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Impaired reward prediction error encoding and striatal-
midbrain connectivity in depression
Poornima Kumar 1,2, Franziska Goer1, Laura Murray1, Daniel G. Dillon1,2, Miranda L. Beltzer 1, Andrew L. Cohen1,
Nancy H. Brooks1 and Diego A. Pizzagalli1,2,3

Anhedonia (hyposensitivity to rewards) and negative bias (hypersensitivity to punishments) are core features of major depressive
disorder (MDD), which could stem from abnormal reinforcement learning. Emerging evidence highlights blunted reward learning
and reward prediction error (RPE) signaling in the striatum in MDD, although inconsistencies exist. Preclinical studies have clarified
that ventral tegmental area (VTA) neurons encode RPE and habenular neurons encode punishment prediction error (PPE), which are
then transmitted to the striatum and cortex to guide goal-directed behavior. However, few studies have probed striatal activation,
and functional connectivity between VTA-striatum and VTA-habenula during reward and punishment learning respectively, in
unmedicated MDD. To fill this gap, we acquired fMRI data from 25 unmedicated MDD and 26 healthy individuals during a monetary
instrumental learning task and utilized a computational modeling approach to characterize underlying neural correlates of RPE and
PPE. Relative to controls, MDD individuals showed impaired reward learning, blunted RPE signal in the striatum and overall reduced
VTA-striatal connectivity to feedback. Critically, striatal RPE signal was increasingly blunted with more major depressive episodes
(MDEs). No group differences emerged in PPE signals in the habenula and VTA or in connectivity between these regions. However,
PPE signals in the habenula correlated positively with number of MDEs. These results highlight impaired reward learning, disrupted
RPE signaling in the striatum (particularly among individuals with more lifetime MDEs) as well as reduced VTA-striatal connectivity
in MDD. Collectively, these findings highlight reward-related learning deficits in MDD and their underlying pathophysiology.
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INTRODUCTION
Major depressive disorder (MDD) is a complex, heterogenous
psychiatric disorder [1] and despite decades of research, its
pathophysiology remains incompletely understood. Emerging
evidence suggests that anhedonia (hyposensitivity to rewards)
and negative bias (hypersensitivity to punishments), which are
cardinal features of MDD [2, 3], might stem from disrupted
learning about rewards and punishments, respectively, and adapt
behavior accordingly. In this context, MDD could be described as a
reinforcement learning (RL) disorder characterized by blunted
reward but enhanced punishment learning. The main goal of the
current study was to test these hypotheses using functional
magnetic resonance imaging (fMRI) in conjunction with computa-
tional modeling.
Over the past decade, there has been a burgeoning interest in

applying computational algorithms to dissect RL in healthy and
psychiatric populations. Using these models, individual differences
can be captured by tracking trial-by-trial variability in learning.
Learning occurs when there is a deviation between the expected
and actual outcome, quantified as a prediction error (PE). This PE is
then used to update value estimates that support better
prediction of future rewards. Non-human primate findings have
shown that phasic firing of dopamine (DA) neurons in the ventral
tegmental area (VTA) encodes reward prediction error (RPE). These
midbrain DA RPE signals are then transmitted to the striatum and

cortex and used to update stimulus-action values and guide goal-
directed behavior [4, 5]. Consistent with this, human fMRI studies
have described RPE signals in cortico-striatal circuits including
the striatum, midbrain and prefrontal cortex [6, 7], and these
signals are altered by manipulations that affect phasic DA
signaling [8–10].
Although DA’s involvement in reward learning is strongly

