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ABSTRACT

Identifying brain-based correlates of risk for future depression and anxiety severity in youth could improve prevention 
and treatment efforts. We tested whether connectome-based predictive modeling (CPM) based on resting-state func-
tional connectivity (FC) at baseline: (a) predicts future depression and anxiety severity during childhood and (b) gen-
eralizes to adolescence. We used two independent, longitudinal datasets including children from the Adolescent Brain 
Cognitive Development (ABCD) study and adolescents from the Boston Adolescent Neuroimaging of Depression and 
Anxiety (BANDA). ABCD included a cohort of 11,875 children ages 9–11 years old, and BANDA enrolled 215 adoles-
cents ages 14–17 years, of which ~70% reported a depressive or anxiety disorder. CPM with internal (within ABCD) 
and external validation (from ABCD to BANDA) used baseline whole-brain FC to predict depression and anxiety sever-
ity at a 1-year follow-up assessment. ABCD-derived functional connections, which we term “Symptoms Network”, 
were validated within BANDA to test model applicability in adolescence, which is a peak period for the emergence of 
internalizing disorders. Participants with complete data were included from ABCD (n  =  3,718, 52.9% girls, ages 
10.0 ± 0.6) and BANDA (n = 150, 61.3% girls, ages 15.4 ± 0.9). In ABCD, we found that FC predicted 1-year follow-up 
symptoms severity (ρ = 0.058, p = 0.040), measured with the Child Behavior Checklist Anxious/Depressed subscale. 
External validation in BANDA indicated that the Symptoms Network predicted 1-year follow-up symptoms severity 
(ρ = 0.222, p = 0.007), measured with the Revised Child Depression and Anxiety Scale t-transformed total score. In 
both ABCD and BANDA, FC enhanced the prediction of future symptom severity beyond baseline clinical and demo-
graphic information (baseline severity, sex, and age), including when correcting for mean head motion. The ABCD-
derived connections included contributions from somatomotor, attentional, and subcortical regions and were 
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1.  INTRODUCTION

Internalizing disorders, such as depression and anxiety, 
often co-occur throughout the course of childhood and 
adolescence (Auerbach et  al., 2022) and are common 
and debilitating (Avenevoli et  al., 2015; Essau, 2003, 
2008; Kessler et al., 2005). Early onset of either anxiety or 
depression contributes to a more persistent (Batelaan 
et al., 2014; Beesdo et al., 2007; Kessler et al., 2012) and 
more complex psychiatric comorbidity during adulthood 
(Auerbach et al., 2016, 2018). Several initiatives—such as 
the Human Connectome Project (HCP) and the Adoles-
cent Brain Cognitive Development (ABCD) study—
provide large-scale and specialized neuroimaging 
datasets that can characterize neurodevelopmental vul-
nerability to internalizing disorders. These datasets, com-
bined with recent advances in computational approaches, 
have enormous potential to augment our understanding 
of brain mechanisms related to depression and anxiety, 
which may improve our understanding of mental health 
as it develops in youth.

Functional connectivity (FC) during a resting state has 
identified promising neural correlates of depression and 
anxiety in functional magnetic resonance imaging (fMRI) 
studies. Depression is often characterized by altered FC, 
including hyperconnectivity of the default mode network 
(DMN), hyperconnectivity between the DMN and the 
frontoparietal network (FPN) often referred to as the cen-
tral executive network (but see Uddin et al., 2023 for a 
discussion about network nomenclatures), and hypocon-
nectivity between FPN and dorsal attention network 
(DAN; Kaiser et al., 2015). With respect to anxiety disor-
ders, research has observed within-network hypocon-
nectivity of the DMN, FPN, and salience network (or 
ventral attention network; VAN), DMN-FPN hypoconnec-
tivity, and VAN-sensorimotor network (SMN) hypocon-
nectivity (Xu et al., 2019). However, these findings often 
rely on cross-sectional studies of adults (MacNamara 
et al., 2016) with fewer studies focusing on longitudinal 
characterization during development.

The availability of open-access, longitudinal datasets 
coupled with advancements in computational approaches 

(e.g., machine learning-based predictive models) has pro-
pelled research focused on FC linked to internalizing 
symptoms in youth (Gracia-Tabuenca et al., 2024; Toenders 
et al., 2019). Studies suggest that distributed connectivity 
patterns among frontal, parietal, and subcortical regions 
predict symptom severity in healthy or depressed-anxious 
children (Ho et  al., 2022; Whitfield-Gabrieli et  al., 2020), 
female adolescents with no history of depressive disorder 
(Jin et al., 2020), adolescents with internalizing disorders 
(Chahal, Kirshenbaum, et  al., 2021; Chahal, Weissman, 
et  al., 2021), and unaffected college students (He et  al., 
2021). Yet, to date, no study has investigated FC as a pre-
dictor of prospective symptom severity in children and 
then examined the generalizability to adolescents in inde-
pendent data. This data-driven approach would enable the 
detection of neural patterns in children and extend them to 
adolescents, establishing whether mechanisms associ-
ated with mental health and neural development in child-
hood are also core to adolescence.

To address this gap, we identified FC predictors of 
internalizing symptoms over 1  year in predominantly 
healthy children and then tested whether these patterns 
predicted prospective anxious and depressive symptom 
severity in an independent sample of predominantly clin-
ical (~70%) adolescents. Connectome-based predictive 
modeling (CPM; Shen et  al., 2017), a data-driven 
machine-learning approach designed to investigate 
brain associations with continuous phenotypes, was 
applied in two independent, longitudinal, and clinically-
heterogeneous datasets. The discovery dataset com-
prised a large community cohort from the ABCD study 
(Barch et  al., 2018) of predominantly healthy children 
recruited during a peak time period for the emergence of 
anxiety disorders. The extension dataset included ado-
lescents from the Boston Adolescent Neuroimaging of 
Depression and Anxiety (BANDA; Hubbard et al., 2020, 
2024) HCP, a study that aimed to investigate depression 
and anxiety during a period of heightened vulnerability 
for internalizing disorders. Based on prior fMRI-FC stud-
ies investigating longitudinal predictors of depression 
and anxiety in youth (Ho et al., 2022; Whitfield-Gabrieli 

characterized by heterogeneous FC within adolescents, where the same region pairs were characterized by positive 
FC for some participants but by negative FC for others. In conclusion, FC may provide inroads for early identification 
of internalizing symptoms, which could inform preventative-intervention approaches prior to the emergence of affec-
tive disorders during a critical period of neuromaturation. However, the small effect sizes and heterogeneity in results 
underscore the challenges of employing brain-based biomarkers for clinical applications and emphasize the need for 
individualized approaches for understanding neurodevelopment and mental health.

Keywords: depression, anxiety, adolescence, functional connectivity, functional magnetic resonance imaging,  
longitudinal studies, machine learning
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et  al., 2020, see also reviews; Macêdo et  al., 2022; 
Toenders et al., 2019; van Tol et al., 2021), we expected 
that distributed FC patterns, including subcortical, 
occipital, and frontal regions, would predict internalizing 
symptoms across samples.

2.  METHODS

2.1.  Overview of datasets

Two independent longitudinal datasets were included 
(Fig. 1A). ABCD was utilized as the discovery dataset in 
CPM, and BANDA was leveraged to test the generaliz-
ability (for participant information, study design, symp-
tom assessment, MRI data and MRI processing for 
ABCD, see Supplementary Appendices S1 and S2, and 
for BANDA Supplementary Appendices S3 and S4). For 
both datasets, each site received Institutional Review 
Board approval from their institution and written informed 
consent and assent were received by the guardian and 
participating children.

