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a b s t r a c t 

The development of scanners with ultra-high gradient strength, spearheaded by the Human Connectome Project, 
has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo dif- 
fusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the 
inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be 
acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings 
because of the constraints imposed by hardware and scanning time. In this study, we first update the classical 
protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much 
greater volume and variability of the streamlines that can be produced from today’s state-of-the-art diffusion MRI 
data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. 
Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic 
tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction 
of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this 
work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated ver- 
sion of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained 
on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present 
the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to 
automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to 
benefit studies that use more modest acquisition protocols. 
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. Introduction 

Diffusion MRI (dMRI) tractography allows us to investigate the con-
ectional anatomy of the human brain in vivo and non-invasively. One of
ts applications is the delineation of white-matter (WM) bundles that are
nown from the anatomical literature, with the goal of studying their
acro- and micro-structural properties in both healthy and clinical pop-
lations. 
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Different methods have been proposed for extracting these bundles
rom whole-brain tractograms. The majority of these methods follow the
ulti-region of interest (multi-ROI) approach. Multi-ROI methods can

e manual or automated. In the former case, ROIs are hand-drawn in
ndividual dMRI space by an operator ( Catani and Thiebaut de Schot-
en 2008 ; Wakana et al., 2007 ; Thiebaut de Schotten et al. 2011 ). For
ach WM bundle of interest, a set of a priori rules define which ROIs the
undle does or does not go through. The rules are applied to tractog-
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aphy streamlines obtained from each individual’s dMRI data, and the
OIs are refined manually to obtain bundles that match the anatomi-
al literature as closely as possible. This manual procedure is tailored
o each individual subject, and therefore has the potential to achieve
igh anatomical accuracy, to the extent that the initial streamlines ob-
ained from the subject’s dMRI data are accurate. However, it is time-
ntensive and requires extensive prior anatomical knowledge on the
art of the operator, limiting reproducibility and applicability to large
atasets ( Rheault et al., 2020 ; Schilling et al., 2021 ). Automated multi-
OI methods follow a similar approach, but derive the ROIs either from
tlases ( Clayden et al., 2009 ; Yeatman et al. 2012 ; de Groot et al., 2013 ;
hang et al., 2008 ) or from automated, subject-specific, anatomical seg-
entations ( Wassermann et al., 2013 ). This is faster than the manual ap-
roach and not operator-dependent. However, methods that rely on ac-
urate registration of each individual to an atlas may be sensitive to indi-
idual anatomical variability. Importantly, both manual and automated
ulti-ROI methods are applied to tractography streamlines as a post-
rocessing step. As a result, their accuracy is intrinsically limited by the
uality of those streamlines, and therefore by the quality of the individ-
al dMRI data. An alternative family of bundle segmentation methods
elies on clustering algorithms, which group whole-brain tractography
treamlines into clusters based on their similarity ( O’Donnell et al. 2007 ;
isser et al., 2011 ; Garyfallidis et al., 2012 ; Ros et al., 2013 ; Siless et al.,
018 ). Each cluster of streamlines can then be labeled as a specific WM
undle, either based on its similarity to manually labeled bundles, or
ased on multi-ROI rules ( Wasserman et al. 2010 ; Guevara et al., 2012 ;
aryfallidis et al., 2018 ; Zhang et al., 2018 ). 

All of the above methods perform post hoc classification of tractogra-
hy streamlines. If a subject’s tractogram does not contain any stream-
ines from a certain WM bundle, these methods will not be able to re-
over this bundle. Previous studies have shown that the precision and
eliability of tractography are largely influenced by image quality and
ence by the acquisition protocol ( Jbabdi and Johansen-Berg, 2011 ;
os et al., 2012 ; Calabrese et al., 2014 ; Maffei et al., 2019 ). The techni-
al advances spearheaded by the Human Connectome Project (HCP) led
o MRI systems with ultra-high gradient strength, which can achieve
igh diffusion weighting (b-value) without loss of signal-to-noise ra-
io, as well as accelerated MRI sequences that enable high angular
nd spatial resolution ( Setsompop et al., 2013 ). At the ultra-high b-
alues that are feasible on these systems, the dMRI signal represents
ainly intra-axonal (restricted) diffusion, as the contribution of extra-

xonal (hindered) diffusion is suppressed ( Huang et al., 2020 ). This re-
ults in reduced uncertainty for probabilistic estimates of fiber orien-
ations ( Setsompop et al., 2013 ) and sharper profiles for deterministic
stimates of fiber orientation distribution functions ( Fan et al., 2016 ).
hus, higher b-values are expected to benefit tractography due to im-
roved resolution of fiber crossings. However, dMRI data acquired in
linical settings typically have much lower quality, due to MRI hard-
are limitations and scan time constraints. This limits the accuracy
f tractography, especially in bundles that are challenging because
f their anatomical location, size or shape ( e.g., Chamberland et al.,
018 ). The multi-ROI methods described above cannot address this.
ven if the ROIs are defined on an atlas obtained from high-quality
ata, they cannot improve the reconstruction of WM bundles in individ-
al data collected with poorer signal-to-noise ratio, spatial or angular
esolution. 

In this study we demonstrate how WM bundles labeled manually in
igh-quality data can be used to ensure accurate, automated reconstruc-
ion of the same bundles in routine-quality data. First, we describe a
rotocol for the manual dissection of 42 WM bundles from high-quality,
igh-b data collected on a Connectom scanner by the HCP. These data
llow us to generate a much more detailed and accurate definition of
he major bundles of the human brain than what would be possible
rom routine-quality data. Therefore, our virtual dissection protocols are
ore detailed than previously proposed ones ( Wakana et al., 2007 ), to
andle the much greater volume and variability of the streamlines pro-
2 
uced by today’s state-of-the-art data acquisition, orientation modeling,
nd tractography methods. 

Second, we use these manually dissected WM bundles as a new train-
ng dataset for TRACULA (TRActs Constrained by UnderLying Anatomy)
 Yendiki et al., 2011 ). In contrast to multi-ROI or clustering-based meth-
ds for bundle reconstruction, TRACULA does not operate on tractogra-
hy streamlines as a post-processing step. Instead, it incorporates prior
nformation on WM anatomy in the tractography step itself. This is done
ia a Bayesian framework for global tractography that incorporates prior
robabilities on the anatomical neighborhood of WM bundles. Here we
emonstrate that, when these prior probabilities are computed from
igh-quality training data, TRACULA can reconstruct the same bundles
n routine-quality data with high anatomical accuracy. Specifically, we
rain TRACULA on bundles labeled manually from HCP data with a max-
mum b-value of 10 , 000 𝑠 ∕ 𝑚 𝑚 

2 , and use it to reconstruct the same 42
undles from data acquired with a b-value of 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 . We compare
hese reconstructions to those obtained by an automated multi-ROI ap-
roach. We show that TRACULA achieves overall higher accuracy and
eliability. 

The contribution of this work is twofold: (i) an updated set of pro-
ocols for manual dissection of 42 WM bundles that are appropriate
or tractograms obtained from state-of-the-art Connectom data and (ii)
 demonstration of automated tractography that can achieve a form
f “quality transfer ” ( Alexander et al., 2017 ) from Connectom data to
ore routine-quality data. Both the manually labeled tracts, and the

efactored version of TRACULA that uses them as training data, are
ncluded in FreeSurfer 7.2 ( https://github.com/freesurfer/freesurfer/
ree/fs-7.2 ). Extensive documentation and tutorials are available on the
reeSurfer wiki ( https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula ).
isualizations of the 42 manually annotated WM bundles, as well as
long-tract profiles of microstructural measures on these bundles, are
vailable at: https://dmri.mgh.harvard.edu/tract-atlas/ . 

. Methods 

.1. Overview 

We used state-of-the-art tractography techniques on the b max =10 , 000
 ∕ 𝑚 𝑚 

2 HCP data to produce high-quality, whole-brain tractograms. We
pplied a manual, multi-ROI approach to delineate a set of 42 WM bun-
les from these tractograms. We then used the manually annotations
o inform two methods (TRACULA and multi-ROI) for reconstructing
he same bundles automatically from the b = 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 data of the
ame subjects. We quantified the accuracy of each method by comput-
ng the distance of the bundles that were reconstructed automatically on
he b = 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 data from those that were annotated manually on
he b max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 data of the same subject. We also assessed the
est-retest reliability of along-tract microstructural measures obtained
rom the automatically reconstructed bundles, either with TRACULA or
ith the multi-ROI method. Finally, we used this updated version of
RACULA to study associations between WM microstructure and psy-
hopathology in a larger, independent dataset. 

.2. Data 

The manual annotation used diffusion and structural MRI data
f 16 healthy adult subjects from the MGH-USC HCP, which are
ublicly available through the Laboratory of Neuroimaging Image
ata Archive ( https://ida.loni.usc.edu ) and the WU-Minn Connectome
atabase ( https://db.humanconnectome.org ). The dMRI data included

our shells (64 directions at b-value = 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 ; 64 directions at b-
alue = 3 , 000 𝑠 ∕ 𝑚 𝑚 

2 ; 128 directions at b-value = 5 , 000 𝑠 ∕ 𝑚𝑚 

2 ; 256 direc-
ions at b-value = 10 , 000 𝑠 ∕ 𝑚𝑚 

2 ) for a total of 512 diffusion-weighted
DW) volumes and 40 non-DW volumes ( b = 0) with 1 . 5 𝑚𝑚 isotropic
patial resolution ( Fan et al., 2016 ). The structural (T1-weighted) data

https://github.com/freesurfer/freesurfer/tree/fs-7.2
https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
https://dmri.mgh.harvard.edu/tract-atlas/
https://ida.loni.usc.edu
https://db.humanconnectome.org
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ere acquired with a multi-echo magnetization-prepared rapid acquisi-
ion gradient echo (MEMPRAGE) sequence at 1 𝑚𝑚 isotropic resolution.