supported, there is conflicting evidence for its association with
punishment learning [11]. Moreover, lateral habenula neurons
have been found to fire during an unexpected punishment or
omission of an expected reward [12]. This signal excites GABAergic
cells in the tail of the VTA known as the rostromedial tegmental
nucleus (RMTg; [13]), which then inhibits DA neurons in the VTA
[12, 14] and thereby reduces DA levels in the striatum, eventually
promoting active avoidance [15]. Similarly, habenular neurons are
inhibited by an unexpected reward or non-punishing outcome
[12], which disinhibits the VTA DA neurons [15] and increases DA
concentration in the striatum [16], reinforcing the rewarding
action. Complementing this, human studies have found punish-
ment prediction error (PPE) signals in the habenula [17–19]. The
VTA may thus be an intermediary, controlling both reward and
punishment learning through its DA and GABA neurons,
respectively. As fMRI cannot dissociate BOLD signal based on
neurotransmitters, this might explain why the VTA is activated
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during both reward [6, 7] and punishment [17] learning in human
fMRI studies.
Beyond neuromodulators, the existence of two discrete and

opponent systems involved in reward and punishment learning
has been heavily studied. A recent meta-analysis reported distinct
systems were involved in encoding RPE and PPE signals. This
included the striatum, frontal operculum, and midbrain in the
reward system [6, 7], and insula, thalamus, and habenula in the
punishment system [6].
Consistent with the hypothesis that MDD is characterized by

reward dysfunction, prior fMRI studies in MDD have highlighted
blunted RPE signals in the striatum [20–22] during learning, but
intact signals in a non-learning context, where error signals are
encoded, but potentially not used to update behaviors due to the
lack of a learning component in the task used [23]. Moreover,
several non-learning studies (especially in the emotional proces-
sing literature) have reported that MDD is associated with
increased responsivity to punishment or negative stimuli [2, 24,
25]. Very few studies have investigated this in the context of
learning in MDD. One study [26] found that MDD individuals
displayed reduced reward and punishment learning rates,
particularly with increasing anhedonia, whereas other studies
[20, 27] reported an association between depression and over-
sensitivity to punishment in geriatric MDD. More recently, MDD
has been linked to reduced associative value signals in the
habenula during punishment learning [28].
An important limitation of prior studies is that most MDD

participants showing altered RPE signals were on antidepressant
medication (except [28]), which is known to affect the neural
responses to reinforcers [22, 29]. Thus, observed PE signals could
have been partly influenced by medication. To overcome these
limitations, we examined RL in unmedicated individuals with MDD
using a well-established instrumental learning task in conjunction
with a Q-learning computational model and a region of interest
(ROI) approach. We hypothesized that, relative to controls, the
MDD group would show blunted RPE signals in the striatum and
VTA, but potentiated PPE signals in the VTA, habenula and insula.
In addition, owing to preclinical evidence and initial human data
highlighting the role of VTA-striatal and VTA-habenula connectiv-
ity during reward [30–33] and punishment learning [12, 14],
respectively, psychophysiological interaction (PPI) analyses were
implemented to probe functional connectivity among these
regions during delivery of rewards and punishments. We
specifically hypothesized that MDD individuals would exhibit
reduced VTA-striatal connectivity during reward and enhanced
VTA-habenula connectivity during punishment learning.

MATERIALS AND METHODS
Participants
Twenty-six healthy controls and 28 unmedicated individuals with
MDD recruited from the community were enrolled and screened
using the Structured Clinical Interview for the DSM-IV (SCID; [34])
and Hamilton Depression Rating Scale (HDRS; [35]). All participants
provided written informed consent. Participants were right-
handed and reported no medical or neurological illnesses, no
contraindications to MRI, no lifetime substance dependence and
no substance abuse in the past year. Detailed inclusion and
exclusion criteria are listed in the Supplement. In a separate
session, participants completed an instrumental RL task whilst in
the fMRI scanner, as well as the Beck Depression Inventory-II (BDI-
II; [36]) and the Snaith Hamilton Pleasure Scale (SHPS; [37]) to
assess depressive and anhedonic symptoms.

