more favorable motivational profile (which contributed to their
participation). Third, the EEfRT task does not capture all
phases of motivation (e.g., anticipation vs. consumption).
Future studies could include paradigms parsing these com-
ponents to gain a more comprehensive understanding of
motivational impairments. Fourth, the truncated range of
SHAPS scores may have limited our ability to detect re-
lationships between anhedonia and effort-based decision
making. Finally, while our findings suggest an association
between motivational deficits and altered reward-cost com-
putations, we were unable to test their direct impact on
functional impairment or clinical course due to data
limitations.

Taken together, our results have potential implications for
treatment approaches, as current interventions may need to be
supplemented with strategies specifically targeting motiva-
tional deficits, such as behavioral activation or reward-based
interventions (41) to fully restore functional capacity. More-
over, the heightened sensitivity to reward magnitude and
probability in participants with rMDD highlights the potential for
leveraging high-value incentives in therapeutic contexts. In-
terventions that emphasize clear and substantial rewards may
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be more effective in motivating individuals with a history of
depression to engage in effortful activities, potentially aiding in
relapse prevention.
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Supplementary Methods

Inclusion and exclusion criteria for participants

Participants were screened by a masters or PhD-level clinician using the Structured Clinical
Interview for DSM-5 Research Version (SCID-5-RV; (1)). Based on criteria from our prior work (e.g., 2—
4), participants met criteria for MDD if they had experienced at least one major depressive episode in the
past five years and if their depression was in remission for at least two months prior to the screening session.
In addition, clinical scores had to be below the following thresholds: Beck Depression Inventory—II (BDI-
IL; (5)) £9; Quick Inventory of Depression Symptomatology (QIDS; (6)) < 5; Hamilton Rating Scale for
Depression (HRSD-17; (20)) < 7 as well as no more than two symptoms of depression reported to more
than a mild degree [SCID-5-RV rating of 2] in the eight weeks prior to testing. Accordingly, depressed
mood and anhedonia symptoms had to be rated 1 on the SCID, excluding even subthreshold level of
depressed mood and anhedonia for rMDD. All participants were unmedicated. Among the MDD
participants with usable task data (see below), 50% (N=20) had never received any antidepressant
medication. The other half were off medication for at least two weeks before the screening session (six
weeks for fluoxetine) and, on average, this sample was off medication for 29.3 months (range: 2 weeks to
113 months) before testing. Participants were classified as HCs if they had no current or past psychiatric
illness. Exclusion criteria for the full sample were current or past serious medical illness, current comorbid
psychiatric disorders, first-degree relatives with a history of a psychotic disorder or psychotic symptoms
outside of the context of a mood disorder, current use of psychoactive drugs, and more than 15 alcohol-
induced blackouts.

Effort Expenditure for Rewards Task (EEfRT)

Figure S1. Schematic Overview of the Effort Expenditure for Rewards Task (EEfRT) Trial Structure.
[lustrated is the structure of a single example trial. Initially, reward and probability information are
displayed, indicating for this example the values for the easy task ($1) and the hard task ($3.04) with a 12%
probability of winning. Participants have 4 seconds to select a task, after which a task is randomly assigned
if no selection is made. The task involves repeatedly pressing a button to fill a progress bar within a specified
time limit (7 seconds for the easy task, 21 seconds for the hard task). Upon task completion, participants
receive feedback on their performance and whether they earned the reward.

Generalized linear mixed-effects model

To analyze the interaction effects of Group, Reward Probability, and the continuous measures of Reward
Magnitude on the binary outcome variable Choice (to select the hard trial), we employed a generalized
linear mixed-effects model using the glmer function from the Ime4 package in R. The model was
specified with a binomial family to account for the dichotomous dependent variable. The formula for the



model was:

Choice ~ Group x Reward Probability x Reward Magnitude + (1/1D)

Fixed effects: The interaction between Group, Reward Probability, and Reward was tested to assess their
combined influence on the outcome variable.

Random effects: A random intercept for ID was included to account for within-subject variability,
recognizing that observations from the same individual are not independent.