2.1.1.  ABCD: Discovery dataset

ABCD is a publicly available, longitudinal, multi-site study 
in children (N = 11,875 from 21 sites) which recruited chil-
dren from the community and assessed the presence of 
mental disorders but did not specifically recruit clinical 
populations. At baseline, participants were ages 
9–11 years. Demographic and clinical information were 
obtained from the Annual Curated ABCD 4.0 Data 
Release (Barch et al., 2018). Resting-state fMRI (rs-fMRI) 
data (~20 minutes across four runs) were obtained from 
the ABCD-BIDS Community Collection 3165 (Feczko 
et al., 2021) and only included MRI data that passed the 
Data Analysis Imaging Center quality control (Chai et al., 
2012). These data had been fully preprocessed and ana-
lyzed by the DCAN Lab via the ABCD-BIDS MRI pipeline 
(Feczko et al., 2021), which had been adapted from the 
HCP minimal preprocessing pipeline (Glasser et  al., 
2013). The child’s depression and anxiety symptom 
severity was indicated via the Child Behavior Checklist 
(CBCL; Achenbach, 1991) Anxious/Depressed subscale 
t-transformed scores. The Anxious/Depressed subscale 
measures symptoms of anxiety and depression in chil-
dren, such as excessive worrying, sadness, withdrawal, 
and nervousness, based on caregiver reports. It includes 
13 items (range [0, 26]) with higher scores indicating 
greater symptom severity. See Supplementary Appendix 
S1 for further details.

We analyzed data collected between September 2016 
and March 2020, which reflected the baseline and 1-year 
follow-up (Fig.  1A). The final sample included children 
(n = 3,718; Supplementary Fig. S1A) with available symp-
tom severity reported at the baseline (CBCLbase) and 
1-year follow-up (CBCLy1), with no other family member 
scanned at another MRI site, and with at least 10 minutes 
of low-motion baseline rs-fMRI (FD < 0.25 mm).

2.1.2.  BANDA: Extension dataset

BANDA is a publicly available, longitudinal, single-site 
dataset that investigated depression and anxiety in ado-
lescents (Hubbard et al., 2020, 2024; Siless et al., 2020). 
Our research team collected these data from October 
2016 to November 2021 and enrolled depressed-anxious 
and healthy adolescents (N  =  215) ages 14–17  years. 
Data were obtained from the BANDA 1.1 Data Release 
(Hubbard et  al., 2024). MRI (~23  minutes across four 
runs) data were pre-processed via the HCP minimal pre-
processing pipeline (Glasser et al., 2013) and underwent 
fMRI quality control procedures (Morfini et  al., 2023). 
Symptom severity was assessed via the self-report 
Revised Child Depression and Anxiety Scale (RCADS) t-
transformed total scores (de Ross et  al., 2002) which 

Fig. 1.  Dataset design and connectomes construction. 
(A) Schematic representation of ABCD and BANDA study 
designs as a function of mean participant age at each 
study visit. Black dots indicate when rs-fMRI data and 
symptom severity reports were acquired. (B) rs-fMRI data 
for each participant were parcellated into 333 cortical 
(Gordon et al., 2016) and 19 subcortical (Fischl et al., 
2002). The time series of each region was correlated with 
that of every other region to form a participant-specific 
connectome, wherein each region-to-region correlation 
represents a functional connection. Correlation coefficients 
were Fisher-z transformed. ABCD: Adolescent Brain 
Cognitive Development Study; BANDA: Boston Adolescent 
Neuroimaging of Depression and Anxiety; rs-fMRI: resting-
state functional magnetic resonance imaging.
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assess overall levels of anxiety and depressive symp-
toms in youth, covering multiple specific disorders (e.g., 
generalized anxiety, social phobia, panic disorder, major 
depression) through self-report. See Supplementary 
Appendix S2 for further details. The final sample included 
adolescents (n  =  150; Fig.  1A) with available symptom 
severity reported at the baseline (RCADSbase) and 1-year 
follow-up (RCADSy1), and with low-motion rs-fMRI data 
at baseline (Supplementary Fig. S1B).

2.2.  Functional connectomes construction

The degree to which different regions of the brain have 
synchronized activity can be summarized in a functional 
connectome, that is, a matrix of the correlations between 
the time series of every brain region to that of every other 
region. Connectomes for ABCD rs-fMRI data were con-
structed and released by the DCAN lab, with the brain 
parcellated into 352 regions (333 cortical from Gordon 
et al., 2016, and 19 subcortical from Fischl et al., 2002). 
For consistency, we adopted the same parcellation and 
method to build the connectomes for the BANDA adoles-
cents (Fig. 1B), by calculating Fisher r-to-z-transformed 
Pearson’s correlation coefficients between the time series 
of every region-to-region pair (i.e., one functional con-
nection). This resulted in 61,776 unique functional con-
nections, that is, [352 × (352-1)] / 2 unique connections, 
which were used as predictors in CPM.

2.3.  ABCD Connectome-based predictive modeling 
analyses

CPM with leave-half-sites-out cross-validation (recom-
mended for large sample sizes; Scheinost et  al., 2019) 
consisted of five broad steps (Fig. 2A, B). First, all ABCD 
children acquired from a random selection of half of the 
ABCD sites were assigned to either a training or a testing 
set (Fig. 2A) and kept separate for all procedures of the 
same iteration. In light of the multi-site and nested nature 
of ABCD (which comprises members of the same family), 
splitting participants based on MRI site minimized the 
risk of information leakage between sets (Rosenblatt 
et  al., 2024) and allowed to test for generalizability 
between different MRI sites within the ABCD dataset. 
Second, within the training set only, functional connec-
tions that correlated with CBCLy1 (i.e., depression and 
anxiety severity at the 1-year follow-up) at a Spearman’s 
rank correlation p  <  0.001 were retained (Shen et  al., 
2017). We used Spearman’s, rather than Pearson’s, cor-
relation to minimize the effect of outliers given that CBCL 
scores were positively skewed (Supplementary Fig. S2). 
Third, for each child, we calculated a composite FC mea-
sure (i.e., network strengths; Shen et  al., 2017) as the 

sum of the z absolute values of the connections compris-
ing the Network. Network strengths and CBCLy1 in the 
training set were fit with a linear regression model. The 
fitted line was then used to generate CBCLy1 predicted 
scores from network strengths in the testing set. Note 
that in the testing set pipeline, the CBCLy1 observed 
scores were not used and the CBCLy1 predicted scores 
were derived purely from network strengths (i.e., FC). 
Fourth, the networks’ prediction performance was 
assessed in the testing set by computing a Spearman’s 
partial correlation to compare observed versus predicted 
CBCLy1, while correcting for symptom severity at base-
line (i.e., CBCLbase), sex at birth, age, and mean head 
motion. These four steps were iterated 100 times gener-
ating a set of Spearman’s ρ values which were averaged 
to represent the ability of the Network to predict CBCLy1 
within ABCD children. Fifth, as the training and testing 
sets were not independent across iterations resulting in 
an overestimation of the degrees of freedom in paramet-
ric statistics, the significance of the Network’ prediction 
was assessed via nonparametric permutation testing 
(Fig.  2B). That is, the above four steps were permuted 
1,000 times using randomly shuffled data (i.e., the con-
nectome of a participant was used to predict the CBCLy1 
of another random participant) generating a set of plausi-
ble, yet not-observed, connectivity-to-symptom matches. 
The permuted ρ values generated represented an empir-
ical null distribution against which we compared the pre-
diction generated by the observed data. Specifically, the 
Network’ prediction significance (pperm) was defined as 
the proportion of permuted ρ values larger than the true ρ 
values (Shen et al., 2017). That is, the Network was con-
sidered to be significantly predictive only if less than 5% 
of the 1,000 predictions generated from shuffled data 
outperformed the prediction generated from observed 
data. This approach guards against the potential bias of 
using correlation in well-powered samples as it focuses 
on whether the observed effect is unusual, rather than 
simply significant, as compared to other scenarios which 
would have had a similar likelihood of being driven by 
sample size alone.

2.4.  BANDA extension analyses

To test the generalizability of the predictions from the 
ABCD children to the prediction of prospective symp-
tom severity in adolescents, we externally validated 
within BANDA (Shen et al., 2017) the ABCD-derived set 
of connections (Fig. 2C), which we refer to the “Symp-
toms Network” for brevity (but see Uddin et al., 2023 for 
some controversies regarding network nomenclature). 
The Symptoms Network, generated from all ABCD chil-
dren, were used to generate composite measures of FC 
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(i.e., network strengths) from the connectomes of each 
BANDA adolescent. These composite FC measures 
generated in BANDA were correlated with RCADSy1, 
using Spearman’s partial correlation (correcting for 
RCADSbase, sex at birth, age, and mean head motion), 
effectively testing whether FC predicted prospective 
depression and anxiety symptom severity in an inde-
pendent cohort of adolescents mostly affected by 
depression and anxiety.