Instrumental RL task
After a short practice outside the scanner, participants performed
three runs of the RL task (adapted from [9]) with monetary
outcomes, each time with new pairs of stimuli (Supplement

Fig S1). During each run of 120 trials (40 gain, 40 loss, 40 neutral),
participants were presented with one of three stimulus pairs (gain,
loss or neutral), which were associated with 80%/20% probabilities
of the following: Gain ($10/Nothing), Loss (Nothing/-$10), Neutral
($0/Nothing). On each trial, stimulus pairs were presented side-by-
side (position counterbalanced across trials) and participants were
asked to choose one of the two stimuli (Supplement).

Behavioral analyses
Task performance. Participants’ choices for each trial were
averaged across the three runs, resulting in a learning curve
composed of 40 choice scores for each participant. Linear mixed-
effects models with Trials, Valence and Group as factors, tested for
group differences in reward and punishment learning.

Computational model (Q-Learning). A standard Q-learning algo-
rithm calculated the expected value of choices and PE based on
individual’s choice and feedback history [38]. Moreover, we tested
how well the RL model fitted the observed data relative to chance
(Supplement).

Functional imaging and analyses
For details on neuroimaging acquisition, processing and general
linear model design, see Supplemental Methods. For each
participant, the linear coefficient of RPE and PPE regressors were
compared to 0 and the resulting contrast images were taken to
conduct within-group t-tests. A whole-brain one-sample t-test and
exploratory Group x Valence flexible factorial ANOVA were also run
to explore brain regions showing Group and Valence effects.

ROI analyses. A staged ROI selection was implemented. Specifi-
cally, priority was given to clusters emerging from meta-analyses
probing PE; for small regions hypothesized to be implicated in PE
(VTA, habenula), clusters based on manual identification were
used to avoid potential biases. Finally, for larger and functionally
heterogenous regions (e.g., insula), a sphere was drawn around
the coordinates emerging from prior studies using the same
paradigm as used here. Based on these considerations, anatomi-
cally constrained bilateral striatum were extracted from a recent
meta-analysis of RPE studies in healthy controls [7]. As prior
studies have reported PPE signals in the right insula [9] and
habenula [17–19], a right insula mask was created by drawing a
sphere with 10 mm diameter around the peak voxel (40, 28, −6)
reported in a prior study using a similar task [9]. The habenula ROI
was created for each subject by manually identifying the left and
right habenula based on the anatomical landmarks described by
[19, 39]. As the VTA is involved in both reward and punishment
learning, we included a probabilistic mask created by manual
tracing for a prior study [40]. ROI placement is shown in Fig S2 and
additional information on ROIs creation can be found in the
Supplement. Parameter estimates of RPE and PPE contrasts were
extracted from these ROIs and repeated measures ANOVAs were
run in SPSS. In total, five ROIs were investigated; to protect again
false positive results, a Bonferroni correction (p= 0.05/5= 0.01)
was used. A positive RPE beta identifies a brain region with higher
activation for unexpected reward and lower activation for
unexpected omission of rewards during gain condition (trials);
conversely, a positive PPE beta identifies a brain region with
higher activation for unexpected punishment and lower activation
for unexpected omission of punishment during loss condition
(trials).

PPI connectivity. Since animal studies have highlighted VTA-
striatum and VTA-habenula pathways during reward and punish-
ment learning, respectively, generalized PPI [41] was conducted
using the VTA as the seed region. Using an ROI approach,
parameter estimates (i.e., mean connectivity values) from the
habenula and right striatum (see findings) were extracted for each
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condition (for completeness, the right insula and left striatum
were also included). Group × Valence ANOVAs were run for each
ROI.

RESULTS
Compared to controls, MDD individuals reported higher BDI-II,
HDRS, and SHPS scores (Table 1). Groups did not differ in age,
gender, socioeconomic status, ethnicity, and years of education.