.3. Image analysis 

.3.1. Structural mri 

Cortical parcellations and subcortical segmentations were obtained
or each subject using FreeSurfer ( Dale et al., 1999 ; Fischl et al., 1999 ;
ischl et al., 2002 ; Fischl et al., 2004 ). Segmentations of the thalamic
uclei and hypothalamic subunits were also obtained for each subject
 Iglesias et al., 2015, 2018 ). 

.3.2. Diffusion MRI 

Diffusion data were denoised ( Veraart et al., 2016 ) and corrected for
radient nonlinearity distortions (( Glasser et al., 2013; Jovicich et al.,
006 ). Data were then corrected for head motion and eddy-current arti-
acts using eddy in FSL 6.0.3 ( Andersson et al., 2016 a, Andersson et al.,
016 ). For each subject, we obtained whole-brain probabilistic trac-
ograms using two methods: constrained spherical deconvolution (CSD)
 Tax et al., 2014 ) on the 𝑏 = 10 , 000 𝑠 ∕ 𝑚 𝑚 

2 shell only (step-size: 0 . 5 𝑚𝑚 ,
ngle-threshold: 30 ◦, 10 seeds/voxel in white matter mask) in DIPY
 Garyfallidis et al., 2014 ) and multi-shell multi-tissue CSD (MSMT-
SD) ( Jeurissen et al., 2014 ) on all four shells (step-size: 0 . 75 𝑚𝑚 ,
ngle-threshold: 45 ◦, 50 seeds/voxel in white matter mask) in MRtrix3
 Tournier et al., 2012 ). We used partial volume masks of WM, gray
atter (GM), and cerebrospinal fluid (CSF) to constrain the tractogra-
hy results ( e.g. , ensure that streamlines terminate at the GM-WM in-
erface) ( Smith et al., 2012 ). We chose these two streamline tractogra-
hy approaches empirically, after testing several state-of-the-art, pub-
icly available methods, as they yielded sharp orientation distribution
unctions in fiber-crossing regions and in regions with partial voluming,
espectively. 

.4. Manual labeling in high-quality data 

We dissected 42 WM pathways manually in Trackvis (v.0.6.1;
ttp://www.trackvis.org ). For each tract, we defined a combination of
nclusion and exclusion ROIs in the space of each individual subject. We
erived protocols for the placement of these ROIs based on the anatom-
cal literature, as detailed in the following sections. Streamlines from an
ndividual’s whole-brain tractogram (described in the previous section)
ere retained if they passed through all inclusion ROIs and discarded if

hey passed through any of the exclusion ROIs defined for a specific
undle. Any FreeSurfer cortical ROIs that were used for the manual
issection came from the Desikan-Killiany parcellation ( Desikan et al.,
006 ) and were grown 5 𝑚𝑚 into the WM, along the normal vector of
he cortical surface. The FreeSurfer corpus callosum (CC) ROIs, wher-
ver used, came from the subcortical segmentation and covered only
he section of the CC between the two hemispheres, along the midline.
ll projection and association pathways were dissected in the left and
ight hemisphere, denoted in the following as LH and RH, respectively.
ach pathway was labeled by a single rater and then checked by CM for
orrectness and consistency with neighboring pathways. 

.4.1. Commissural pathways 

The manual labeling protocol for these pathways is illustrated in
ig. 1 . 

The Anterior Commissure (AC). The AC was defined as a fiber bundle
unning transversely between the anterior part of the bilateral temporal
obes and situated below the fornix medially and the uncinate fascicle
aterally ( Schmahmann and Pandya 2006 ). We used color-coded frac-
ional anisotropy (FA) maps to draw a first inclusion ROI around the
eft-right oriented region in front of the anterior columns of the fornix
sagittal view). Although it has been suggested that the AC also includes
osterior projections to the occipital lobe ( Turner et al., 1979 ), we de-
ided to include only the anterior limb of the AC terminating in the WM
3 
f the temporal poles, as this is what is most commonly referred to as
he AC ( Catani and Mesulam 2008 ; Lawes et al. 2008 ). Two more inclu-
ion ROIs were thus drawn to encompass the WM of the temporal pole
n each hemisphere. A coronal ROI was used to exclude the posterior
rojections, and two sagittal ROIs were used to exclude the most lateral
bers of the AC adjacent to the external capsule. 

The Corpus Callosum (CC). 
Genu: The FreeSurfer segmentation label of the mid-anterior CC was

sed to select the streamlines of the genu. A second and third ROI in-
luding medial and lateral regions of the frontal lobe were used to in-
lude only frontal projections in both hemispheres and discard spurious
treamlines. 

Rostrum: The FreeSurfer segmentation label of the anterior CC was
sed to select the streamlines of the rostrum. A second and third ROI
ere used to include only streamlines terminating in the orbital regions
f the frontal cortex in each hemisphere. 

Splenium: The splenium was defined as connecting parietal and oc-
ipital cortices. Streamlines projecting to the temporal lobe were not
ncluded. The FreeSurfer regions of the posterior and mid-posterior CC
ere used to select the streamlines of the splenium. A second and third
OI encompassing the occipital and parietal WM were used to include
nly the streamlines projecting posteriorly in each hemisphere. 

Body : The inclusion ROIs of the genu, rostrum, and splenium in the
rontal and occipital WM were used as exclusion ROIs, to isolate the
ody of the CC from all other streamlines crossing the FreeSurfer mid-
ine CC labels. Given the topographic organization of the CC, we further
ubdivided the body into 5 sections, based on the cortical terminations
f the streamlines. The temporal section (BODY-T) included termina-
ions in the FreeSurfer regions: superior temporal, middle temporal, in-
erior temporal, transverse temporal, and banks of the superior tempo-
al sulcus. The parietal section (BODY-P) included terminations in re-
ions: superior parietal, supramarginal, and precuneus. The central sec-
ion (BODY-C) included terminations in regions: precentral, postcentral,
nd paracentral. Subdividing the remaining (prefrontal and premotor)
erminations of the body required subdividing the superior frontal par-
ellation label, which is large and spans both of those termination ar-
as. We used a boundary from a previously proposed, publicly available
arcellation scheme, which translated anatomical definitions of cytoar-
hitectonic regions of the frontal cortex from Petrides et al., 2012 to
he fsaverage cortical surface ( Tang et al., 2019 ). We mapped that par-
ellation from the fsaverage surface to the individual surface of each
raining subject using the inverse of the FreeSurfer spherical morph. We
sed the boundary that separated areas 6, 8, and 44 from areas 9, 46,
nd 45 in that parcellation to subdivide the individual superior frontal
abel from FreeSurfer into a caudal and a rostral parcel. We then defined
 premotor section of the body of the CC (BODY-PM) that included ter-
inations in the caudal subdivision of the superior frontal label or in the

reeSurfer caudal middle frontal label. Finally, we defined a prefrontal
ection of the body of the CC (BODY-PF) that included terminations in
he rostral subdivision of the superior frontal label or in the FreeSurfer
ostral middle frontal label. 

The Fornix (FX). The FX was defined as streamlines surrounding the
halamus, directly adjacent to the medial half of its superior and poste-
ior surfaces ( Pascalau et al., 2018 ) and connecting the hippocampal for-
ation (specifically CA1, CA3, and fimbria) with the anterior thalamic
uclei, the mammillary bodies, the medial septal nucleus, and the basal
orebrain ( Poletti and Creswell 1977 ; Christiansen et al., 2017 ). A first
nclusion ROI was placed on the coronal plane, inferior to the body of the
C, to outline the fornix body. A second inclusion ROI was then placed

nferior and lateral to the hippocampus, where the fornix terminates.
he subnuclei of the hippocampus (CA1, CA3, fimbria) ( Iglesias et al.,
015 ) were used to confirm the correct terminations of the fornix. The
ract was refined by placing two more inclusion ROIs anterior to the
plenium of CC on a coronal slice to encompass each respective crus of
he fornix. One exclusion ROI was then placed posterior to the crus to
iscard spurious streamlines. 

http://www.trackvis.org
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Fig. 1. Manual labeling: commissural path- 
ways. The figure shows the manual labeling 
protocols for the commissural pathways in 
one representative subject. Inclusion ROIs are 
shown in blue, exclusion ROIs in orange. Tracts 
are shown on color-coded FA maps. CC: Cor- 
pus callosum. It is subdivided into the rostrum, 
genu, splenium, and body. The body is further 
subdivided into prefrontal (BODY-PF), premo- 
tor (BODY-PM), central (BODY-C), temporal 
(BODY-T), and parietal (BODY-P) components. 
MCP: middle cerebellar peduncle. FX: fornix. 
AC: anterior commissure. 
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.4.2. Projection pathways 

The manual labeling protocol for these pathways is illustrated in
ig. 2 . 

The Acoustic Radiation (AR). The AR was defined as fibers originat-
ng in posterior thalamus, where the medial geniculate nucleus (MGN)
s located, and terminating on the transverse temporal gyrus of Hes-
hl (HG) in the posterior portion of the superior temporal gyrus (STG)
 Bürgel et al., 2006 ; Rademacher et al., 2002 ; Maffei et al., 2018 ).
he FreeSurfer segmentation label of the entire thalamus was used
s a first inclusion ROI, and a second inclusion ROI was manually
rawn to encompass the GM and WM of the HG as previously described
 Maffei et al., 2019 ). 

The Anterior Thalamic Radiation (ATR). The ATR was defined as
bers originating in the anterior and medial thalamus, passing through
4 
he anterior limb of the internal capsule (ALIC), and connecting to the
refrontal cortex ( Wakana et al., 2007 ). The Freesurfer segmentation
abel of the entire thalamus was used as the first inclusion ROI. A second
nclusion ROI was drawn on a coronal slice to encompass the prefrontal

M of the superior and middle frontal gyrus. A third inclusion ROI was
rawn on the ALIC on a coronal slice. An exclusion ROI was placed
n the midline (sagittal plane) to remove streamlines crossing to the
ontralateral hemisphere through the CC. 