3.  RESULTS

3.1.  Participants

Demographic and clinical characteristics of the included 
ABCD children and BANDA adolescents are summarized 

in Figure 3 and Supplementary Tables S1–S3. Depression 
and anxiety severity—on average—remained stable in 
ABCD (CBCLbase = 53.51 ± 6.02; CBCLy1 = 53.48 ± 6.06) 
and decreased, that is, improved, in BANDA (RCADSbase 
= 49.11 ± 15.28; RCADSy1 = 44.62 ± 11.39) mostly driven 
by the depressed-anxious participants (RCADSbase  = 
56.47 ± 14.26; RCADSy1 = 49.07 ± 11.50) while the healthy 
group reported stable symptom severity between study 
visits (RCADSbase = 36.04 ± 4.43; RCADSy1 = 36.70 ± 5.25). 
Symptom severity scores reported at the baseline and at 
the 1-year follow-up assessments were correlated (Sup-
plementary Fig.  S2) in both ABCD children (r  =  0.68, 
p = 0.001) and BANDA adolescents (r = 0.63, p = 0.001). 
Self-reported depression and anxiety severity (RCADS 
subscales) were strongly correlated in adolescents  
both at baseline (Pearson’s two-sided r  =  0.77 ± 0.11, 

Fig. 2.  Connectome-based predictive modeling in ABCD and external validation in BANDA. (A) In ABCD participants, 
CPM with 100 iterations and 1,000 permutations of leave-half-sites-out cross-validation used baseline whole-brain 
FC to predict symptom severityy1, correcting for symptom severitybase, sex at birth, age, and mean head motion. The 
ABCD dataset was evenly split into a training and testing set. Within the training set, functional connections significantly 
correlated with symptom severityy1 at p < 0.001 were retained. Network strengths were calculated as the sum of 
connection weights (i.e., absolute z-values). Network strengths and symptom severityy1 were fit with a linear model in 
the testing set. The fitted line was used to generate predicted symptom severityy1 scores from FC in the testing set. 
Networks’ prediction performance was evaluated as the mean correlation between the observed and predicted symptom 
severityy1 scores. (B) Network’s prediction significance was assessed via nonparametric permutation testing with 1,000 
permutations using randomly shuffled data. Significance (pperm) was defined as the percentage of permuted ρ values 
larger than the ρ value generated from the observed data. (C) The ABCD-derived Network was externally validated in the 
independent BANDA dataset. Network strength scores were calculated for each BANDA adolescent and used to predict 
symptom severityy1. Generalizability was defined as the Spearman’s correlation between the network strengths and 
symptom severityy1, correcting for symptom severitybase, sex at birth, age, and mean head motion. ABCD: Adolescent Brain 
Cognitive Development Study: BANDA, Boston Adolescent Neuroimaging of Depression and Anxiety; CPM: Connectome-
Based Predictive Modeling; y1: 1-year follow-up assessment; FC: Functional Connectivity.
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p-corrected Bonferroni < 0.0001, r range [0.56, 0.99]) and at 
the 1-year follow-up ((r = 0.73 ± 0.14, p-corrected Bonferroni 
< 0.0001, r range [0.42, 0.99]); Supplementary Table S4).

3.2.  ABCD connectome-based predictive modeling

CPM revealed that baseline FC significantly predicted 
CBCLy1 (correcting for CBCLbase, sex at birth, age, and 
mean head motion) in ABCD children (ρ  =  0.058, 
pperm = 0.040) reliably across multiple iterations of cross-
validation and permutation testing. As expected, the distri-
bution of shuffled-predicted correlations (Supplementary 
Fig.  S3) was centered around ρ  =  0 but could range 
between negative and positive values. A negative correla-
tion in this context (i.e., between predicted and observed 

scores) would have represented cases where the predic-
tions were inaccurate.

Sensitivity analyses suggest that these effects were 
robust to employing varied CPM analytical parameters, 
including different p-value thresholds for connection 
selection (0.05, 0.01, or 0.005) and for using raw rather 
than t-transformed severity scores severity scores 
(ρ  =  0.062  ±  0.003 with range [0.058, 0.065]; 
p = 0.029 ± 0.011 with range [0.012, 0.038]). Additionally, 
there were no significant associations between in-
scanner mean head motion (Supplementary Fig.  S2), a 
confounding factor that artificially increases prediction 
performance if correlated with the predicted variable 
(Shen et al., 2017), and CBCLbase (r = 0.01, p = 0.703) or 
CBCLy1 (r = -0.02, p = 0.177).

These results were generated based on iterations of 
ABCD subsets of participants via the cross-validation 
approach and showed that results were reliable and robust 
regardless of the specific subset of individuals considered. 
Accordingly, we described and tested the performance of 
the connections that significantly correlate with CBCLy1 
scores (adjusted for CBCLbase, sex, age, and mean head 
motion) in all ABCD children. For brevity, we refer to this 
set of brain functional connections as the “Symptoms Net-
work”, which reflects results from the model: depression 
and anxiety t-transformed scores y1 = depression and anx-
iety t-transformed scores base + sex base + age base + mean 
head motion base + functional connectivity base.

3.3.  Contextualizing the symptoms network

The Symptoms Network was characterized by connec-
tions distributed across the brain (Fig. 4), comprising 251 
unique connections representing 0.41% of all possible 
connections.

To aid results interpretability, we grouped each cortical 
region to one of seven canonical brain networks (Yeo 
et al., 2011; see Supplementary Appendix S5 and Fig. S6) 
and counted the connections of all within- and between-
canonical-network pairs. These counts were then nor-
malized by the overall possible network-network 
connection counts (Greene et al., 2018; see Supplemen-
tary Appendix S6) which characterize the relative contri-
bution of the canonical networks to the prediction of the 
future symptom severity (CBCLy1 in children and RCADSy1 
in adolescents). Normalized count scores greater than 1 
reflect canonical network pairs that are overrepresented 
in the prediction of symptom severity, that is, they con-
tributed to prediction more than would be expected by 
chance.

The Symptoms Network (Fig. 5A) highlights three main 
patterns of (overrepresented) contributions involving 
sensory, attentional, and subcortical regions. The most 

Fig. 3.  Depression and anxiety severity and age 
distributions in ABCD children and BANDA adolescents. (A) 
Distributions of depression and anxiety severity scores for 
ABCD (left; CBCLbase = 53.48 ± 6.06; CBCLy1 = 53.51 ± 6.02) 
and for BANDA (right; RCADSy1 = 49.11 ± 15.28; 
RCADSbase = 44.62 ± 11.39). Controls and Depressed/
Anxious group assignments in BANDA were based on a 
clinician evaluation of diagnoses as per the Diagnostic 
and Statistical Manual of Mental Disorders 5th edition 
(American Psychiatric Association, 2013) assessed with the 
Kiddie Schedule for Affective Disorders and Schizophrenia 
Present and Lifetime Version (Kaufman et al., 1997). (B) Age 
distributions at the time of study assessments in ABCD 
children (top, red distributions) and BANDA adolescents 
(bottom, blue distributions). ABCD: Adolescent Brain 
Cognitive Development Study; BANDA: Boston Adolescent 
Neuroimaging of Depression and Anxiety; CBCL: Child 
Behavior Checklist, Anxious/Depressed subscale t-
transformed scores; RCADS: Revised Child Depression and 
Anxiety Scale, t-transformed total scores.
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numerous connections and most widely distributed pat-
terns involved the SMN, involving every combination of 
network-network pairs, including within-SMN, between 
SMN to all other cortical networks, and SMN-to-
subcortical regions. Notably, the only non-represented 
contributions were from SMN-FPN. Furthermore, there 
were numerous contributions involving the VAN, includ-
ing within-VAN, between VAN or DAN to other cortical 
networks, and VAN-to-subcortical regions. Lastly, pre-
dictions relied on numerous connections involving sub-
cortical regions which were more sparsely connected to 
associative areas (DMN, FPN, and VAN) and subcortical 
to SMN. The most numerous contributions in the 
subcortical-SMN connections involved the thalamus and 
basal ganglia (caudate, putamen, and pallidum; Fig. 5A, 
bottom).

Similar patterns are highlighted by the overall abso-
lute, rather than normalized, network-network connec-
tion counts (Supplementary Fig. S7).