Task performance
Participants who selected less than 50% of correct stimuli
(averaged across 3 runs) were excluded, as this might reflect task
non-compliance. Based on this criterion, three MDD participants
were excluded, leaving 26 controls and 25 MDD individuals for the
analyses. A mixed-effects linear regression of choices (correct/

incorrect) over trials revealed a Group × Valence interaction (b=
−0.057, p= 0.022), driven by group differences during reward (b
=−0.002, p= 0.002) but not punishment learning (b=−0.0003,
p= 0.60). Specifically, relative to controls, the MDD group was
characterized by reduced learning from rewards (i.e., fewer
choices of the stimulus indicating a high probability of monetary
gain), but no impairment in avoiding the stimulus associated with
a high probability of monetary punishment (Fig. 1). Overall choice
accuracy is listed in Table 2.

Computational model
Quantification of model fits during reward and punishment
conditions indicated a good fit, with no differences between
groups (Table S1).
For the fMRI analyses, a fixed alpha was chosen, and a learning

model was fitted with a single set of parameters [42]. Specifically,
we used averaged estimates of alpha calculated across all subjects
during reward (alpha: 0.3) and punishment conditions (alpha: 0.4)
separately. However, several control analyses were conducted to
test potential confounds resulting from differences in learning
rates (see Supplementary Section Influence of Learning Rates on
Model-Based fMRI).

Whole-brain analyses
Replicating prior reports [6, 7], controls exhibited RPE signals in
the right putamen/NAc, insula, visual cortex. Among the MDD
group, whole-brain analyses revealed RPE signals only in the insula
and visual cortex. In contrasts, both controls and MDD exhibited
PPE signals in the insula, midcingulate, habenula/thalamus, and
midbrain. However, a whole-brain flexible factorial ANOVA did not
reveal any main effects of Group, Valence or Group × Valence
interaction (Figs S3A and S3B; Figs S4A and S4B; Tables S2A and
S2B). All clusters were p < 0.05 FWE cluster-corrected.

ROI analyses
Two ANOVAs for RPE and PPE ROIs were run individually.

Striatal ROI. A significant 3-way Group × Valence × Hemisphere
(Left and Right striatum) interaction emerged [F(1,49)= 12.46, p=
0.001, η2p= 0.20). Follow-up analyses revealed a Group × Valence
interaction for the right [F(1,49)= 4.52, p= 0.04, η2p= 0.08], but
not left [F(1,49)= 0.76, p= 0.39, η2p= 0.02] striatum (Fig. 2a,b). To

Table 1. Demographics of participants in the final sample. Mean with
standard deviations are reported

Controls MDD p value

Sample size 26 25 N/A

Age 26.31 ± 7.96 25.25 ± 5.46 >0.5

Gender 19f, 7m 19f, 6m >0.5

Caucasian 17 (65.4%) 16 (64%) >0.5

Years of education 15.44 ± 1.80 15.80 ± 2.31 >0.5

BDI 0.44 ± 0.71 26.26 ± 9.21 <0.001

SHAPS (Anhedonia) 18.6 ± 4.49 33.40 ± 4.22 <0.001

HDRS 0.42 ± 0.94 17.27 ± 3.99 <0.001

Number of lifetime MDEs N/A 3.72 ± 3.06 N/A

Age of initial onset N/A 17.63 ± 5.34 N/A

Length of current episode (in
months)

N/A 11.52 ±
15.41

N/A

Note: BDI-II: Beck Depression Inventory-II [36], SHAPS: Snaith Hamilton
Pleasure Scale [37]; HDRS: Hamilton Depression Rating Scale (17-items;
[35]). Missing data: 2 controls for race, 1 control for BDI and Anhedonia; 3
MDD for length of current episode and HDRS; 1 MDD for age of initial
onset; 7 MDD for number of episodes.