The Cortico-Spinal Tract (CST). The CST was defined as streamlines
assing through the midbrain, the medulla oblongata, and the internal
apsule (first, second, third inclusion ROI, respectively). We retained
ts terminations in the precentral and postcentral gyri, as well as the
osterior third of the superior frontal gyrus, corresponding to the sup-
lementary motor area (SMA) ( Chenot et al., 2019 ). Two coronal exclu-
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Fig. 2. Manual labeling: projection pathways. The figure shows the manual labeling protocols for the projection pathways in one representative subject. Inclusion 
ROIs are shown in blue, exclusion ROIs in orange. Tracts are shown on color-coded FA maps. OR: optic radiation. ATR: anterior thalamic radiation. CST: cortico-spinal 
tract. AR: acoustic radiation. a) zoom-in showing ROI on the lateral geniculate nucleus of the thalamus. b) zoom-in showing ROI on Heschl’s gyrus. . 
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ion ROIs were placed to discard streamlines projecting too anteriorly or
osteriorly: one posterior to the postcentral sulcus, and one anterior to
he SMA. Additional exclusion ROIs were drawn on the midline (sagittal
lane) and the tegmental tract (axial plane). 

The Optic Radiation (OR). The OR was defined as connecting the
halamus and the occipital cortex ( Kammen et al., 2016 ; Sarubbo et al.,
015 ). The whole thalamus as segmented in FreeSurfer was used as a
rst inclusion ROI. A second inclusion ROI (coronal plane) was used
o encompass the WM of the occipital lobe. An exclusion ROI (coronal
lane) was used to discard the posterior projections of the CC. Another
xclusion ROI was drawn on the axial plane to discard streamlines pro-
ecting too superiorly. 

.4.3. Association pathways 

The manual labeling protocol for these pathways is illustrated in
ig. 3 . 

The Arcuate Fasciculus (AF). The AF was defined as the long, di-
ect connections arching around the Sylvian fissure and connecting
emporal (inferior, middle, and superior temporal gyri) and frontal re-
ions ( Catani et al., 2005 ; Lawes et al. 2008 ; Schmahmann et al., 2007 ;
akris et al., 2005 ; Fernández-Miranda et al., 2015 ). A first inclusion
OI was drawn on 3 consecutive axial slices at the level of the main body
f the CC (medial boundary: line between arcuate and corona radiata;
ateral boundary: postcentral sulcus; anterior boundary: precentral sul-
us; posterior boundary: intraparietal sulcus). A second inclusion ROI
as placed on a coronal slice at the level of the precentral sulcus (me-
ial boundary: lateral ventricle; lateral/ventral/dorsal boundary: GM
round Sylvian fissure and parietal lobe sulci) ( Catani and Mesulam
008 ). One exclusion ROI was drawn on a sagittal slice just lateral to
he corona radiata, to remove erroneously crossing streamlines to the
ontralateral hemisphere. Two additional exclusion ROIs were placed
uperior and posterior to the AF to remove spurious streamlines. 
5 
The Cingulum Bundle (CB). The CB was defined as a long associa-
ive bundle running in the WM adjacent to the cingulate gyrus (CG),
rching around the splenium of the CC at the level of the cingulate isth-
us, and terminating at the parahippocampal gyrus ( Schmahmann and
andya 2006 ; Lawes et al. 2008 ). To isolate the CB streamlines, a first
OI was drawn to include the anterior-posterior oriented regions supe-
ior to the CC as identified on coronal color-coded FA maps. We then
ubdivided the CB in two sub-bundles ( Wakana et al., 2007 ; Jones et al.,
013 ): a dorsal component running in the CG (CBD) and a ventral com-
onent running in the parahippocampal gyrus (CBV). We defined the
BD as connecting the anterior CG and the superior frontal gyrus (SFG)
ith parietal WM superior to the splenium of the CC, and the CBV as

onnecting these superior regions with the parahipopcampal gyrus. One
xclusion ROI was placed on one axial slice inferior to the splenium of
he CC to exclude ventral streamlines from the CBD ( Fig. 3 a), and one
n one axial slice inferior and posterior to the splenium of the CC for
he CBV. 

The Extreme Capsule (EmC). The EmC was defined as streamlines
onnecting the frontal and temporal regions, and located lateral to the
ncinate fasciculus (UF) ( Von Der Heide et al., 2013 ). A first hand-drawn
nclusion ROI was placed in the SFG to encompass most of the WM Brod-
ann’s areas 9 and 10 ( Mars et al., 2016 ; Makris et al., 2009 ). This ROI
as placed on the sagittal plane to make sure to distinguish EmC stream-

ines projecting laterally from UF streamlines projecting anteriorly (see
elow for UF dissection protocol). A second hand-drawn inclusion ROI
as placed in the MTG. An exclusion ROI was located on the coronal
lane posterior to the STG. A large exclusion ROI was placed along the
idline of the brain. 

The Frontal Aslant Tract (FAT). The FAT was defined as stream-
ines connecting the posterior inferior frontal gyrus (IFG), pars oper-
ularis, and medial aspects of the SFG, namely the pre-SMA and SMA
 Schmahmann and Pandya 2006 ; Dick et al., 2019 ; Lawes et al. 2008 ).
xclusion ROIs were placed on a coronal slice posterior to the SMA and
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Fig. 3. Manual labeling: association pathways. The figure 
shows the manual labeling protocols for the association path- 
ways in one representative subject. Inclusion ROIs are shown 
in blue, exclusion ROIs in orange. Tracts are shown on color- 
coded FA maps. AF: arcuate fasciculus. ILF: inferior longi- 
tudinal fasciculus. MLF: middle longitudinal fasciculus. FAT: 
frontal aslant tract. SLF: superior longitudinal fasciculus. UF: 
uncinate fasciculus. EmC: extreme capsule. CBD/CBV: dorsal 
and ventral part of the cingulum bundle. a) inclusion and ex- 
clusion ROIs for the CBD. 

6 
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nterior to the pre-SMA, on the sagittal plane to exclude streamlines en-
ering the CC, and on the axial plane to exclude artefactual streamlines
rojecting inferior. 

The Inferior Longitudinal Fasciculus (ILF). The ILF was defined as
treamlines connecting superior, middle, inferior occipital gyri, and the
usiform and lingual gyri to the inferior and middle temporal gyri and
he temporal pole ( Latini et al., 2017 ). A first inclusion ROI was placed
n a coronal slice, at the level of the precentral sulcus, to outline the tem-
oral lobe, excluding the superior temporal sulcus. A second inclusion
OI was placed posterior to the CBD on a coronal slice to encompass the
ccipital WM. One exclusion ROI was placed superiorly (axial plane) to
iscard parietal connections, and one medially to the ILF (sagittal plane)
o discard spurious streamlines. 

The Middle Longitudinal Fasciculus (MLF). The MLF was defined
s streamlines connecting the superior and middle anterior temporal
yri and the temporal pole with the superior and inferior parietal cor-
ex, coursing medial to the AF and superior to the ILF ( Menjot De
hampfleur et al. 2013 ; Makris et al., 2013 ; Schmahmann and Pandya
006 ; Maldonado et al., 2013 ). A first inclusion ROI was placed on a
oronal slice at the level of the precentral sulcus, to outline the supe-
ior temporal lobe. A second inclusion ROI was placed posterior to the
BD on a coronal slice to include both the superior and inferior parietal
M. An exclusion ROI was placed on the axial plane at the level of the

arieto-occipital sulcus to discard streamlines going into the occipital
obe. 

The Superior Longitudinal Fasciculus (SLF). We dissected three
LF branches following definitions from the anatomical literature
 Schmahmann et al., 2007 ; Hecht et al., 2015 ; Howells et al., 2018 ).
LF1: We placed one inclusion ROI in the superior frontal gyrus and
ne encompassing the WM posterior to the posterior central gyrus and
orsal to the cingulate sulcus. SLF2: We placed one inclusion ROI in the
audal part of the middle frontal gyrus and one in the WM of the infe-
ior parietal lobe ( Thiebaut de Schotten et al. 2011 ; Makris et al., 2009 ).
LF3: We placed one inclusion ROI in the posterior inferior frontal gyrus
nd one in the anterior supramarginal gyrus ( Schmahmann et al., 2007 ;
echt et al., 2015 ; Howells et al., 2018 ). For all three bundles, we used
id-sagittal and temporal exclusion ROIs. 

The Uncinate Fasciculus (UF). The UF was defined as stream-
ines connecting the anterior temporal pole and anterior middle tem-
oral gyrus (MTG) with the medial and orbital prefrontal cortex
 Schmahmann and Pandya 2006 ; Catani and Mesulam 2008 ). These
treamlines were identified as medial and inferior to the EmC. The first
nclusion ROI was drawn on four consecutive coronal slices in the tem-
oral lobe, to encompass the WM of the MTG and temporal pole. A
econd inclusion ROI was drawn in the frontal lobe on four consecutive
oronal slices on the WM of the medial orbito-frontal cortex. The sub-
enual WM was considered the upper limit of this ROI. Exclusion ROIs
ere placed on the mid-sagittal slice between the two hemispheres and
irectly posterior to the stem of the UF to exclude erroneous stream-
ines. We ensured that the relative position of the UF with respect to the
mC was accurate in each subject by labeling these two tracts jointly. 