To better describe the FC profiles of the Symptoms 
Network in adolescents, we grouped the connections of 
the Symptoms Network into connections that were either 

positively or negatively correlated with RCADSy1 (repre-
senting brain-behavior associations at the group level). 
For each set of connections and network-to-network pair 
separately, we calculated the mean FC of each partici-
pant independently for the selected connections (repre-
senting FC profiles at the individual level). Figure  5B 
represents the within-participant FC distribution by 
network-to-network pairs, where each dot in the plot is 
the mean FC value of one participant.

The mean FC of the Symptoms Network was highly 
heterogeneous. In most network-to-network pairs, 
roughly half of the adolescents were characterized by 
positive FC and half by negative FC, that is, the partici-
pants’ FC were distributed around a mean connectivity of 
zero (e.g., see the FC distribution of within-limbic, DMN-
DAN, limbic-FPN, SMN-limbic, and subcortical-SMN 
among others in Fig.  5B). Virtually every network-to-
network comprised both connections that were either 
positively or negatively correlated with future symptom 
severity–that is, most network-to-network pairs are 
included in both Figure 5B top and bottom plots (e.g., see 
within-VAN). Furthermore, results were mixed also with 
respect to the association with future symptom severity—
wherein strong FC of a network-to-network pair was 
associated with worse or milder symptom severity 
depending on the specific connection. For example, 
within-SMN connections were characterized by positive 
FC among all included adolescents whether positive FC 
was correlated with worse (Fig.  5B, top) or with mild 
(Fig. 5B, bottom) symptom severity.

However, some networks were characterized by simi-
lar FC patterns. Within-network connections of VAN-
VAN, SMN-SMN, and limbic-limbic consistently displayed 
stronger positive FC, indicating cohesive activity patterns 
within each canonical functional network. With respect to 
subcortical connections (Supplementary Fig. S8), mean 
FC profiles showed similar heterogeneity wherein con-
nections were mostly characterized by positive FC and 
every network-network pair comprised both positive and 
negative connections. However, as compared to other 
subcortical-to-cortical connections, the pallidum (to 
SMN) and amygdala (to DMN and to DAN) FC values 
were less spread, suggesting higher concordance 
between participants.

3.4.  Extension of the symptoms network from 
ABCD to BANDA

The Symptoms Network, generated from ABCD, signifi-
cantly predicted RCADSy1 in BANDA adolescents (Spear-
man’s rank correlation ρ  =  0.236, p  =  0.004, mean 
absolute error [MAE]  =  9.40, root mean square error 
[RMSE] = 14.54). Critically, the prediction held even after 

Fig. 4.  Symptoms Network. CPM identified a predictive 
network in ABCD representing functional connections 
correlated with CBCLy1 correcting for CBCLbase, sex, 
age, and mean head motion. The top panel reflects 
the distribution of the regions involved in at least one 
connection with another region in the Symptoms Network, 
color coded by absolute connection count. The chord 
plot (bottom left) depicts the spatial distribution of all 
identified connections based on anatomical macroscale 
lobe definition. The brain images (bottom right) depict 
the spatial distribution and degree (i.e., number of non-
zero connections represented by the size of the node) 
of the Symptoms Network. For visualization purposes, 
only regions with degree ≥ 8 are displayed on the brain 
rendering images.
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partialling out the effect of RCADSbase, sex at birth, age, 
and mean head motion (Spearman’s rank partial correla-
tion ρ = 0.222, p = 0.007, MAE = 9.82, RMSE = 14.67; 
Supplementary Fig. S4).

3.5.  Specificity of the symptoms network

We conducted specificity analysis for the Symptoms Net-
work in both ABCD and BANDA datasets. In ABCD, 
specificity analyses (Supplementary Fig. S3) showed that 
the CBCL Anxious/Depressed subscale (i.e., the CBCLy1) 
was the CBCL subscale (out of 20 subscales) with the 
strongest correlation to the network strengths (i.e., FC) 
defined by the Symptoms Network. Note, differently from 
how we evaluated the performance and significance of 
the Symptoms Network, Supplementary Figure  S3 
reports the results of Spearman’s partial correlations 
generated on the full sample (n = 3,718) without employ-
ing cross-validation nor permutation testing. Thus, these 
are correlations and not predictions. As such, it was 

expected that the correlation (ρ = 0.198, Supplementary 
Fig. S3) would be inflated as compared to the predictions 
(ρ  =  0.058), which were generated with a conservative 
approach.

In BANDA, specificity analyses revealed that RCADSy1 
were the scores that the Symptoms Network predicted 
best among other self-reported measures of other psy-
chopathology, cognitive, and general demographic mea-
sures (Supplementary Fig. S4), acquired as part of the full 
protocol for the BANDA study (for further details see Sup-
plementary Appendix S3 and Hubbard et al., 2024). This 
possibly suggests that the Symptoms Network was sen-
sitive to internalizing symptoms rather than reflecting a 
general vulnerability to psychopathology or other demo-
graphic characteristics. Furthermore, in-scanner head 
mean motion was not correlated with RCADSbase 
(r < 0.001, p = 0.987) but was negatively correlated with 
RCADSy1 (r = -0.02, p = 0.014; Supplementary Fig. S4). 
Quality control plots (Morfini et  al., 2023) showed no 
evident bias in the connectivity estimates of each adoles-

Fig. 5.  Network functional connectivity profiles characterization. (A) Normalized connection counts of overrepresented 
canonical cortical-to-cortical and cortical-to-subcortical pairs of the Symptoms Network. (B) Boxplots represent the 
distribution of mean FC values among connections from overrepresented network-network pairs, calculated for each 
participant separately. For interpretation purposes, we report separately the mean FC of the connections that were 
positively (top, purple) or negatively (bottom, green) correlated with RCADSy1. The numbers at the top of the graph 
represent the absolute connection counts of each network-network pair. For example, each value in the VAN-VAN 
distribution (panel B, purple) represents the mean FC of 10 connections for an individual participant. DAN: Dorsal Attention 
Network; DMN: Default Mode Network; FPN: Frontoparietal Network; SMN: Somatomotor Network; VAN: Ventral Attention 
Network.
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cent (Supplementary Fig.  S5A) but suggested the 
presence of some residual effect of head motion at the 
group level (Supplementary Fig. S5B). Thus, the potential 
detrimental effect of motion-correlated FC was further 
minimized by adjusting all ABCD and BANDA analyses 
for mean head motion.

4.  DISCUSSION

Recent research has advanced the neural characteriza-
tion of internalizing disorders in youth, but no research 
has investigated the generalizability of neural correlates 
of prospective symptom severity between childhood and 
adolescence. Addressing this gap, a CPM approach 
used in the childhood cohort (ABCD) identified a set of 
connections, which we term “Symptoms Network”, 
whose functional connectivity (FC) was related to individ-
ual differences in symptom severity at a 1-year follow-up. 
The Symptoms Network significantly predicted future 
symptom severity in children, correcting for baseline 
symptom severity, sex, age, and in-scanner mean head 
motion. Then, we demonstrated that symptom predic-
tions derived from the Symptoms Network generalized to 
an independent sample of adolescents (BANDA) over-
sampled for internalizing disorders. Together, these 
results suggest that brain FC patterns associated with 
childhood depression and anxiety may persist during 
adolescence. Our results might also suggest that brain 
functional patterns associated with adolescent vulnera-
bility to anxiety and depression may be identifiable earlier 
during childhood.

The Symptoms Network comprised distributed con-
nections (Fig. 4), highlighting the contribution of multiple 
FC patterns, consistent with recent findings (Gracia- 
Tabuenca et al., 2024; He et al., 2021; Ho et al., 2022; Jin 
et al., 2020; Whitfield-Gabrieli et al., 2020). The contribut-
ing connections predominantly involved somatomotor, 
attention, and subcortical regions (Fig.  5), regions that 
have been previously investigated (largely by cross-
sectional studies of affected adults) but that are overall 
less emphasized in the existing literature. Connections 
from the attentional and somatomotor networks might be 
indicative of heightened somatic awareness, hyper-
sensitivity to bodily sensations even at rest, and states of 
ruminative or inward oriented attention, which often char-
acterize anxious (Bouziane et  al., 2022; MacNamara 
et al., 2016; Sylvester et al., 2013) and depressive condi-
tions (Cui et al., 2024; Kaiser et al., 2015; Liu et al., 2019; 
Tse et  al., 2024). Furthermore, numerous connections 
were found also within the SMN and between the SMN to 
frontal cortical networks (i.e., DMN, DAN, and VAN). The 
brain cortical development follows a sensorimotor-to-
associative gradient, wherein sensory regions tend to 

mature earlier compared to associative areas (Baum 
et al., 2022; Chai et al., 2012; Gogtay et al., 2004; Sydnor 
et al., 2023). Our results might suggest that regions (i.e., 
SMN) which tend to reach within-network coherence ear-
lier during the lifespan (Bethlehem et al., 2022; Gogtay 
et  al., 2004) might already reflect certain signatures of 
vulnerability to internalizing disorders and may explain 
why these patterns can be identified as early as in child-
hood and even at rest.