Fig. 1 Behavioral results: Observed behavioral choices for reward [green—healthy controls; Red—MDD] and punishments [orange—healthy
controls; purple—MDD] in controls vs. MDD. The learning curves depict, trial-by-trial, averaged proportion of “correct” stimulus (associated
with a probability of 0.8 of winning money) in the gain condition (upper graph), and the “incorrect” stimulus (associated with a probability of
0.8 of losing money) in the loss condition (lower graph) chosen by participants. Error bars represent standard error.
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formally test for laterality effects, we conducted a Group ×
Hemisphere ANOVA for each Valence separately; for RPE, there
was a significant Group × Hemisphere interaction [F(1,49)= 14.91,
p < 0.001], whereas the interaction was not significant for PPE [F
(1,49)= 1.3, p= 0.26]. Post-hoc analyses further revealed that the
right striatum finding was driven by blunted RPE [t(49)= 2.77, p=
0.008, ds= 0.77], but similar PPE signaling [t(49)=−0.84, p= 0.40,
ds= 0.24] in the MDD group, relative to controls. In addition,
similar RPE [t(49)=−1.20, p= 0.24, ds= 0.33] and PPE signaling [t
(49)= 0.12, p= 0.9, ds= 0.03] were observed in the left striatum
across both groups. The group difference in the right striatum
survived after applying correction for multiple comparisons
(Bonferroni correction p= 0.01).

Habenula, VTA and insula ROIs. A Group × Valence × ROI (Habe-
nula, VTA, Insula) ANOVA revealed a significant main effect of
Valence [F(1,49)= 12.52, p= 0.001, η2p= 0.20], a main effect of
ROI [F(1,49)= 5.21, p= 0.007, η2p= 0.096] and a Valence × ROI
interaction [F(1,49)= 5.15, p= 0.007, η2p= 0.095), but these
effects did not interact with Group. Follow-up tests showed larger
PPE than RPE in the habenula [t(50)=−3.27, p= 0.002; Fig. 2c]
and a trend in the VTA [t(50)=−1.69, p= 0.09; Fig. 2e] across
participants, but no difference in the insula [t(50)=−1.39, p=
0.17; Fig. 2d].

Correlation with clinical variables
Unlike prior studies [21, 22, 26], RPE signal in the right striatum did
not correlate with anhedonia scores within the MDD group.
However, right striatal RPE correlated with depressive symptoms
as measured by BDI (r=−0.43; p= 0.032; Fig S5).
In addition, number of major depressive episodes (MDEs)

(controlled for length of current episode; n= 18) correlated
negatively with RPE signals in the right striatum (r=−0.59, p=
0.010; Fig. 3a), but positively with PPE signals in the habenula (r=
0.56 p= 0.015; Fig. 3b). That is, an increasing number of MDE was
associated with more blunted reward signals in the right striatum
but enhanced punishment signals in the habenula. These
associations survived even after controlling for both length of
current episode and current depression severity (BDI scores) [right
striatum: r=−0.60; p= 0.011 and habenula: r= 0.56; p= 0.018],
highlighting an effect of disease burden. These correlations were
also confirmed when considering number of episodes (without
any covariates) and right striatal RPE (r=−0.54, p= 0.020) and
habenula PPE (r= 0.56, p= 0.016) (see Fig S6 for scatterplots with
raw scores). However, they did not survive a Bonferroni correction
for the ten correlations that were performed [p= 0.05/10= 0.005;
(age of onset and numbers of MDEs) × (right and left striatum,
habenula and VTA)+ (anhedonia and BDI) × right striatum; n=
10].

PPI connectivity
A Group × Valence ANOVA of VTA-right striatum connectivity
revealed main effects of Valence [F(1,49)= 4.74, p= 0.034, η2p=
0.09] and Group [F(1,49)= 5.34, p= 0.025, η2p= 0.10; Fig. 4a].
Overall, participants had a greater VTA-right striatum connectivity
during gain vs. loss trials and MDD individuals had an overall
reduction in VTA-right striatum connectivity when compared to

controls. Moreover, exploratory analyses revealed RPE in the VTA
correlated positively with RPE in the right striatum across both
groups [r= 0.36, p= 0.009], mainly driven by controls [r= 0.57, p
= 0.002] and not MDD [r= 0.29, p= 0.15], but these correlations
did not significantly differ [z=−1.14, p= 0.3; Fig S7]. The VTA-left
striatum, VTA-habenula, and VTA-Insula (Fig. 4b–d) connectivity
were not different between groups or valence.