.5. Automated reconstruction in routine-quality data 

The bundles that were labeled manually in the b max = 10 , 000 𝑠 ∕ 𝑚𝑚 

2 

ata, were also reconstructed automatically in the b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 data
f the same subjects ( Fig. 4 ). The b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 shell comprised
4 out of the 512 DW volumes. We compared two approaches to au-
omated reconstruction: (i) TRACULA, where we used the manually la-
eled bundles from the b max = 10 , 000 𝑠 ∕ 𝑚 𝑚 

2 data to compute prior prob-
bilities on the anatomical neighborhood of each bundle and incorpo-
ated them in a Bayesian framework global probabilistic tractography,
nd (ii) Multi-ROI, where we used the group-averaged ROIs and inclu-
ion/exclusion rules from the manual labeling as post-hoc constraints
or local probabilistic tractography. We evaluated both approaches in a
eave-one-out scheme. For TRACULA, the manually labeled bundles of
7 
he test subject were left out when computing anatomical priors. For the
ulti-ROI approach, the manual labeling ROIs of the test subject were

eft out when computing average ROIs. 

.5.1. TRACULA 

Training data: The manual labeling procedure of Section 2.4 pro-
uced a total of 2.29 million streamlines over all 42 bundles and 16
raining subjects, covering 82% of all cerebral and cerebellar WM vox-
ls. (In comparison, the manually labeled training set used in previous
ersions of our software included a total of 0.15 million streamlines
rom 18 bundles, which had been labeled in much lower-quality data
nd covered 18% of WM voxels.) This required us to refactor the TRAC-
LA code base extensively to be able to handle a much larger training

et than before. In this new, refactored version, many of the operations
nvolved in computing the anatomical neighborhood priors, which were
reviously computed on the fly, are now precomputed and stored with
he publicly distributed training data. 

In addition, the densest of the manually labeled bundles, e.g., most
ubdivisions of the CC, included a large number of streamlines with very
imilar anatomical neighbors. As a result, we could use a subset of these
treamlines without affecting the computation of the anatomical priors.
herefore, for any WM bundle that included more than 20,000 training
treamlines, we reduced that number to 20,000 to speed up this com-
utation. We first removed outlier streamlines, which can be difficult
o remove manually one by one, particularly for very dense bundles.
utliers were detected by mapping the end points of the streamlines

o a common template space (see below for more information on regis-
ration), summing the endpoints over all subjects, and clustering them.
mall clusters of endpoints were tagged as outliers and any individual
treamlines that terminated in those outlier clusters were removed. Em-
irically, we did this by finding the number of smallest clusters that
ould be removed while retaining at least 60% of unique endpoint vox-
ls. If the total number of streamlines in a bundle was still above 20,000,
t was reduced further by random subsampling of the streamlines. Note
hat this reduced set of streamlines was used to train TRACULA, but the
omplete set of 2.29 million streamlines was used as the “ground truth ”
o evaluate the accuracy of the automated reconstruction. 

Anatomical neighborhood priors: For each subject, we used the 42
anually defined bundles from each of the other 15 subjects as the train-

ng set. The mathematical formulation has been described elsewhere
 Yendiki et al., 2011 ; Yendiki et al., 2016 ). Briefly, this approach mod-
ls a WM pathway as a cubic spline, which is initialized with the median
treamline of the training set. A random sampling algorithm is used to
raw samples from the posterior probability distribution of the pathway
y perturbing the control points of the spline. The posterior probability
s decomposed into the likelihood of the pathway given the DW vol-
mes and the prior probability of the pathway. The likelihood term fits
he shape of the spline to the diffusion orientations in the voxels that the
pline goes through. As previously, diffusion orientations were obtained
y fitting the ball-and-stick model ( Behrens et al., 2003 ) to the subject’s
W volumes. This model does not require a sophisticated dMRI acquisi-

ion; it can be used on data collected with low b-values and with as few
s 30 directions ( Behrens et al., 2007 ). 

The prior probability term in TRACULA fits the shape of a pathway
o its anatomical neighborhood, given the manually labeled examples of
his pathway from the training subjects and the anatomical segmenta-
ion volumes of both test and training subjects. Specifically, the training
treamlines are used to compute the prior probability that each label of
he anatomical segmentation is the j -th neighbor of the pathway at the i
h point along the trajectory of the pathway. Here i indexes equispaced
oints (3 mm apart) along the pathway and j indexes the nearest neigh-
oring segmentation labels in different directions (left, right, anterior,
osterior, etc .) The anatomical labels were extracted from the subject’s
1-weighted scan using FreeSurfer. 

Structural segmentation: In this work, we used an anatomical segmen-
ation volume that combined the labels of the Desikan-Killiany cortical
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Fig. 4. Overview of tractography methods. From the four-shell MGH-USC HCP data, the b =10 , 000 s ∕m m 

2 and b = 1 , 000s∕mm 

2 shells were extracted. Orientations 
were reconstructed with constrained spherical deconvolution (CSD) from the b =10 , 000s∕m m 

2 shell and with multi-shell multi-tissue CSD (MSMT-CSD) from all four 
shells. Streamline tractography was performed with these two approaches and used to annotate 42 tracts manually in 16 subjects. The lower shell (b = 1 , 000s∕mm 

2 , 
64 directions) was used to reconstruct the same tracts automatically, with TRACULA or with a multi-ROI approach. For TRACULA, anatomical priors for each subject 
were obtained from the other 15 subjects and global probabilistic tractography was performed. For the multi-ROI approach, inclusion and exclusion masks were 
obtained from summing the manually defined ROIs of the other 15 subjects in template space. Local probabilistic tractography was constrained by these ROIs. The 
same ball-and-stick (BS) diffusion model was used for both TRACULA and the multi-ROI approach. 
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arcellation ( Desikan et al., 2006 ) with the standard FreeSurfer sub-
ortical segmentation ( Fischl et al., 2002 ). However, we replaced the
halamus label of the latter with the subject’s thalamic nuclei segmen-
ation labels ( Iglesias et al., 2015, 2018 ). This replacement was done to
void oversegmenting the thalamus into WM voxels, and to provide ad-
itional specificity on the anatomical neighbors of tracts that terminate
n or travel around the thalamus. Computing the prior probabilities on
he anatomical neighbors of the tracts requires that each (training or
est) subject’s anatomical segmentation be transformed to the subject’s
ndividual dMRI space. This within-subject, dMRI-to-T1 alignment was
erformed by a boundary-based, affine registration method ( Greve and
ischl 2009 ). 

Template construction: Although finding the anatomical neighbors of
 tract is a within-subject operation, it is important to ensure that all
ubjects’ brains have the same orientation, so that the relative positions
f neighboring structures (which structure is to the left/anterior/ etc .
f which tract) is equivalent for all subjects. For this purpose, and for
apping the median of the training streamlines to the test subject dur-

ng initialization, subjects must be mapped onto a template brain. Here
e constructed a template by co-registering the FA maps of all 35 sub-

ects in the MGH-USC HCP data set ( Fan et al., 2016 ) with symmet-
ic normalization (SyN; Avants et al., 2008 ), as implemented in ANTs
 Avants et al., 2011 ). An affine initial registration was followed by 4 iter-
tions of nonlinear registration with the b-spline SyN transform model,
 cross-correlation similarity metric with a radius of 2, and a 4-level
ulti-resolution scheme with 100/70/50/50 sub-iterations per level.
ach test subject’s FA map was aligned to the template with the de-
ault sequence of rigid/affine/deformable SyN registration followed in
NTs. Although we are introducing this nonlinear registration approach

o TRACULA in the interest of generality, it is important to note that the
urpose for which TRACULA performs subject-to-template registration
to find within-subject anatomical neighbors in a consistent set of di-
8 
ections) does not require exact voxel-wise, inter-subject alignment. We
emonstrate this here by comparing this nonlinear registration approach
o the one that was used by default in previous versions of TRACULA,
.e. , affine registration of each subject’s T1 image to the 1 𝑚𝑚 MNI-152
emplate with FSL’s FLIRT ( Jenkinson et al., 2002 ). 

Choice of control points: The number of control points of the cubic
pline, which are perturbed at each iteration of the random sampling
lgorithm to draw new sample paths, was chosen according to the aver-
ge length of the training streamlines for each bundle. Specifically, we
hose the number of control points to be 5 for the genu of the CC, and
e then set the number of control points for all other bundles propor-

ionally to their length. This ranged from 4 control points for the ATR
o 12 control points for the temporal component of the body of the CC.

Along-tract analysis: Pointwise assessment of streamline tractography
ttributes (PASTA) is a type of analysis where an along-tract profile of
 microstructural measure ( e.g., FA) is generated by averaging the val-
es of the measure at different cross-sections of a tract ( Jones et al.,
005 ). For each of the 42 bundles, we generated a reference streamline
or PASTA analyses, to ensure that all subjects are sampled at the same
umber of cross-sections along a given bundle. The reference stream-
ine was the mean of the manually annotated streamlines in template
pace. After the bundles of an individual subject were reconstructed
utomatically with TRACULA, the reference streamlines were mapped
rom the template to the individual. We generated along-tract profiles
f microstructural measures by projecting the value of each measure
rom every point on every automatically reconstructed streamline to
ts nearest point on the reference streamline. Values projected to the
ame point on the reference streamline were then averaged, to gen-
rate an along-tract, 1D profile of the microstructural measure. The
ength of this profile was the length of the reference streamline, i.e.,
he average length of the manually annotated streamlines in template
pace. 
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.5.2. Multi-ROI 

For comparison, we also reconstructed each subject’s bundles with
 commonly used multi-ROI approach, which maps a set of ROIs from
 template to an individual subject’s dMRI space and combines them
ith a set of deterministic inclusion and exclusion rules to constrain

he output of local probabilistic tractography ( de Groot et al., 2013 ;
arrington et al., 2020 ). For each subject, we used the ROIs that we

ad drawn for the manual labeling of the bundles in the other 15 sub-
ects. We aligned the subjects to the FMRIB-58 FA template using FSL’s
NIRT, and then used the resulting nonlinear warp to transform the ROIs
o template space. We summed the corresponding ROIs of the 15 sub-
ects, and thresholded their sum to ensure that it had a size similar to that
f the individual ROIs. (Empirically this was done by applying a lower
hreshold equal to 30% of the number of subjects). The group-averaged
nd thresholded ROIs were then mapped to the test subject using the in-
erse of the subject-to-template registration. For each pathway, the au-
omated multi-ROI protocol used these ROIs as inclusion masks. For the
undles that were included in previously published multi-ROI protocols
 Warrington et al., 2020 ), we used the previously proposed exclusion
asks and augmented them as needed with the group-averaged exclu-

ion masks from our own manual dissections. Local probabilistic trac-
ography was performed using FSL’s probtrackX ( Behrens et al., 2007 )
n symmetrical mode (seeding from both inclusion masks) with default
arameters (5,000 number of samples, 200 steps per sample, 0 . 5 𝑚𝑚
tep-length) and the same ball-and-stick model as in the previous sec-
ion ( Behrens et al., 2003 ). We implemented along-tract (PASTA) anal-
ses for the multi-ROI approach, using the same reference streamlines
s for TRACULA, in the manner described in Section 2.5.1 above. 