Contrary to our hypotheses, predictive contributions 
in our model relied less than expected on the DMN, FPN, 
and other frontal or associative regions. These regions 
have been often linked to symptom severity in depres-
sion and anxiety via DMN hyperconnectivity or DMN-FPN 
dysregulation (Kaiser et al., 2015; Menon, 2011; Sheline 
et al., 2009) and are common targets of neuromodulatory 
interventions for depression (Mayberg et al., 2005; Siddiqi 
et al., 2020; Uddin et al., 2025; Zhang et al., 2023). Our 
results do not imply that the DMN, FPN, and other well-
replicated findings did not contribute, nor are they unre-
lated to symptom severity or predictions in our model. 
Rather, we found that networks that undergo substantial 
reorganization during development (i.e., SMN and sub-
cortical) may offer additional predictive value and may 
also be associated with future symptom severity. Further-
more, recent evidence suggests a key involvement in 
depression of the salience network (Lynch et  al., 
2024)—which overlaps with, but is not identical to, the 
FPN used here. Specifically, the salience network is 
expanded in depression, occupying a greater proportion 
of the cortex and encroaching regions that are assigned 
to adjacent networks in healthy controls. Our CPM 
approach selected connections regardless of network 
affiliation, yet our interpretation relied on a priori 
parcellation-based assignments. This may have assigned 
connections at the border of the FPN to adjacent net-
works instead, such as the VAN, which could potentially 
explain the importance of VAN-to-other network contri-
bution to the prediction of future symptoms and the het-
erogeneity in FC profiles found within each set of 
connections. Lastly, as our model was trained on primar-
ily healthy children, it may also have captured a distinct 
signature of future risk rather than signatures of active 
psychopathology. These findings suggest that risk and 
disorder expression may involve different circuit-level 
signatures, with implications for tailoring prevention inter-
ventions specifically more so than treatment.

Adolescents were characterized by substantial het-
erogeneity in their predictive FC profiles. Across most 
brain regions, mean FC values were widely-distributed 
among adolescents and centered around weak positive 
scores, in line with past findings (Goldstein-Piekarski 
et al., 2022; Kaiser et al., 2015; MacNamara et al., 2016), 
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with a minority of adolescents being characterized by 
negative values (Fig. 5B; Supplementary Fig. S8). Virtu-
ally all network-to-network pairs (Fig. 5; Supplementary 
Fig. S7) included some connections whose stronger pos-
itive FC predicted more severe symptoms and some con-
nections whose stronger positive FC predicted milder 
symptom severity. This pattern indicates that—on aver-
age across individuals—all identified connections con-
tributed to the predictive model. However, the relevance 
to the prediction of each connection varied for every par-
ticipant: a given connection might be a “protective” (i.e., 
associated with symptom improvement), “risk” (i.e., 
associated with symptom worsening), or neutral factor 
(i.e., marked by weak or near-zero association with symp-
tom change), depending on the individual’s unique con-
nectivity profile. This suggests that multiple, distinct 
neural mechanisms might contribute meaningfully to 
similar outcomes (Westlin et  al., 2023), highlighting the 
potential shortcomings of uniform treatment approaches 
that do not account for individual differences. Such 
heterogeneity—where individuals with comparable 
symptom profiles may exhibit different neural correlates—
ultimately underscores the need to develop interventions 
tailored to the individual and informed by each individu-
al’s specific underlying mechanisms (Taxali et al., 2021).

The Symptoms Network predictions generalized from 
childhood to adolescence and were specific to anxiety 
and depression at both age ranges (Supplementary 
Figs. S3 and S4). This suggests the presence of common 
mechanisms associated with the psychopathology of 
both anxiety and depression, and at both age ranges. 
Anxiety and depression often co-occur; however, anxiety 
tends to emerge earlier in childhood (Kessler et al., 2005) 
and is often associated with homotypic and heterotypic 
trajectories with depression in adolescence. These data 
support the presence of an overlap between anxious and 
depressive states in adolescents (self-reported anxiety 
and depression correlations: baseline r = 0.822, p < 0.001; 
1-year follow-up r = 0.806, p < 0.001) and underscores 
the challenge of uncoupling them (Auerbach et al., 2022). 
Testing the temporal mechanisms between anxiety and 
depression was beyond the scope of this study, but the 
generalizability of the Symptoms Network’s predictions 
from a community-based cohort (ABCD) to a more 
focused cohort oversampled for internalizing disorders 
(BANDA) could be taken as support for shared mecha-
nisms underlying both anxiety and depression and high-
lights the importance of investigating the comorbidity 
between depression and anxiety.

Although both ABCD and BANDA are longitudinal 
observational studies, we observed a reduction in symp-
tom severity between baseline and 1-year follow-up study 
visits in BANDA anxious-depressed participants, while 

ABCD and BANDA healthy participants reported consis-
tently low and stable symptom levels. This reduction may 
reflect regression to the mean or natural recovery from 
more severe symptoms over time (Streiner, 2001). Our 
CPM model accounted for baseline symptom severity and 
included a healthy control group to mitigate such effects in 
predictive analyses (Yu & Chen, 2015), though they may 
still influence symptom distributions at individual time-
points. Given the episodic nature of depression, some par-
ticipants may have been assessed during a symptom peak 
at baseline. Furthermore, informal or formal support may 
have contributed to symptom improvement. Importantly, 
this variability in symptom trajectories represents mean-
ingful outcome patterns that predictive models must cap-
ture to provide added clinical value.

Nonetheless, the Symptoms Network predictions 
had modest effect sizes (ρ  =  0.058 for children and 
ρ = 0.222 for adolescents), underscoring the challenge 
of translating neural correlates into clinical tools. The 
goal of the present study was not to identify a single, 
unified, and unique set of connections that underlie 
future risk of depression and anxiety, but rather to 
assess whether FC enclosed some information that rep-
resented an early sign of vulnerability to future psycho-
pathology. Differently from other well-known descriptors 
of future risk of internalizing disorder–such as being 
female, young, and with a familial risk–FC can be con-
sidered a modifiable factor (Zhang et al., 2023) despite 
reliable configuration within individuals (Gordon et  al., 
2023) and with highly individualized topographic pat-
terns (Finn et al., 2015). This study examined whether 
distributed patterns of FC associated with adolescent 
internalizing psychopathology could be identified in 
childhood–a time period that often precedes disorder 
onset. Our findings offer insights into the role of FC in 
mental health as it evolves throughout youth.