DISCUSSION
Using a monetary instrumental learning task, we investigated
neural mechanisms underlying reward and punishment learning
in psychiatrically healthy and unmedicated MDD individuals. Two
central findings emerged. First, relative to controls, MDD
participants were characterized by reduced learning from
monetary rewards, but no impairment in avoiding the stimulus
associated with a high probability of monetary punishments.
Neurally, the MDD group showed blunted RPE signaling in the
right (but not left) striatum as well as overall impaired connectivity
between the VTA and right striatum during feedback. Highlighting
the specificity of these findings, groups did not differ in regions
encoding PPE signals. Second, within the MDD group, number of
MDEs was associated with weaker RPE in the right striatum, and
enhanced PPE in the habenula. Collectively, these findings
highlight behavioral and neural evidence of disrupted incentive
learning in unmedicated MDD, with abnormalities increasingly
pronounced with disease burden.
DA neurons in the VTA have been hypothesized to generate

RPE signals that are then transmitted to the striatum and cortex
for value computations and action selection. Few studies have
investigated the VTA-striatal pathway during learning in humans
[30, 32, 33]. Using PPI, we found stronger functional connectivity
between the VTA and right striatum during gain vs. loss trials
across both groups. MDD individuals exhibited overall reduced
connectivity between these regions during feedback. In addition,
RPE signals in the right striatum positively correlated with RPE
signals in the VTA, but significantly only among controls.
Collectively, these results highlight that, in contrast to controls,
the MDD group failed to show robust functional connectivity
between these regions during reward learning. This raises the
possibility that, in MDD, RPE signals are not appropriately
transmitted to the striatum due to reduced connectivity between
these two regions, thereby causing reduced downstream RPE
signaling and impaired reward learning. Supporting this inter-
pretation, a recent study reported reduced functional connectivity
between the VTA, striatum and prefrontal cortex in MDD
individuals unresponsive to repetitive transcranial magnetic
stimulation of the dorsal medial prefrontal cortex; these indivi-
duals also exhibited higher baseline anhedonia when compared
to responders [31]. More recently, Rutledge and colleagues
observed intact striatal RPE signals in the MDD group during a
non-learning task, suggesting that the computation of a DA RPE
signal is intact in MDD [23]. These authors interpreted prior
observations of blunted striatal RPE during learning tasks to be
due to a downstream DA signaling deficit, rather than a
fundamental failure of the DAergic encoding of RPEs. This is
critical for the interpretation of our findings, as only in controls,

Table 2. Summary of task performance (choice accuracy as a function of trial type) in the healthy control (N= 26) and MDD (N= 25) groups. Mean
with standard deviations are reported.

Variable Reward Punishment Neutral

Controls MDD Controls MDD Controls MDD

Choice accuracy (%) 87.82 ± 12.51 80.37 ± 19.18 83.11 ± 10.11 83.70 ± 8.46 49.39 ± 20.68 54.20 ± 18.53