.5.3. Accuracy of automated reconstruction 

We assessed the accuracy of the TRACULA and multi-ROI automated
econstruction by comparing the tracts reconstructed automatically in
he b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 , 64-direction data to those labeled manually in the
 max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 , 512-direction data of the same subject. We quanti-
ed the reconstruction error by computing the modified Hausdorff dis-
ance (MHD; Dubuisson and Jain, 1994 ) between the automatically re-
onstructed and manually labeled pathways. The MHD between two set
f points S and T is defined as the minimum distance between a point
n one set and any point in the other set, averaged over all points in the
wo sets: 

 𝐻 𝐷 ( 𝑆, 𝑇 ) = 

1 |𝑆 | ∑
𝑠𝜖𝑆 

𝑚𝑖 𝑛 𝑡𝜖𝑇 𝑑 ( 𝑠, 𝑡 ) + 

1 |𝑇 | ∑
𝑡𝜖𝑇 

𝑚𝑖 𝑛 𝑠𝜖𝑆 𝑑 ( 𝑡, 𝑠 ) 

here d ( ⋅, ⋅) is the Euclidean distance between a pair points from the two
ets, and | ⋅| is the size of a set. Greater MHD indicates greater deviation
f the automatically reconstructed tract from the one labeled manually
n the same subject, and hence lower accuracy of the automated recon-
truction. 

In previous work, we reported MHD of tracts reconstructed with
RACULA using our older training sets for adult brains ( Yendiki et al.,
011 ) or infant brains ( Zöllei et al., 2019 ), after thresholding the voxel
isitation maps of the automatically reconstructed tracts at a single
hreshold (20% of the maximum, which is the default visualization
hreshold in TRACULA). However, for the purpose of a comparison be-
ween TRACULA and the multi-ROI approach, a single threshold would
ot be informative. The global tractography used in TRACULA adds an
ntire end-to-end path to the voxel visitation map at each iteration,
hereas the local tractography used in the multi-ROI approach adds
 single voxel at every iteration. As a result, thresholding at the same
ercentage of the peak value does not yield equivalent results between
he two methods. For this reason, in the experiments presented here
e performed a more comprehensive evaluation of reconstruction er-

or, where we increased the threshold gradually from 0% to 90% for
oth methods, and computed their MHD at each threshold. 

In addition, for each bundle and at each threshold, we computed the
rue-positive rate (TPR), which quantifies the proportion of the man-
9 
ally labeled streamlines that overlap with the automatically recon-
tructed bundle: 

 𝑃 𝑅 = 

( 

𝑁 ∑
𝑖 =1 

𝑛 𝑖 𝛿𝑖 

) 

∕ 

( 

𝑁 ∑
𝑖 =1 

𝑛 𝑖 

) 

, 

here n i the number of manually labeled streamlines that go through the
 th voxel, 𝛿i an indicator function that is equal to 1 if the automatically
econstructed bundle goes through the i th voxel and 0 otherwise, and N
he number of voxels in a brain volume. Each true positive voxel ( 𝛿i = 1)
s weighed by the number of manually labeled streamlines n i that go
hrough that voxel, to account for the fact that the manually labeled
undles themselves contain noisy tractography streamlines. Thus, a true
ositive should be rewarded more if it occurs in a voxel that overlaps
ith a large number of the manually labeled streamlines. 

In a conventional receiver operating characteristic (ROC) analysis,
he TPR is plotted against the false-positive rate (FPR), which quantifies
he proportion of the automatically reconstructed bundle that does not
verlap with the manually labeled one: 

 𝑃 𝑅 = 

( 

𝑁 ∑
𝑖 =1 

(1 − 𝜁𝑖 ) 𝛿𝑖 

) 

∕ 

( 

𝑁 ∑
𝑖 =1 

(1 − 𝜁𝑖 ) 

) 

, 

here 𝜁 i an indicator function that is equal to 1 if the manually labeled
undle goes through the i th voxel and 0 otherwise. It is important to
ote, however, that the FPR penalizes all false positive voxels equally,
o matter how far away from the manually labeled bundle they occur.
hus the MHD, which measures the distance between the automatically
econstructed and manually labeled bundles, is a more informative met-
ic of reconstruction errors. 

The goal of these experiments was to investigate how close au-
omated tractography in routine-quality data could come to manu-
lly annotated tractography in high-quality data, hence the “ground
ruth ” was obtained from the manually labeled, multi-ROI tractogra-
hy of Section 2.4 . However, there were cases where even the full
 max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 data yielded only a few streamlines for a certain
anually labeled bundle. In those cases, measuring the accuracy of the

utomated reconstructions by comparison to the manually labeled bun-
le could underestimate the accuracy of the automated reconstruction.
e identified such cases as manually labeled bundles whose volume was

ess than 1/3 of the median volume of the same bundle across the 16
raining subjects. They were one case each of the LH 

–CBD, LH-AR, and
C-BODY-T, and two cases of the AC. We excluded these cases when
omputing the metrics described above, but including them would not
hange any of our conclusions. 

.5.4. Test-retest reliability of automated reconstruction 

We divided the 64 diffusion directions of the b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 shell
nto two subsets, each containing 32 directions that were approximately
niformly distributed over the sphere. We applied the automated recon-
truction methods described in 2.5.1 and 2.5.2 to each of the subsets,
nd we computed the accuracy metrics of 2.5.3. This allowed us to as-
ess if the results from the two methods were reproducible between the
est and retest scans, and how robust the methods were to even lower
ngular resolution. 

.5.5. Test-retest reliability of along-tract measures 

For the bundles reconstructed from each of the two 32-direction
atasets, either with TRACULA or with the multi-ROI method, we
xtracted PASTA profiles of FA and mean/radial/axial diffusivity
MD/RD/AD). We assessed the test-retest reliability of these profiles by
omputing the symmetrized percent change (SPC) between the profiles
btained by the same method from the two 32-direction datasets: 

𝑃 𝐶 = 

( 

𝑀 ∑
𝑖 =1 

( 𝑥 𝑖 − 𝑦 𝑖 ) 

) 

∕ 

( 

𝑀 ∑
𝑖 =1 

( 𝑥 𝑖 + 𝑦 𝑖 )∕2 

) 

, 

here 𝑥 𝑖 and 𝑦 𝑖 the i th along-tract data point of a microstructural
easure (FA/MD/RD/AD) from the two 32-direction datasets. The total
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umber of data points, M , equals the number of cross-sections along a
ract times the number of subjects. 

We computed the test-retest reliability, as quantified by SPC, at a
xed level of sensitivity for both reconstruction methods. For the multi-
OI method, we set the threshold for the voxel visitation maps to 1%
f the maximum value. At that threshold, the multi-ROI method had a
ensitivity of about 0.6. We then set the threshold for TRACULA (10%)
o achieve the same sensitivity. 

.5.6. Evaluation on a larger dataset 

As a final evaluation, we show preliminary results from assessing the
bility of TRACULA to detect subtle microstructural effects in a larger
ataset. We used data from 204 adolescents scanned for the Boston Ado-
escent Neuroimaging of Depression and Anxiety (BANDA) study, a Con-
ectomes Related to Human Disease (CRHD) project. The study cohort
ad been recruited to probe the full continuum of depressed and anx-
ous symptoms and their co-morbidity, and thus allow transdiagnostic
nvestigations of brain-behavior relationships. It included 138 partici-
ants with depression and/or anxiety disorders (age 15.50 ± 0.83, 95
emale) and 66 controls (age 15.17 ± 0.83 years, 36 female). Details
n the clinical assessment and imaging protocol are provided elsewhere
 Hubbard et al., 2020 ; Siless et al., 2020 ). 

Here we used the T1-weighted images (0 0 . 8 mm isotropic resolution)
o obtain structural segmentations with FreeSurfer, and the lower shell
f the dMRI data ( 1 . 5 𝑚𝑚 isotropic resolution, b = 1 , 500 𝑠 ∕ 𝑚𝑚 

2 , 93 diffu-
ion weighted volumes collected with two phase-encode directions each,
nd 28 non-diffusion weighted volumes) to reconstruct WM pathways
ith TRACULA. The dMRI data were pre-processed with FSL’s topup

 Andersson et al., 2003 ) and eddy ( Andersson and Sotiropoulos 2016 ) to
itigate susceptibility and eddy-current distortions. We reconstructed

he following pathways with TRACULA: all subdivisions of the CC, and
ilateral ATR, CBD, CBV, EmC, FX, SLF1, SLF2, SLF3, UF. We studied
hese pathways as they have been previously reported to be affected in
atients with depression or anxiety ( Bracht et al., 2015 ; Greenberg et al.,
021 ; Henderson et al., 2013 ; LeWinn et al., 2014 ; Liao et al., 2014 ). We
ested the along-tract FA values for associations with three clinical vari-
bles: the total score from the Mood and Feelings Questionnaire (MFQ;
ngold et al., 1995 ) and the depression and general anxiety subscale
cores from the Revised Child Anxiety and Depression Scale (RCADS;
e Ross et al., 2002 ). We excluded two participants out of the full co-
ort of 206 due to missing clinical scores. 