Our results suggest that FC improved symptom pre-
diction. We took several analytical precautions to ensure 
the reliability, validity, generalizability, and specificity of 
our results. For reliability (Fig. 2A), we employed a leave-
half-sites-out cross-validation technique within the ABCD 
cohort, as this approach is recommended for large sam-
ples (Poldrack et al., 2020; Scheinost et al., 2019) with a 
nested data structure (Rosenblatt et  al., 2024). Since 
ABCD includes family members and multiple MRI sites, 
this ensured independence between splits of the cross-
validation. We used permutation testing (Fig. 2B) to define 
results significance, reducing false positives linked with 
the large sample size of ABCD. For generalizability, we 
tested whether the ABCD-derived network could gener-
ate significant predictions in independent data from 
BANDA adolescents (Fig.  2C). To address skewed 
symptom scores (Fig.  3A), we used Spearman’s rank  
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correlation and t-transformed scores for robust, interpre-
table results. Specificity was assessed by comparing the 
prediction for anxiety/depression severity with measures 
expected to be unrelated, in both children (Supplemen-
tary Fig.  S3) and adolescents (Supplementary Fig.  S4). 
We also controlled for baseline symptom severity, sex, 
age, and mean head motion, showing that our model 
detected effects beyond established predictors of future 
risk. Overall, this study afforded a novel framework that 
combines the advantages of large samples with those of 
specialized datasets. While large publicly available data-
sets are well powered to detect small heterogeneous 
effects, their broad scope limits the ability to detail spe-
cific phenomena of interest, afforded instead by usually 
smaller specialized datasets. By combining both 
approaches, results can capture community-wide effects 
while offering insights into targeted phenomena. Within 
this framework, the Symptoms Network represents a 
data-driven marker of early vulnerability–trained on 
mostly healthy children yet predictive in both healthy and 
clinically affected adolescents. Detecting signatures of 
psychopathology risk in mostly healthy individuals and 
validating them in individuals experiencing anxiety or 
depression poses a significant yet crucial challenge for 
mental health research. Achieving added predictive per-
formance despite these factors is critical for advancing 
early identification and prevention strategies, highlighting 
the potential value for real-world applications of biologi-
cal markers (Woo et al., 2017).

4.1.  Limitations

There are several noteworthy limitations. First, the data-
sets were not the same age ranges, and thus, not a direct 
validation of the ABCD-derived Symptoms Network. 
However, applying cross-validation internally to a large 
sample, such as ABCD, allows training and testing on 
well-powered subsamples of ~1,860 children (Garavan 
et al., 2018), guarding against overfitting. Second, while 
we referred to 9–10 years-old participants from ABCD as 
children, these ages could also be considered late child-
hood or early adolescence. Third, CPM tested for linear 
effects over time; however, it is plausible that symptom 
development could be characterized by non-linear 
trends. Fourth, although including all the possible func-
tional connections in our CPM approach is consistent 
with standard practice in the field (Kucyi et  al., 2021; 
Shen et al., 2017; Taxali et al., 2021), this high-dimensional 
feature space may reduce model precision due to multi-
collinearity and individual variability. Although this com-
prehensive modeling strategy captures the full 
connectome and preserves potential predictive signals, it 
may also contribute to higher rate of false negative errors 

and underestimation of true effect sizes. Fifth, although 
the prediction effect sizes were modest, they are in line 
with those reported in prior studies employing similar 
methodologies (Marek et al., 2022). It is noteworthy that 
unlike most studies, which examine the associations 
between brain connectivity and concurrent symptoms, 
the Symptoms Network predictions were further penal-
ized by the challenge of predicting future severity (rather 
than concurrent). This prediction was further constrained 
by statistical correction for baseline severity, which itself 
was strongly correlated with 1-year follow-up severity 
across participants (Supplementary Fig. S2). These fac-
tors underscore the robustness of the observed predic-
tive patterns despite the small effect sizes. Furthermore, 
small shifts in the effect size have been shown to impact 
disproportionally more the extreme cases of a distribu-
tion (Carey et  al., 2023). In the case of mental health, 
these would be the individuals suffering from depression 
and anxiety, for example. For those, even small effect 
sizes may be both meaningful and impactful, especially 
considering the compounded effects of early prevention 
or interventions over time.

5.  CONCLUSIONS

CPM identified FC patterns that predicted future depres-
sion and anxiety severity across independent samples 
of children and adolescents. Distributed connectivity 
patterns of attentional, sensorimotor, and subcortical 
systems contributed to the prediction of symptom 
severity at a 1-year follow-up assessment, suggesting 
that brain FC may meaningfully contribute to informing 
future depression and anxiety severity. Accordingly, 
neural networks may provide targets for the develop-
ment and testing of treatments for youth (e.g., real-time 
neurofeedback, transcranial magnetic stimulation). 
However, the modest effect sizes and heterogeneity of 
results, as found in our study and other prior work, high-
lights the challenges of translating brain-based cor-
relates into clinical tools and suggests that such 
correlates may not apply uniformly across individuals. 
Ultimately, our results point to the potential value of 
employing personalized approaches tailored to individ-
ual neurobiological profiles in youth.
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Appendix S1. ABCD dataset description. 

Sample characteristics and study design 

ABCD is a public and longitudinal study from 21 USA sites aimed at characterizing neural, 

cognitive, and behavioral development in a large population (N = 11,875) of children of diverse 

race, ethnicity, education, environmental, and income levels who are 9-10-years-old at baseline. 

Each site received Institutional Review Board approval from their institution and written 

informed consent and assent were received by the guardian and participating children. 

Recruitment of children and their guardians was carried out through schools and community 

settings. A description of the recruitment, inclusion, and exclusion criteria, and study design has 

been detailed elsewhere (Garavan et al., 2018).  

In this study, we included data from the baseline and 1-year follow-up visits. At each 

study visit, the MRI and clinical assessments typically happened on the same day. Anatomical 

and functional MRI data underwent a live quality control during data acquisition by scan 

operators, as well as both automated and visual inspection, including detection of excessive in-

scanner head motion, signal to noise inhomogeneities, and anatomical abnormalities (Chai et al., 

2012). Reasons for participant exclusion included in-scanner high motion, talking, falling asleep, 

using the safety squeeze ball to communicate with the operator, or interrupted scanning, and 

these reasons were coded into a pass or fail information. At both baseline and 1-year follow-up 

assessments, a guardian reported on their child’s depression and anxiety severity using the Child 

Behavior Checklist (CBCL) Anxious/Depressed subscale (Achenbach, 1991). 

We used data from the ABCD-BIDS Community Collection (Figure S1A). This 

collection processed and analyzed only data from ABCD which had passed the quality control 

carried out by the consortia (excluded 2,471 participants). Additionally, we excluded participants 

https://doi.org/10.1162/IMAG.a.145
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with missing CBCL Anxious/Depressed subscale t-transformed scores at either the baseline 

(CBCLbase) or 1-year follow-up (CBCLy1) assessment (excluded additional 515 participants). We 

also excluded one of the family members of families that were scanned at different sites (of 10 

families we excluded 5 participants, selecting the family member scanned at the site that had the 

biggest sample size out of the two sites). Lastly, exclusion criteria included having high an in-

scanner mean head motion (FD > 0.25 mm) and less than 10 minutes of overall fMRI data after 

removing outliers. Overall, 3,718 participants were included in our study. 

 

Depression and anxiety symptoms assessment 

The Child Behavior Checklist (CBCL; Achenbach, 1991) is a 118-item caregiver report of child 

behavioral characteristics based on a 3-point Likert scale between 0 (not true) and 2 (very true). 

The subscale of interest was the Anxious/Depressed subscale based on 13 items with a range of 

possible scores between 0 and 26. Higher scores indicate greater symptom severity. The t-

transformed scores were used. The Cronbach's alpha for our sample was 0.825 with a 95% 

confidence interval (CI) of [0.816, 0.833] at baseline and 0.818 with 95% CI [0.809, 0.826] at 

the 1-year assessment. 

 

MRI data 

MRI data were acquired at 3T via Siemens, General Electric, and Philips MRI scanners (Table 

S1) using multiband echo planar imaging (EPI) acquisition. MRI sequences were harmonized 

across scanners types and across sites, which had been in turn built starting from the Human 

Connectome Project (HCP) sequences (Smith et al., 2013). Imaging data characteristics are 

detailed elsewhere (Casey et al., 2018). Briefly, anatomical MRI data were T1-weighted multi-

https://doi.org/10.1162/IMAG.a.145
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echo magnetization-prepared rapid gradient echo (MPRAGE). Resting-state fMRI (rs-fMRI) data 

were four 5-min runs during which participants were instructed to passively gaze at a cross hair. 

The anatomical scans were acquired first, followed by the rs-fMRI runs. 

 

Appendix S2. ABCD MRI data preprocessing. 

Baseline rs-fMRI data were accessed from the ABCD-BIDS Community Collection 3165 

(Feczko et al., 2021) as fully preprocessed, quality-controlled, data in the form of connectomes. 