We utilized the anova function from the car package to conduct a Type III Wald chi-square test. This
method evaluates the significance of each fixed effect (main effects, two-way interactions, and the three-
way interaction) while controlling for all other effects in the model.

Hierarchical Bayesian Drift Diffusion Modeling

Two separate Weibull models were fit for data of each group, respectively. The following HDDM
equation was used:

[v~1 + hardRewardAmountZScore + RewardProbZScore','a~1",'z~1","t~1',"alpha~1', beta~1"].

Alpha and beta correspond to the Weibull-specific parameters that dictate the time at which the
boundary starts to collapse (alpha) and the degree of collapse (beta). Because the effort level does not
change on a trial-by-trial basis, effort is not included as a trial-by-trial regressor but is considered in the
intercept. Other parameters varying by 1 allow to assess group-level distributions of these parameters.

Supplementary DDM for binned reward magnitude

While the above DDM (Figure 3 in main text) is the best performing model for describing
participants’ empirical behavior, an additional DDM binning reward magnitude and reward probability
was fit separately to the HC and rtMDD groups to visually see how reward magnitude and reward
probability interact with the drift rate intercept. This DDM allowed drift rate (v) to vary by three
parameters: a group intercept, three levels of reward magnitude (categorized as low: $1.24-$2.00,
medium: $2.01-$3.00, high: $3.01-$4.12) and three levels of reward probability. 4 chains each of length
1000 were run for each group and convergence was assessed via visually inspecting parameter traces and
confirming the Gelman-Rubin statistic was 1.1 or below for all parameters.

Subjective Value Modeling
Following the approach of Cooper et al. (7), the following models were included:
Model 1: Full SV Model

A full SV model is best suited for participants who consistently consider both trial-wise reward
and probability information when deciding how much effort to exert. In this model, the subjective value
(SV) of a given trial is determined by taking the objective reward, R (ranging from $1 to $4.30), and
probability information, P, and reducing it by the required effort (easy, hard), E. The individual difference
in how much reward should be discounted by effort is captured by the free parameter weights in the SVF
equation:

Full Subjective Value model (SVF):SV = R x P* — kE.



Effort which is perceived as highly costly is leads to a higher value of &, while the weighting of
probability is represented by the value of 4. SVs are then transformed into probabilities of selecting each
option using the Softmax decision rule (8), where ¢ is an inverse temperature parameter that indicates a
tendency to prefer options with higher SVs:

eSVhard-t

eSVhard-t + eSVeasy't

p(hard) =

Taken together, the full SV model fit to the data includes three free parameters: £, 4, and ¢. As
such, the k parameter reduces subjective value based on the effort required, the 4 parameter adjusts
subjective value according to the probability of receiving the reward, and the ¢ parameter influences
choices towards options with higher SV.

Additionally, following the approach of Cooper et al. (7) some participants might be better
described by a SVF model that does not distort probability (i.e., the free parameter / held constant at 1).
These participants may be overpenalized for the additional free parameter / and accordingly, an
alternative variant of the SVF model with % constrained to 1 was fit to avoid overpenalization.
Participants best fit by either the SVF model with a flexible /# parameter or the SVF model with 4 fixed at
1 are included in the SVF model group, because this fit indicates that they integrate all information of
reward, effort, and probability in their decision-making.

Model 2: Reward-Only SV Model

A simpler model was for participants who base their effort solely on the available rewards. This
model does not include a parameter for scaling probability information. The reward-only SV model is
similar to the SVF model but assumes that / is zero, removing the probability information from the
equation:

Reward — Only SV model: SV = R — KkE.

The reward-only SV model and the SVF model both describe behavior for participants who do
not significantly modulate their responses based on probability but still systematically guide their effort
allocation based on reward magnitude. Note that while this model and the SVF model with % set to 1 both
have /4 fixed and therefore the same number of free parameters, their interpretations differ significantly.
Setting 4 to 0 indicates choice behavior that does not consider the probability of receiving the reward,
whereas setting h to 1 reflects probability information to influence subjective value.

Model 3: Probability-Only SV Model

We also included a model that based valuation only on probability of reward receipt. For this
model, the value of the low effort option was held constant at 0.5, while the value of the high effort option
was dependent on the probability value of the current trial:

Probability — Only SV model: SV = P X h.