For each clinical score, we fit a general linear model (GLM) with
he along-tract FA value as the dependent variable, and sex, age, and
linical score as the independent variables. We tested two contrasts for
tatistical significance: the average slope of FA vs. clinical score, and
he difference of slopes between female and male participants. We used
reeSurfer statistical analysis tools, adapted for 1D data; specifically, we
t a GLM at each point along each tract with mri_glmfit , and performed
imulation-based, cluster-wise correction for multiple comparisons with
ri_glmfit-sim ( Hagler et al., 2006 ; Greve and Fischl 2018 ). The cluster-

orming threshold and the cluster-wise threshold for statistical signifi-
ance were both set to p = 0.05, and 1,000 simulations were performed.
fter statistical testing, we visualized the along-tract p -values by project-

ng them onto a randomly selected subset of the training streamlines in
emplate space. 

. Results 

.1. Manually labeled dataset 

Fig. 5 shows the 42 manually labeled pathways. The full set in-
ludes 2.29 million annotated streamlines. In individual dMRI space,
hey cover 82% of all cerebral and cerebellar WM voxels across the 16
ubjects. For Fig. 5 , the streamlines were mapped to template space and
ggregated across all 16 training subjects. In template space, 98% of
erebral and cerebellar WM voxels (defined by majority voting of the
10 
natomical segmentations of the 16 subjects) overlap with the stream-
ines of at least one subject. Thus, although the 42 pathways that we
ave labeled here do not represent all brain connections, they provide
xtensive WM coverage. 

Fig. 6 shows the coverage of the cortical surface by the termina-
ions of the manually labeled streamlines. For this figure, the number
f streamline end points per voxel were summed along the normal of
he surface, within 3 mm from the WM-GM junction. They were then
apped from each individual’s surface to the fsaverage surface using

he FreeSurfer spherical morph. The total numbers of streamlines across
he 16 subjects were then obtained at each vertex. No smoothing was
pplied in the volume or on the surface to produce these maps. The ter-
inations of the manually labeled streamlines cover 89% of the cortical

urface on the left hemisphere and 88% on the right hemisphere. 
Fig. 7 shows the FA template that we constructed from the 35 MGH-

SC HCP subjects and that we used as the target for inter-subject reg-
stration with ANTs. The figure also shows the mean of the manually
nnotated streamlines from each of the 42 WM bundles. We used these
ean streamlines as the reference streamlines for PASTA analysis. 

.2. Comparison of automatically reconstructed and manually labeled 

athways 

Fig. 8 shows the accuracy measures of Section 2.5.3 , computed over
ll 42 pathways and 16 subjects in the leave-one-out experiments. Re-
ults are shown for the 64-direction, b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 data with TRAC-
LA (red) and the multi-ROI method (black); and for two sets of 32-
irection, b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 data with TRACULA (yellow, green) and the
ulti-ROI method (blue, purple). The plot on the left shows the sensitiv-

ty (TPR) as a function of 1-specificity (FPR). The plot on the right shows
he reconstruction error (MHD in mm) as a function of sensitivity. Mean
HD is shown with standard error bars. Each point along the curves

epresents a different threshold applied to the probability distributions
stimated by each method. The point of highest sensitivity is the one
chieved by unthresholded distributions. 

The highest sensitivity achieved by TRACULA across all 42 pathways
as 89%, indicating high coverage of the “ground-truth ” pathways,

.e., the ones obtained from the manual labeling of the 512-direction,
 max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 data. At that sensitivity, the reconstruction error
MHD) was 3.5 mm for TRACULA on the 64-direction data. Compared
o that, the reconstruction error at the same sensitivity level was 4.2 mm
20% higher) for TRACULA on both sets of 32-direction data, 7.6 mm
118% higher) for the multi-ROI method on the 64-direction data, and
0.6/10.4 mm (203/197% higher) for the multi-ROI method on the two
ets of 32-direction data. For both reconstruction methods, the overall
erformance metrics were highly reproducible between the two sets of
2-direction data. This is illustrated by the overlap of the green and
ellow curves (for TRACULA) and the overlap of the blue and purple
urves (for the multi-ROI method). For both methods, performance was
omewhat lower on the 32-direction data than the 64-direction data.
he multi-ROI method exhibited a greater deterioration as a result of
ecreasing the number of directions from 64 to 32. 

The reconstruction error (MHD) vs. sensitivity (TPR) for each of the
2 pathways is shown in Supplementary Figs. S1–S3. There was some
ariability across pathways in terms of the difference in performance be-
ween reconstruction methods, the extent to which lowering the number
f directions from 64 to 32 affected their performance, or the level of
eproducibility between the two sets of 32 directions. However, the gen-
ral patterns observed from the overall performance plot of Fig. 8 could
lso be observed from the individual pathway plots. 

In the plots of reconstruction error (MHD) vs . sensitivity (TPR) from
ig. 8 , as well as Supplementary Figs. S1-S3, a horizontal dashed line
ndicates the minimum MHD that can be achieved by the multi-ROI
ethod on the 64-direction data, i.e. , the minimum MHD along the black

urve. The portion of the red curve that lies below the dashed line rep-
esents the range of operating points for which TRACULA achieved a



C. Maffei, C. Lee, M. Planich et al. NeuroImage 245 (2021) 118706 

Fig. 5. Manually labeled dataset. Manually labeled streamlines from each of the 42 WM bundles are shown aggregated over all 16 training subjects. Manual 
annotation was performed on each subject’s individual dMRI data as described in section 2.4 . Streamlines are displayed here in 1 mm MNI-152 template space. 
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econstruction error equal or less than the minimum achieved by the
ulti-ROI method. The red star indicates the maximum sensitivity that
RACULA could achieve while staying below that level of reconstruction
rror. Fig. 9 shows the sensitivity (TPR) values at these operating points
or each bundle. The gray bars show the sensitivity of the multi-ROI
ethod at the threshold where it achieves its minimum reconstruction

rror. The red bars show the maximum sensitivity that TRACULA could
chieve while maintaining a reconstruction error equal or less than the
inimum error achieved by the multi-ROI method ( i.e., the sensitivity of
RACULA at the points marked by red stars in Fig. 8 and Supplementary
igs. S1–S3). 

Fig. 10 shows the minimum reconstruction error, as quantified by
he MHD in mm, achieved by the multi-ROI method and TRACULA for
ach pathway. The x = y line is shown in black dots. The data points
11 
all mostly above the x = y line, indicating that the minimum error was
maller for TRACULA than the multi-ROI method. Note that these er-
ors do not correspond to matched thresholds or matched sensitivity
evels between the two methods. They are the minimum errors that
ach method could achieve across all thresholds and thus sensitivity
evels. Fig. 8 and Supplementary Figs. S1-S3 show that, when compared
t matched levels of sensitivity, TRACULA could achieve overall lower
econstruction errors. 

Fig. 11 shows that the performance of TRACULA is independent of
he method that it uses for inter-subject registration. The plots show
esults from automated reconstruction on the 64-direction data with
hree methods: TRACULA or the multi-ROI method with nonlinear inter-
ubject registration (same as in Fig. 8 ), and TRACULA with affine inter-
ubject registration. As seen in the plots, performance is indistinguish-
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Fig. 6. Cortical terminations of manually labeled streamlines. 
Number of streamlines in the manually labeled set (out of a 
total 2.29 million) that terminate within 3 mm of each vertex 
on the WM-GM boundary in fsaverage space. 

Fig. 7. Template and reference streamlines. The template that we constructed from the FA maps of all 35 MGH-USC subjects is shown in sagittal (left) and axial (right) 
view. The mean of the manually annotated streamlines from each of the 42 bundles is also shown. These serve as the reference streamlines where microstructural 
measures are projected for PASTA analyses. The color of the streamlines encodes directionality: red = medial-lateral, green = anterior-posterior, blue = inferior- 
superior. 

Fig. 8. Overall accuracy of automated reconstruction. For each reconstruction method (TRACULA, multi-ROI), results are shown for 64 directions and for 2 sets of 
32 directions. Measures were computed across all 42 pathways and 16 manually labeled subjects. Each point along the curves represents a different threshold applied 
to the estimated probability distributions. Left: Sensitivity (TPR) vs. 1-specificity (FPR). Right: Reconstruction error (MHD in mm) vs. sensitivity. Horizontal dashed 
line: minimum MHD achieved by the multi-ROI method on the 64-direction data. Red star: Maximum TPR achieved by TRACULA at the same MHD level. 
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ble between TRACULA with the two registration approaches. This is
ecause the anatomical priors in TRACULA do not encode information
bout the absolute coordinates of the pathways in template space. They
nly encode information about the relative positions (left, right, ante-
ior, etc. ) of the pathways with respect to their surrounding anatomical
tructures. 
12 
.3. Test-retest reliability of along-tract measures 

Fig. 12 shows the SPC of along-tract FA values between the two 32-
irection datasets, for TRACULA and the multi-ROI method, at a sen-
itivity level of 0.6. An analysis of variance with factors of bundle (42
evels) and reconstruction method (2 levels) showed a significant effect
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Fig. 9. Maximum sensitivity at the same level of reconstruction error. For each of 42 pathways (and across all pathways on the far right), the plot shows the sensitivity 
(TPR) that the multi-ROI method achieves when its threshold is chosen to minimize the reconstruction error (MHD), and the maximum sensitivity that TRACULA 

can achieve while maintaining the same or lower reconstruction error. 