Preprocessing details can be found under the Collection’s online documentation 

(https://collection3165.readthedocs.io/en/stable/pipeline/). Briefly, the data had been processed 

using a modified version of the HCP pipeline (Glasser et al., 2013) customized and applied by 

the DCAN Lab (Feczko et al., 2021). Rs-fMRI data were registered onto the Montreal 

Neurological Institute (MNI) standard space using a combination of surface and volume 

coordinate systems. Preprocessed rs-fMRI data were then further denoised by removing signal 

factors, including head motion, mean time series for white matter, cerebrospinal fluid, and global 

signal, as well as movement factors such as realignment parameters. All frames with framewise 

displacement (FD) < 0.2 mm (Chai et al., 2012) were retained and used for functional 

connectivity estimation. 

Preprocessed data were parcellated following a cortical (Gordon et al., 2016) and 

subcortical (Fischl et al., 2002) schema, band-pass filtered (0.008, 0.09 Hz), and concatenated. 

Then, the time series of each parcel were extracted, and Pearson’s correlated to the time series of 

every other parcel, and Fisher r-to-z-transformed. This process resulted in the construction of one 

symmetrical 352-by-352 connectivity matrix (i.e. connectome) per participant, representing their 

whole-brain functional connectivity patterns (Figure 1 from the main text). 

https://doi.org/10.1162/IMAG.a.145
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Appendix S3. BANDA dataset description. 

Sample characteristics and study design 

Information of the study protocol and information of the full sample for the Boston 

Adolescent Neuroimaging of Depression and Anxiety (BANDA) dataset, also referred to as 

Human Connectomes Project for Disease related to Anxiety and Depression in Adolescents, are 

described elsewhere (Hubbard et al., 2020, 2024; Siless et al., 2020). Briefly, participants were 

included if ages between 14 and 17 years-old at the baseline assessment and both participant and 

their guardian were fluent in English. Exclusion criteria for the participants were: unable to 

undergo MRI scanning, presenting with IQ < 85, having any neurodevelopmental disorders, 

bipolar disorder, psychotic disorder, premature birth, serious medication conditions, history of 

serious head injury, or hospitalization following a neurological or cardiovascular disease.  

Clinical assignment included the Kiddie Schedule for Affective Disorders and 

Schizophrenia Present and Lifetime Version (K-SADS; Kaufman et al., 1997) adapted to provide 

DSM-5 compatible classifications. Depressed-anxious participants were defined as those 

presenting at baseline with a primary diagnosis of at least one depressive (i.e., major depressive 

disorder, dysthymia, or depression not otherwise specified) and/or anxiety disorders (i.e., 

generalized anxiety disorder, social phobia, separation anxiety, panic disorder, agoraphobia, or 

specific phobia). Presenting with a diagnosis of attention-deficit/hyperactivity disorder (ADHD), 

which is highly comorbid with depression and anxiety, and/or being on psychotropic medications 

were not considered exclusion criteria for the depressed-anxious group (for further rationale see 

Hubbard et al., 2020, 2024). Healthy controls were defined as those without any lifetime history 

of psychiatric disorders at baseline.  

https://doi.org/10.1162/IMAG.a.145
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All adolescents included in the current study participated in at least two study visits, one 

year apart. The baseline visit included an MRI scanning session, a diagnostic interview, 

collection of self-report, collection of parental measures of symptom severity including the 

Revised Child Anxiety and Depression Scale (RCADS; de Ross et al., 2002), and neurocognitive 

assessments. During the 1-year follow-up assessment, symptom severity was assessed again. As 

part of the full protocol for the BANDA study (Hubbard et al., 2020, 2024), a number of other 

measures of psychopathology, cognitive performance, and general demographic information 

were acquired at both baseline and 1-year follow-up assessments via the following: Behavioral 

Inhibition and Behavioral Activation Questionnaire (BISBAS; Carver & White, 1994), Chapman 

Handedness Inventory (Chapman & Chapman, 1987), Columbia Suicide Severity Rating Scale 

(CSSRS; Posner et al., 2011), Mood and Feelings Questionnaire (MFQ; Angold et al., 1995), 

Risky Behavior Questionnaire for Adolescents (RBQA; Auerbach & Gardiner, 2012), Snaith-

Hamilton Pleasure Scale (SHAPS; Carver & White, 1994), State-Trait Anxiety Inventory (STAI; 

Spielberger et al., 1970), Wechsler Abbreviated Scale of Intelligence (WASI-II; Wechsler, 

2018), in addition to the RCADS.  

In this study, participants were excluded if there were incomplete data consisting of 

baseline anatomical, rs-fMRI data, or completion of the RCADS at both the baseline 

(RCADSbase) and 1-year assessment (RCADSy1). Participants were excluded also if the in-

scanner mean head motion was FD > 0.25 mm. The final sample included 150 adolescents (see 

Table S2 for the sample’s demographic and clinical information; Figure S1B for a flowchart of 

the included and excluded participants).  
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Depression and anxiety symptom assessment 

Depression and anxiety severity was assessed with the Revised Child Anxiety and Depression 

Scale (RCADS; de Ross et al., 2002). The RCADS total scores were calculated as the sum of the 

47 items rated on a 4-point Likert scale between 0 (never) and 3 (always) and represented 

depression and anxiety severity. RCADS total scores can range between 0 and 141, with higher 

scores representing greater symptom severity. The RCADS includes the following subscales: 

social phobia, panic disorder, major depression, separation anxiety, generalized anxiety, and 

obsessive-compulsive disorder. A measure of self-reported anxiety severity can be calculated by 

summing all the subscales except for the major depression subscale. The t-transformed scores 

were used. The Cronbach’s alpha for the RCADS total scores of our sample was 0.970 with 95% 

CI [0.964, 0.977] at baseline and 0.963 with 95% CI [0.954, 0.971] at the 1-year assessment. 

 

MRI data 

The description of MRI sequences, protocols, and harmonization with other HCP datasets are 

more extensively reported elsewhere (Siless et al., 2020; Tozzi et al., 2020). Briefly, the MRI 

data were collected on a Siemens 3T Prisma MRI with a 64-channel head coil. One high 

resolution anatomical image was acquired with a T1-weighted MPRAGE sequence (0.8 mm 

isotropic voxels, field of view = 256 x 240 x 167 mm, TR = 2,400 ms, TE = 2.18 ms). rs-fMRI 

were acquired using simultaneous multi-slice (2.0 mm isotropic voxels, 72 slices, multiband 

acceleration factor = 8, TR = 800 ms, TE = 37 ms, flip angle = 52o), each consisting of 420 

volumes lasting 5 min and 46 s. Two sets of two eyes-open rs-fMRI (four total runs lasting 

overall ~23) with opposite phase encoding (PE) direction (Anterior-Posterior [AP] and Posterior-

https://doi.org/10.1162/IMAG.a.145
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Anterior [PA]) were acquired and were alternated with the acquisition of a Spin-Echo fieldmap 

with opposite PE direction (AP-PA). 

 

Appendix S4. BANDA MRI data preprocessing. 

BANDA connectomes generation 

After preprocessing and denoising, anatomical and functional data were parcellated, denoised, 

and organized into connectomes using the CONN Toolbox (Whitfield-Gabrieli & Nieto-

Castanon, 2012). FMRI data were parcellated into 333 cortical (Gordon et al., 2016) and 19 

subcortical regions (Fischl et al., 2002). Connectomes were generated by calculating the Fisher-z 

transform of the Pearson r correlation coefficient between the mean time series of each of the 

352 regions to the time series of every other region. This step resulted in one, symmetrical 

connectome per participant and mimicked the connectome constructions carried out for the 

ABCD participants. 

 

Appendix S5. Mapping of Gordon parcellation to Yeo 7 canonical brain networks.  

For interpretation purposes, each of the regions from the Gordon parcellation was mapped onto 

one of the 7 Yeo networks (Yeo et al., 2011) by calculating the spatial overlap of each parcel to 

the Yeo’s networks liberal masks, both in MNI volume space, using the CONN v.21a (Whitfield-

Gabrieli & Nieto-Castanon, 2012) in-built conn_roioverlaps function. Briefly, each voxel 

forming a parcel would be assigned to one Yeo network. The Yeo network with the highest 

count of voxels in a parcel and a total match count of at least 50 voxels would define which 

network that parcel would be assigned to. Five of the 333 Gordon’s parcels were not assigned to 

any of Yeo's networks (voxels overlap = 19.40 ± 23.90, range [1, 48]). 

https://doi.org/10.1162/IMAG.a.145
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Appendix S6. Brain functional networks relative contribution to symptoms prediction. 