The value of the high and low effort option was transformed into probabilities of taking each
option using the Softmax equation. This model does not include trial-wise reward information and is thus
able to capture behavior of participants who are relatively insensitive to reward information but show
differences in willingness to exert effort based on the probability of reward receipt.



Model 4: Bias Model

The bias model provides a better fit than the SV models for participants who consistently favor
one option, respond randomly, or make choices that do not align with the assumptions of the SV models
(e.g., favoring effort allocation for low reward). This model includes one free parameter, b, which
represents a bias towards the low-effort option. The probability of selecting the high-effort option is
therefore:

Bias model: p(hard) =1 —c.

The bias model assumes that participants disregard the information of probability or reward
leading to a consistent probability of choosing the low-effort option across trials.

Model fitting procedure and group comparison

All three models were fit to individuals’ data in MATLAB (MATLAB R2020a with statistics
toolbox). A maximum likelihood estimation was performed using fminsearch as the optimization
function. Model parameters were fit to optimize the behavioral data for each participant. Following
Cooper et al. (7), two variants of the full subjective model were fit with k, capturing perceived effort,
being estimated freely in both variants and h, capturing probability, to either be estimated freely or set to
1. k and h parameters were constrained to values between 0 and 10 for the subjective value models and t
was constrained between 0 and 100. All models were fit with 200 random parameter initializations. The
Bayesian information criterion (BIC) (9) was used for model comparisons. By incorporating the goodness
of fit, number of free parameters (which differ between models), and the number of observations, the BIC
accounts for differences in model and model complexity, penalizing complex models when log-likelihood
is similar. After model fitting, BIC values were compared across models and participants were assigned
the model with the lowest BIC.

After individual model fitting, to analyze whether there was an association between group (i.e.,
rMDD/HC) and choice strategy, a Fisher’s exact test using the Freeman-Halton (10) extension was
conducted. This test was chosen because observed counts in four out of the six categories failed to meet
the minimum number of observations (i.e., at least 5) required for conducting a chi-squared test.



Supplementary Results

Figure S2. Estimated Marginal Means of Reaction Times for Different Reward Magnitudes and
Probabilities. Reaction times (in seconds) are displayed for healthy controls (HC) and individuals with
remitted Major Depressive Disorder (rMDD) across three levels of reward magnitude (low, medium,
high) and three levels of reward probability (12%, 50%, 88%). Error bars represent standard errors of the
mean. No significant pair-wise differences between the HC and rMDD groups were observed across any
of the conditions.



Figure S3. Distribution Snaith-Hamilton Pleasure Scale (SHAPS) Scores. Distribution of SHAPS
(N=108) scores, displayed at the full ranges of possible scores (14-56).
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Figure S4. Drift rate posteriors as a function of reward magnitude and probability. Drift rate
posterior values for binned reward magnitude A) and reward probability B). Violin plots represent the
entire estimated Bayesian posterior for each of the respective parameters. The intercept was estimated in
the high magnitude/high probability condition with additional parameters estimating the effect of low and
mid magnitude/probability bins on the drift rate. HC and rtMDD groups were fit with separate models.



Control analyses accounting for anhedonic symptoms

Because anhedonia plays a central role in MDD and SHAPS scores were significantly different
between rMDD and HC, a control analysis was performed for the omnibus repeated measures ANOVA
including self-reported SHAPS as covariate. Results revealed a similar pattern to the results without SHAPS
as covariate. However, the Group main effect was reduced to a trend (p=0.057, Table S5). Notably, there
was no effect of SHAPS on the significant three-way interaction. Compared to the model not correcting for
SHAPS, follow-up pairwise ANOV As showed an equivalent pattern when including SHAPS as covariate
into the model, with the only change for the significant low-reward/medium-probability group difference
being reduced to a trend (p=0.053, Table S6).