Fig. 10. Minimum reconstruction error. For each of 42 pathways, the plot shows 
the minimum reconstruction error (MHD in mm) that can be achieved by TRAC- 
ULA (x-axis) and the multi-ROI method (y-axis). The pathways are color-coded 
based on their type (commissural, projection, or association). 
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Fig. 11. Robustness to inter-subject registration. Results are shown for reconstruction
nonlinear inter-subject registration (same as in Fig. 8 ), as well as TRACULA with affi
and 16 manually labeled subjects. Each point along the curves represents a differen
(TPR) vs . 1-specificity (FPR). Right: Reconstruction error (MHD in mm) vs . sensitivity
the 64-direction data. Red star: Maximum TPR achieved by TRACULA at the same M

13 
f both bundle ( p = 2.9e–04) and reconstruction method ( p = 3.9e–08).
ery similar results were obtained for MD (bundle: p = 4.3e–03; recon-
truction method: p = 6.7e-08), RD (bundle: p = 4.3e-03; reconstruc-
ion method: p = 5.1e–08), and AD (bundle: p = 7.8e–03; reconstruction
ethod: p = 5.4e–08). 

These results reflect both the reliability of automated tractography
nd the reliability of the microstructural measures themselves. For ex-
mple, the two bundles where along-tract FA/MD/RD/AD had their
owest reliability (AC and FX) were the ones where these tensor-based
easures would be the most prone to partial voluming due to proxim-

ty to CSF. Microstructural measures extracted from models other than
he tensor may be more reliable than these overall. Here, however, our
ain interest was in the comparison of reliability between the two re-

onstruction methods. The median test-retest error across all 42 bundles
as 4.3% (FA), 2.6% (MD), 5.7% (RD), 3.2% (AD) for TRACULA; and
5.7% (FA), 12.4% (MD), 17.0% (RD), 12.9% (AD) for the multi-ROI
ethod. 

.4. Evaluation on a larger dataset 

Fig. 13 shows findings from the statistical analysis of along-tract FA
n the 204 subjects of the BANDA cohort. The top row shows the WM
undles where the average slope of along-tract FA vs . clinical score was
tatistically significant. We found a negative slope of FA vs . clinical score
n the LH-SLF1, for all three clinical scores (MFQ, RCADS-Dep, RCADS-
enAnx). The bottom row shows the bundles where the difference in
 on the 64-direction data using either TRACULA or the multi-ROI method with 
ne inter-subject registration. Measures were computed across all 42 pathways 
t threshold applied to the estimated probability distributions. Left: Sensitivity 
. Horizontal dashed line: minimum MHD achieved by the multi-ROI method on 
HD level. 
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Fig. 12. Test-retest reliability of along-tract FA. The plots show the test-retest error of along-tract (PASTA) FA values, as quantified by the SPC between along-tract FA 

obtained from two 32-direction data sets, with the multi-ROI method (gray) or with TRACULA (red). For both methods, pathway probability maps were thresholded 
to achieve a sensitivity of 0.6. 

Fig. 13. Associations of along-tract FA with clinical scores in the BANDA cohort. Each column shows results from a different clinical score (MFQ, RCADS-Dep, 
RCADS-Gen-Anx). Each row shows results from a different contrast (top: average slope of FA vs . clinical score; bottom: difference in slopes of FA vs . clinical scores 
between female and male participants). Pathways were reconstructed automatically with TRACULA. For display, along-tract p-values were mapped onto a randomly 
selected subset of the training streamlines in template space. 
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lopes between female and male participants was statistically signifi-
ant. We found greater slopes in females than males for MFQ vs . FA
n the CC-BODY-PM; RCADS-Dep vs. FA in the CC-BODY-PM, RH-SLF1;
nd RCADS-GenAnx vs. FA in the RH-EMC, RH-FX, RH 

–CBD, LH 

–CBD,
H-ATR. 

. Discussion 

In this work we present a new set of protocols for manual labeling of
2 major WM pathways using probabilistic tractography on high-quality
b max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 , 512-direction) dMRI data from a Connectom scan-
er. We also demonstrate that these manually annotated pathways can
e used as training data to reconstruct the same pathways automati-
ally from routine-quality (b = 1 , 000 𝑠 ∕ 𝑚𝑚 

2 , 64-direction) dMRI data
ith high sensitivity and high reliability. 

.1. Manual labeling 

The widely used protocols for manual labeling of WM pathways were
ntroduced at a time when tractograms were typically obtained by run-
14 
ing deterministic tensor tractography on dMRI data with low b-values
nd low angular resolution ( Wakana et al., 2007 ; Catani and Thiebaut
e Schotten 2008 ). These protocols were a critical step towards apply-
ng dMRI tractography to population studies. They introduced the con-
ept of the multi-ROI tract dissection, which was also the first method
sed for automated tract-of-interest reconstruction ( Zhang et al., 2008 ;
layden et al., 2009 ). 

Since then, the acquisition technologies adopted and advanced by
he HCP led to a dramatic improvement in the quality of in vivo dMRI
ata. The higher spatial and angular resolution of modern dMRI data,
oupled with the use of probabilistic tractography and crossing-fiber
odeling techniques, yield much larger and more complex tractograms.
hese can be used for a more detailed and accurate definition of WM
athways, but they also contain many more noisy streamlines and re-
uire more clean-up. While the previously proposed manual annotation
rotocols are an excellent starting point, they need to be updated with
 greater number of inclusion and exclusion ROIs. Furthermore, some
athways that were not typically included in older “virtual dissection ”
rotocols, because they could not be reconstructed reliably with older
ata, can now be readily extracted from modern tractograms. 
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In Section 2.4 , we presented an updated set of protocols that we de-
loyed to label 42 WM pathways manually in the MGH-USC HCP data.
hese data, which could only be acquired with a Connectom scanner, al-

owed a more detailed and accurate reconstruction of major brain path-
ays, as they had been described in anatomical studies. We were able to
btain a more comprehensive delineation of the termination regions of
hese pathways, and to reconstruct bundles or portions of bundles that
ere not accessible before, like the acoustic radiation ( Maffei et al.,
019 ), the more lateral terminations of the CST in the motor cortex, or
he Meyer loop of the OR. 

However, our ability to reconstruct certain aspects of the more chal-
enging WM bundles is still limited, even with the best available in vivo

MRI data. Here we discuss some examples of discrepancies between
ractography on high-quality dMRI data and the anatomical literature
ecause we believe that they can be useful benchmarks for developers of
ractography algorithms and useful targets for future investigation with
x vivo dMRI. These examples are from the AC, ATR, CST, FX, UF, and
LF1. 

AC : The AC is a thin, long compact bundle with an uncommon C-
hape that connects the two temporal lobes ( Schmahmann and Pandya
006 ). In its course, the AC lies in the proximity of the putamen, caudate
ucleus, globus pallidus, amygdaloidal nuclei, and temporal and perirhi-
al cortex. The vicinity to these GM structures makes the AC sensitive
o partial volume effects, which can severely affect its reconstruction,
specially given its small size (only a few voxels wide). In the temporal
obe, the AC fibers fan out towards the anterior part of the temporal
ole, where they merge with the fibers of the UF and FX ( Çavdar et al.,
021 ). This configuration, in which different fiber bundles merge and
ntermingle, is hard to resolve with tractography, and it usually results
n favoring the reconstruction of the bigger bundles that intersect with
he AC. While we could reconstruct the AC correctly in most of the 16
ubjects, some presented only a few valid streamlines, and in most sub-
ects the temporal terminations were sparse and noisy. 

ATR : We defined the ATR as cortico-thalamic fibers connecting the
halamus to the frontal cortex. We recognize that this definition remains
ague and reflects a tractography-based characterization of this bundle
ore than an anatomical one ( Safadi et al., 2018 ). Because of the lim-

tations of diffusion tractography, we are not able to precisely separate
hese fibers from the fibers projecting from/to the brainstem, and we
herefore recognize the possibility that some of the latter fibers are also
ncluded in the delineation of the ATR. We also observed that in all
ur manual dissections it was difficult to obtain the most dorsolateral
rojections of the ATR. 

CST : In our protocol, we selected only the CST projections terminat-
ng in the precentral gyrus, postcentral gyri, and the posterior third of
he superior frontal gyrus (SMA), as described previously ( Chenot et al.,
019 ). We are aware that the CST includes additional axonal projections
o more frontal regions ( Dum et al., 2002 ). However, these were repre-
ented by fewer and sparser streamlines in our tractography data, and
e thus decided to not include them in the present atlas. These more

rontal CST projections may be harder for tractography to reconstruct
onsistently given their bending and fanning geometry, as opposed to
he more straightforward CST projections to the motor regions. Future
ork exploring specific regions of interest for tractography seeding ( e.g. ,

he subthalamic nucleus) might help improve these results. 
FX : The FX is a small bundle with high curvature throughout its ex-

ension. Its location in proximity of the ventricles makes it sensitive to
artial voluming with CSF voxels ( Vos et al., 2011 ). These characteris-
ics have made this bundle extremely challenging for tractography. To
lleviate these limitations, we deployed a MSMT tractography algorithm
 Jeurissen et al., 2014 ), which helped reduce the partial volume effect.
e also avoided the use of constraining binary masks (WM, GM, CSF),
hich reduced the number of false negatives in the reconstructions. This
pproach allowed us to reconstruct the entire extent of the FX in most
f the subjects. However, despite the successful reconstruction of this
undle in most subjects, a few reconstructions showed very few correct
15 
treamlines, and not all the subjects presented terminations extending
nto the temporal regions anterior to the hippocampus. 

UF : The UF has been well-characterized in tractography studies. Al-
hough tractography is able to delineate the main trunk of the UF, it
emains difficult to define its projections precisely and to separate them
rom those of the EmC, given their overlap. In our protocol, we aimed
pecifically at distinguishing these two projection systems, by including
 ROI to separate the medial projections of the UF from the more lateral
rojections of the EmC ( Von Der Heide et al., 2013 ). We acknowledge
he difficulty of completing this task accurately, as in most subjects it
ed to a reduced amount of UF streamlines reaching the superior frontal
egions, with respect to those reaching the medial orbito-frontal regions.