Number correct (%) 71.06 ± 7.75 66.73 ± 12.07 67.31 ± 6.61 68.23 ± 5.01 49.84 ± 11.71 52.57 ± 10.43
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the VTA RPE correlated with striatal RPE. However, the weakened
VTA-striatal connectivity in the MDD group points to a down-
stream DA signaling deficit, that then leads to impaired reward
learning [23].
Consistent with prior studies in healthy controls [17–19], we

observed PPE signals in a habenula/thalamus cluster in both
groups. The extensive influence of habenula neurons on the
dopaminergic pathway highlights this region’s critical role in
processing motivationally salient stimuli [15]. Both hyperactive
and hypoactive habenular activation during punishment proces-
sing have been reported in depressive behaviors. For instance,
prior animal studies have reported elevated habenula metabolism
[43] and enhanced excitatory inputs to VTA-projecting habenula
neurons during learned helplessness [44], with the former

reversed following antidepressant treatment [45]. In contrast,
Lawson and colleagues [28] reported that unmedicated MDD
subjects exhibited reduced negative task-related (phasic) habe-
nula responses only during primary aversive conditioning, but not
during monetary loss. In our study, we found no group differences
in habenula activation or VTA-habenula connectivity during either
gain or loss conditions. However, PPE signals in the habenula
correlated positively with number of depressive episodes,
suggesting that punishment-related habenula activation increases
with disease burden, in partial support of habenula hyperactivity
during punishment processing reported in prior literature in MDD
individuals [46, 47].
In addition to the VTA and habenula, PPE signals were observed

in the midcingulate, midbrain (periaqueductal gray), insula and

Fig. 2 ROI results: Parameter estimates reflecting reward and punishment prediction errors extracted from the right (a) and left (b) striatum,
habenula (c), right insula (d) and ventral tegmental area (VTA) (e) in healthy controls and MDD. Error bars represent standard error. *p < 0.05
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Fig. 3 Correlation between number of depressive episodes, and (a) reward prediction error in the right striatum and (b) punishment
prediction error in the habenula, in the MDD group. [Note: To evaluate the effect of number of MDEs on PE without potential confounds, these
analyses were conducted while adjusting for length of current episode. Unstandardized residuals are shown in the figure; correlation
plots with raw scores (with no covariates) are shown in the Supplementary Fig S6]. These correlations were significant even after controlling
for both length of current episode and current depression severity (BDI scores) [right striatum: r=−0.60; p= 0.011 and habenula: r= 0.56;
p= 0.018]. Information about number of episodes was missing for seven MDD individuals, so the sample size for this correlational analysis was
N= 18. PE - prediction error.

Fig. 4 VTA-Right Striatum (a), VTA-Left Striatum (b), VTA-Habenula (c), and VTA-Right Insula (d) connectivity values in healthy controls and
MDD. Error bars represent standard error. §p < 0.1
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thalamus across both groups, consistent with other studies [6, 48].
Contrary to our hypotheses, we observed both RPE and PPE
signals in the insula. Even though the insula is consistently
activated during aversive conditioning with different types of
stimuli (e.g., shock, monetary loss, social rejection), it also emerges
during encoding of RPE [49, 50], suggesting that the insula might
encode a salience PE [51, 52].
There are four limitations that warrant mention. First, even

though we replicated prior finding of blunted RPE signal in the
striatum, this was specific to the right striatum; these laterality
effects warrant independent confirmations, because they were not
hypothesized a priori. Second, although the sample size was
comparable or larger than prior studies in this area [21–23],
replication with bigger samples will be important. Third, our
correlational findings, although interesting, did not survive
Bonferroni correction for multiple comparisons, hence, these
results await replications. Lastly, despite careful quality control
checks during registration, results from the habenula ROI should
be interpreted with caution, as fMRI resolution is limited for small
structures.
In summary, we found that MDD individuals were characterized

by reduced VTA-striatum connectivity during feedback and
blunted downstream RPE signaling in the striatum, and overall
impaired reward learning. Highlighting the specificity of these
findings, the groups did not differ in punishment learning and
individuals with MDD encoded PPE signals in the insula, VTA,
midcingulate and habenula as well as the controls did. However,
number of depressive episodes modulated RPE and PPE signals,
suggesting the importance of disease burden on learning.
Collectively, these findings highlight important reward-related
learning deficits in MDD and their underlying pathophysiology.
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