Exploration of convergence between modeling approaches

Explorative analyses probed the targeted hypotheses that a) drift rate is negatively predicted by
the discounting of effort, k, as higher perceived cost would diminish evidence accumulation towards the
hard task and b) an increased reward probability sensitivity would be predicted by an increased weight of
reward probability information in the SVM. To test these hypotheses, multiple linear regression models
were performed (for subjects with SVF as the winning model, N=98) including Group as factor because
both drift rate and reward probability sensitivity differed between groups in separate DDM analyses.
Results showed in fact that a mean drift rate was significantly negatively predicted by k (p<0.001, Table
S8), demonstrating a higher perception of effort cost leading to a reduced evidence accumulation towards
the hard task. In addition, and as observed in the separate DDM approach, Group predicted differences in
drift rate (p<<0.001) while a trend for an interaction of Group and k (p<0.060) was observed. Similarly, h,
significantly predicted the reward probability sensitivity effect on drift rate (p<0.001, Table S9),
indicating that the higher the probability information is weighted in the SVM approach, the more impact
the probability information has on evidence accumulation towards the hard task. Again, as observed in the
separate DDM analyses, Group predicted differences in the effect of reward probability sensitivity on
drift rate (p=0.036). Notably, a significant Group by h interaction (p=0.007) was observed indicating that
this relationship might be different in both groups with simple slopes analyses indicating a significant
relationship in HC (p=0.004) while not being significant in tMDD (p=0.967).



Supplementary Tables

Table S1. Full ANOVA: ratio of hard easy task choices.

Predictor dium deen F p 7]P2
Group 1.00 106.00 4.04 .047* 0.037

Probability 1.65 174.73 242.18 <.001*** 0.696

Reward Magnitude 1.95 207.02 291.96 <.001*** 0.102

Group x Probability 1.65 174.73 2.43 102 0.734

Group x Reward Magnitude 1.95 207.02 2.64 .075 0.024

Probability x Reward Magnitude 3.28 347.50 66.12 <.001*** 0.384

Group x Probability x Reward Magnitude 3.28 347.50 3.79 .009** 0.035

Note. dfy.» indicates degrees of freedom numerator. dfp., indicates degrees of freedom
denominator. Greenhouse-Geisser correction applied where necessary. *<.05, **<.01, ***<.001

Table S2. ANOVAs split by Reward Probability: ratio of hard easy task choices.

Predictor dium deen F p 77172
Low Probability
Group  1.00 106.00 3.49 .065 0.032
Reward Magnitude  1.85 19648 16.34  <.001*** 0.134
Group x Reward Magnitude  1.85 196.48 1.46 234 0.014
Medium Probability
Group 1.00 106.00 7.19 .009#* 0.063
Reward Magnitude  1.83 193.65 113'2 <.0071%%** 0.518
Group x Reward Magnitude  1.83 193.65 1.63 201 0.015
High Probability
Group  1.00 106.00 0.27 .607 0.003
Reward Magnitude  1.98 209.88 243'2 <.001%*** 0.696
Group x Reward Magnitude  1.98 209.88 5.39 .005** 0.048

Note. dfy.» indicates degrees of freedom numerator. dfp., indicates degrees of freedom denominator.
Greenhouse-Geisser correction applied where necessary. *<.05, **<.01, ***<.001 All significant effects
remain after Bonferroni correction for multiple comparisons (i.e., p=0.0167).



Table S3: Results of the binomial generalized linear mixed-effects model assessing the main and
interaction effects of Group, Reward Probability, and the continuous measures of Reward Magnitude on
the binary outcome variable Choice (to select the hard trial).

Effect v df p
(Intercept) 131.41 1 <0.0071***
Group 2.12 1 0.145
Reward Probability 1.65 2 0.439
Reward Magnitude 38.96 1 <0.0071***
Group x Reward Probability 1.71 2 0.426
Group x Reward Magnitude 0.25 1 0.614
Reward Probability x Reward Magnitude 44.60 2 <0.0071***
Group x Reward Probability x Reward Magnitude 9.10 2 0.011*
Table S4. Full ANOVA: hard easy task choice reaction times.