SLF1 : The exact human morphology of the SLF1 remains controver-
ial, and its tractography-based reconstruction challenging, with incon-
istent results ( Wang et al., 2016 ). Particularly, while the literature over-
ll agrees on its posterior terminations in the superior parietal lobule
nd precuneus, it remains unclear whether the anterior terminations
f the SLF1 extend anteriorly to connect regions in the SFG and possi-
ly cingulate cortex ( Howells et al., 2018; Kamali et al., 2014; Makris
t al., 2005; Thiebaut de Schotten et al., 2011 ), as observed in monkeys
 Schmahmann and Pandya, 2006; Thiebaut de Schotten et al., 2011 )
, or whether they are constrained to the rostral part of the supplemen-
ary motor area (SMA) and pre-SMA ( Hecht et al., 2015; Jang and Hong,
012; Wassermann et al., 2013 ) . This controversy arises from the fact
hat some previously published tractography studies could not recon-
truct the most anterior streamlines of the SLF1 ( Jang and Hong, 2012;
assermann et al., 2013 ). While this might reflect a true inter-species

ifference, it might also be a tractography error due to the location of
hese fibers. They lie just underneath the u-shaped fibers of the SFG,
n very close proximity to the CB, and at the intersection with major
nferior-superior projection systems (CST and Corona Radiata) and the
ateral projections of the CC. For the virtual dissection of the SLF1 we
dopted a protocol similar to what previously described by Howell et al.
2018) and we could recover the most frontal projections of the SLF1 in
ost of the subjects ( Howells et al., 2018; Thiebaut de Schotten et al.,
011 ). However, even in these high-quality data, some subjects showed
nly few streamlines in this most frontal region, and a few subjects
howed no streamlines at all. Future studies aimed at post-mortem val-
dation of the anatomy of the frontal SLF1 will help elucidate whether
his is due to the anatomical configuration and anatomical variability
f this pathway or due to limitations of in vivo dMRI data ( Maffei et al.,
020 ). 

.2. Automated reconstruction 

We compared two ways in which our manual annotation protocol
ould be deployed for automated tractography: (i) Use the manually
nnotated streamlines to compute the anatomical neighborhood priors
n TRACULA, and (ii) Use the manually defined ROIs as post hoc con-
traints in a multi-ROI method. We evaluated the accuracy of bundles
econstructed automatically with each approach, by comparing them
o the manually annotated bundles in the same subject. We found that
RACULA achieved higher sensitivity (TPR) for the same reconstruc-
ion error (MHD), both overall ( Fig. 8 ) and in individual bundles (Sup-
lementary Figs. S1–S3). When comparing the multi-ROI method at its
owest reconstruction error and TRACULA at the same reconstruction
rror, the sensitivity achieved by TRACULA was an order of magnitude
igher ( Fig. 9 ). Performance gains with TRACULA were similar for as-
ociation, commissural, and projection pathways ( Fig. 10 ). Its perfor-
ance was invariant to the inter-subject registration method ( Fig. 11 ).

inally, when compared at the same level of sensitivity, the test-retest re-
iability of along-tract profiles extracted from microstructural measures
as approximately four times greater for TRACULA than the multi-ROI
pproach ( Fig. 12 ). 

These performance differences may seem surprising, especially given
hat TRACULA is sometimes lumped together with multi-ROI methods
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n the literature. However, they can be explained by two fundamental al-
orithmic differences. First, multi-ROI methods typically use local trac-
ography, which is prone to stopping or taking the wrong turn when it
oes through challenging areas with complex fiber configurations. The
ole of the ROIs in a multi-ROI method is to remove these erroneous
treamlines, but there is no guarantee that any correct streamlines will
e left. The global tractography used by TRACULA models the complete
rajectory of a bundle between its termination regions as a parametric
urve. Thus, it is not possible for the paths generated by TRACULA to
top half-way between the regions. 

The other key algorithmic difference is in how each method incorpo-
ates prior knowledge on the anatomy of the pathways of interest. Multi-
OI methods contain information about a set of regions that the path-
ay goes through, in template space coordinates. These regions are typ-

cally few (2,3), distant from each other, and deterministic. The anatom-
cal neighborhood priors used by TRACULA contain detailed probabilis-
ic information on how likely the pathway is to go through or next to
ach of the labels in a whole-brain anatomical segmentation. This in-
ormation is encoded for anatomical neighbors in multiple directions
nd at multiple points along the pathway. These anatomical neighbor-
ood priors implement the same idea as the “Markov priors ” used in the
reeSurfer automated subcortical segmentation and cortical parcellation
 Fischl et al., 2002 ; Fischl et al., 2004 ). The difference is that TRACULA
ses the anatomical neighborhood priors to generate streamlines, not to
lassify voxels. 

The fact that TRACULA relies on a structural segmentation from a
1-weighted scan may be viewed as a limitation. However, we have
reviously shown that TRACULA is robust to errors in the boundaries
f the structural segmentation labels, or even to using a segmentation
apped from a different subject ( Zöllei et al., 2019 ). That is because
RACULA only uses information on the relative position of WM path-
ays and structural segmentation labels ( e.g ., how frequently is pathway
 medial to structure B), and not on their exact spatial coordinates. Fur-

hermore, we have recently shown that it is possible to infer the full
et of FreeSurfer segmentation and parcellation labels from a dMRI scan
sing deep learning ( Ewert et al. 2020 ). Thus, a low-quality or missing
1-weighted scan is not an insurmountable problem. 

A possible limitation of this study is that we did not compare TRAC-
LA to all possible multi-ROI methods. However, we compared it to the
anual annotation, which represents the best-case scenario of multi-ROI
erformance. The manually annotated bundles were generated from the
 max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 Connectom data, using state-of-the-art orientation
econstruction and probabilistic tractography techniques, augmented by
ainstaking manual editing. The bundles reconstructed automatically
y TRACULA from b = 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 data exhibited high sensitivity and
ow reconstruction error with respect to the manually annotated bun-
les. In addition, we compared TRACULA to a multi-ROI method that
as automated and used the same input data and the same orientation

econstruction method as TRACULA. In that comparison, TRACULA ex-
ibited much higher accuracy and reliability. In the future, it is possible
o incorporate orientation reconstruction methods other than the ball-
nd-stick model in TRACULA. 

An alternative to performing tractography (with TRACULA or a
ulti-ROI method) is to perform volumetric segmentation of the white
atter, i.e., to assign voxels to tract labels based on the local diffusion

rientations ( Hagler et al., 2009 ; Bazin et al., 2011 ; Ratnarajah and Qiu
014 ; Wasserthal et al., 2018 ; Li et al., 2020 ). For a proper compari-
on between volumetric segmentation and TRACULA, the same manual
nnotations should be used as the ground truth, both to train the two al-
orithms and to evaluate their accuracy. However, volumetric segmen-
ation methods that rely on convolutional neural networks, whether 2D
 Wasserthal et al., 2018 ) or 3D ( Li et al., 2020 ), typically require more
han the 15 training subjects that we used in our leave-one-out study.
s a result, these networks are usually trained on tracts that have been

abeled by a different automated method. In a prior attempt to com-
are a volumetric segmentation method, TractSeg, to an older version
16 
f TRACULA, the same ground-truth tracts were used to evaluate the
ccuracy of both methods; however, only TractSeg had been trained on
hose ground-truth definitions, whereas TRACULA had been trained on
ifferent ones ( Wasserthal et al., 2018 ). Furthermore, a single, arbitrary
hreshold was applied to TRACULA, corresponding to a single operating
oint along the curves of Fig. 8 . A fair comparison would require that
ethods be matched along one of the axes of Fig. 8 ., i.e., that the speci-
city or the reconstruction error of two methods be compared when they
oth operate at the same level of sensitivity. While a direct comparison
ould be possible, by using automatically labeled training data (as in
asserthal et al., 2018 , Li et al., 2020 ) to train TRACULA, this would

reclude the painstaking, neuroanatomist-approved, manual annotation
pproach that we followed to develop our training set. 

Finally, our results demonstrate that tract-of-interest reconstruction,
here the task is to reconstruct certain well-known, anatomically de-
ned bundles, does not require a sophisticated dMRI acquisition proto-
ol. Our automated reconstructions from b = 1 , 000 𝑠 ∕ 𝑚 𝑚 

2 , 64-direction
ata achieved an overall sensitivity of 89% with respect to the manual
nnotations from b max =10 , 000 𝑠 ∕ 𝑚 𝑚 

2 , 512-direction data, for a recon-
truction error of 3 . 5 𝑚𝑚 for TRACULA and 4 . 2 𝑚𝑚 for the multi-ROI
ethod. Therefore, when the main use of dMRI data in a study is to re-

onstruct tracts of interest and analyze microstructural measures along
hem, the sophistication of the dMRI acquisition protocol should be de-
ermined by the microstructural measures and not by the tractography
tself. 

One aspect of the protocol that we did not investigate in this study is
he spatial resolution. Both the higher-quality data that we used for the
anual labeling and the lower-quality data that we used for the auto-
ated reconstruction had equal voxel sizes (1.5 mm isotropic). Larger

oxels can be common in clinical dMRI acquisitions, and our prior val-
dation studies have shown that the accuracy of axonal orientation es-
imates deteriorates when the dMRI voxel size increases from 1 mm
o 2 mm ( Jones et al., 2013 ). While we have no reason to expect that
his would impact the accuracy of TRACULA more than the accuracy of
ulti-ROI methods, this is a topic for future investigation. 

. Conclusion 

We have illustrated that TRACULA can take advantage of limited-
vailability, high-quality data that can only be acquired on a handful
f Connectom scanners worldwide, to reconstruct white-matter bundles
ith high accuracy from more modest and widely available dMRI data.
his allows the technological innovations of the HCP to benefit the wider
ommunity that does not have access to Connectom-style scanners. Both
ur WM tract atlas, which was annotated manually from Connectom
ata, and the software tools that can use it to reconstruct WM bundles
n routine-quality data, are freely available as part of FreeSurfer 7.2. 
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