Predictor dfvum ___ dfpen F p ny

Group 1.00 106.00 0.14 704 0.001

Probability  1.85 196.38 39.03 <.001*** 0.269

Reward Magnitude  1.96 208.02 35.39 <.001*** 0.250

Group x Probability 1.85 196.38 1.04 351 0.010

Group x Reward Magnitude  1.96 208.02  0.61 541 0.006

Probability x Reward Magnitude  3.49 369.82 21.23 <.001*** 0.167

Group x Probability x Reward Magnitude 349 36980 040 780 0.004

Note. dfy.» indicates degrees of freedom numerator. dfp., indicates degrees of freedom
denominator. Greenhouse-Geisser correction applied where necessary. *<.05, **<.01, ***<.001



Table S5. Full ANOVA including SHAPS as covariate: ratio of hard easy task choices.

Predictor df Num df Den F P n P2
Group 1.00 103.00 3.89 0.057 0.034

SHAPS 1.00 103.00 0.02 0.892 <0.001
Probability 1.63 167.79 2397 <.001*** 0.182
Reward Magnitude 2.00 206.00 20.33 <.001*** 0.166

Group x Probability 1.63 167.79 2.62 0.116 0.021

SHAPS x Probability 1.63 167.79 0.21 0.810 0.002

Group x Reward Magnitude 2.00 206.00 2.32 0.086 0.023
SHAPS x Reward Magnitude 2.00 206.00 0.20  0.837 0.002

Probability x Reward Magnitude 3.26 335.41 6.26 <.001*** 0.053
Group x Probability x Reward Magnitude 3.26 335.41 3.57  0.017* 0.031
SHAPS x Probability x Reward Magnitude 3.26 335.41 0.61 0.663 0.005

Note. dfyun indicates degrees of freedom numerator. dfp., indicates degrees of freedom denominator.
Greenhouse-Geisser correction applied where necessary. *<.05, **<.01, ***<.001.

Table S6. Pairwise comparisons (HC — rMDD) based on estimated marginal means, corrected for SHAPS
scores.

Reward Probability Mean Std. Error  Sig.? 95% Confidence Interval
Magnitude Difference for Difference®
Lower Upper
Bound Bound
low low 0.011 0.023 0.640 -0.035 0.056
medium 0.054 0.027 0.053 -0.001 0.108
high 0.051 0.051 0.325 -0.051 0.12
Medium low 0.081 0.037 0.031* 0.008 0.154
medium 0.135 0.057 0.019* 0.022 0.247
high 0.096 0.076 0.210 -0.055 0.246
High low 0.075 0.049 0.129 -0.022 0.172
medium 0.133 0.065 0.042%* 0.005 0.262
high -0.085 0.041 0.042%* -0.167 -0.003

Note: Based on estimated marginal means. *<.05, **<.01, ***<.001.
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Table S7. Multiple regression predicting k of the Full SV model by Group and SHAPS.

Predictor Estimate 95% CI p
Intercept 0.83 0.02-1.66 0.08*
Group [rMDD] 1.56 0.16 —2.95 0.029*
SHAPS 0.05 0.01-0.09 0.021*
Group [rMDD] * SHAPS -0.08 -0.14 —-0.02 0.012%*

Note. Observations 98; R>=0.077; R? adjusted = 0.047; *<.05, **<.01, ***<.001

Table S8. Multiple regression predicting DDM drift rate by SVM k and Group.

Predictor Estimate 95% CI p
Intercept 0.21 0.08-0.34 0.002*
k -0.23 -0.29 --0.16 <0.0071***
Group -0.42 -0.65 --0.20 <0.0071***
k * Group [tMDD)] 0.11 0.01-0.023 0.060

Note. Observations 98, R* = 0.425; R? adjusted = 0.407; *<.05, **<.01, ***< 001

Table S9. Multiple regression predicting DDM probability sensitivity effect on drift rate by SVM h and

Group.
Predictor Estimate 95% CI p
Intercept 0.69 0.63-0.75 <0.001***
h 0.04 0.02-0.07 <0.001%***
Group 0.11 0.01-0.21 0.036%*
h * Group [rMDD] -0.04 -0.07 —-0.01 0.007%*

Note. Observations 99, R*=0.121; R? adjusted = 0.093; *<.05, **<.01, ***< 001
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