To characterize the relative contribution of each canonical network pair to the prediction of 

prospective symptom severity, we calculated counts of connections of all within- and between-

networks pairs from the Symptoms Network and normalized them by their total possible size 

(Greene et al., 2018), as follows: 

 

           
𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐸𝑑𝑔𝑒𝑠𝐴𝐵

𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 𝐸𝑑𝑔𝑒𝑠𝑡𝑜𝑡𝑎𝑙
 

 Contribution score AB =    ————————— 

      
𝐸𝑑𝑔𝑒𝑠𝐴𝐵

𝐸𝑑𝑔𝑒𝑠𝑡𝑜𝑡𝑎𝑙
 

 

where A and B represent two canonical networks; Surviving EdgesAB / Surviving Edges total 

represents the ratio between the surviving connections between two canonical networks (A and 

B) over all the surviving connections (n = 251 unique connections) ); and the denominator 

EdgesAB / Edges total represents the ratio between all possible connections between network A and 

network B over all possible connections of the chosen parcellation, i.e., [352 * (352 -1)] / 2 = 

61,776 connections . Contribution scores above 1 identify canonical network pairs that are 

overrepresented in our Symptoms Network relative to their possible size. 
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Table S1. Participants, clinical, and scanner characteristics of the ABCD children. 

ABCD dataset 
Included participants 

(n = 3,718) 

Sex [n, %]  

    Male 1,967 (52.90%) 

    Female 1,751 (47.10%) 

Race [n]  

          White 3,136 

          Black or African American 494 

          Asian 264 

          American Indian Native American 123 

          Hawaiian or Pacific Islander 23 

          Others 171 

          Unknown or not reported 24 

Ethnicity [n]   

          Not Hispanic or Latino 3,074 

          Hispanic or Latino 606 

          Do not know, refuse to answer, NA 38 

Age (months) [n]  

    Baseline 120.16 (±7.49) 

    1-Year Follow-Up 132.33 (±7.7) 

CBCL Anxious/Depressed raw score  

    Baseline 2.54 (±3.12) 

    1-Year follow-up 2.59 (±3.1) 

CBCL Anxious/Depressed t-score  

    Baseline 53.48 (±6.06) 

    1-Year follow-up 53.51 (±6.02) 

Scanner manufacturer [n]  

    SIEMENS 2,640 

    General Electric Medical Systems 832 

    Philips Medical Systems 246 

Scanner Model [n]  

    Prisma 1,359 

    Prisma_fit 1,281 

    DISCOVERY MR750 793 

    Achieva dStream 149 

    Ingenia 97 

    SIGNA Creator 39 

In-scanner mean motion (mm) 0.16 (±0.05) 

Characteristics are presented for the participants included in our study (n = 3,718). Values are 

reported as mean (± standard deviation), unless otherwise specified. ABCD: Adolescent Brain 

Cognitive Development; CBCL: Child Behavior Checklist.  
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Table S2. Participants, clinical, and scanner characteristics of the BANDA adolescents. 

BANDA dataset 
Healthy 

(n = 54) 

Depressed-Anxious 

(n = 96) 
t|χ2 p 

Sex [n]   0.84 0.36 

          Female 30 62   

          Male 24 34   

Age (months)     

          Baseline 182.94 (±9.91) 186.62 (±10.43) -2.11 0.04 * 

          1-Year follow-up 195,85 (±10.26) 199.8 (±10.43) -2.24 0.03 * 

Race [n]   1.31 0.93 

          White 43 77   

          More than one race 7 14   

          Asian 2 2   

          Black or African American 1 1   

          Hawaiian or Pacific Islander 0 1   

          Unknown or not reported 1 1   

Ethnicity [n]    1.14 0.57 

          Not Hispanic or Latino 50 87   

          Hispanic or Latino 4 7   

          Unknown or not reported 0 2   

RCADS total raw score     

          Baseline 14.17 (±9.46) 50.26 (±24.13) -10.53 <0.001 *** 

          1-Year follow-up 15.46 (±12.08) 39.53 (±21.45) -7.59 <0.001 *** 

RCADS total t-score     

          Baseline 36.04 (±4.43) 56.47 (±14.26) -10.24 <0.001 *** 

          1-Year follow-up 36.7 (±5.25) 49.07 (±11.5) -7.47 <0.001 *** 

In-scanner mean motion (mm) 0.1 (±0.04) 0.1 (±0.04) -0.21 0.83 

Characteristics are presented for the participants included in our study (n = 150). Values are 

reported as mean (± standard deviation), unless otherwise specified. The depressed-anxious 

group includes participants presenting at baseline with at least a primary depressive and/or 

anxiety disorder diagnosis, whereas healthy participants had no current or lifetime history of 

DSM-5 mental disorders at the baseline assessment. Comparisons between the depressed-

anxious and healthy participants represent either statistics from independent-sample t-test or Chi 

square test. BANDA: Boston Adolescent Neuroimaging of Depression and Anxiety; RCADS: 

Revised Child Depression and Anxiety Scale; *: p < 0.05; ***: p < 0.001. 
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Table S3. BANDA clinical characteristics. 

Depressed-Anxious BANDA participants 
Baseline 

(n = 96) 

1-Year Follow-Up 

(n = 71) 

DSM-5 depressive disorders    

    Major depressive disorder 38 18 

    Dysthymia 2 5 

    Depression not otherwise specified 0 0 

DSM-5 anxiety disorders   

    Generalized anxiety disorder 51 35 

    Social phobia 46 39 

    Separation anxiety 6 1 

    Panic disorder 11 8 

    Agoraphobia 5 2 

    Specific phobia 23 16 

DSM-5 other disorders   

    Attention-deficit/hyperactivity disorder 27 20 

    Obsessive-compulsive or related disorders 11 8 

    Post-traumatic stress disorder 2 0 

Presence of diagnoses reported in the table were based on the Kiddie Schedule for Affective 

Disorders and Schizophrenia Present and Lifetime Version (Kaufman et al., 1997) clinical 

interview adapted to assess DSM-5 (American Psychiatric Association, 2013) mental disorders. 

The table reports current diagnoses at each study assessment. DSM-5: Diagnostic and Statistical 

Manual of Mental Disorders 5th edition. 
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Table S4. RCADS subscales pairwise correlations in adolescents from BANDA. 

   Baseline  1-year follow-up 

Subscale1 Subscale2  r CI 95% p-corrected  r CI 95% p-corrected 

Total Social phobia  0.8753 [0.83 0.91] <0.0001  0.8859 [0.85 0.92] <0.0001 

Total Panic disorder  0.8977 [0.86 0.92] <0.0001  0.8368 [0.78 0.88] <0.0001 

Total MDD  0.8953 [0.86 0.92] <0.0001  0.8942 [0.86 0.92] <0.0001 

Total GAD  0.9091 [0.88 0.93] <0.0001  0.8901 [0.85 0.92] <0.0001 

Total OCD  0.7669 [0.69 0.83] <0.0001  0.6647 [0.56 0.75] <0.0001 

Total SAD  0.7899 [0.72 0.84] <0.0001  0.7796 [0.71 0.84] <0.0001 

Total Total anxiety  0.9895 [0.99 0.99] <0.0001  0.9856 [0.98 0.99] <0.0001 

Social phobia Panic  0.7205 [0.63 0.79] <0.0001  0.6865 [0.59 0.76] <0.0001 

Social phobia MDD  0.7053 [0.61 0.78] <0.0001  0.7208 [0.63 0.79] <0.0001 

Social phobia GAD  0.7558 [0.68 0.82] <0.0001  0.7612 [0.68 0.82] <0.0001 

Social phobia OCD  0.5663 [0.45 0.67] <0.0001  0.4332 [0.29 0.55] <0.0001 

Social phobia SAD  0.6061 [0.49 0.70] <0.0001  0.6251 [0.52 0.71] <0.0001 

Social phobia Total anxiety  0.8914 [0.85 0.92] <0.0001  0.9001 [0.86 0.93] <0.0001 

Panic disorder MDD  0.7552 [0.68 0.82] <0.0001  0.7394 [0.66 0.80] <0.0001 

Panic disorder GAD  0.7777 [0.71 0.83] <0.0001  0.6494 [0.55 0.73] <0.0001 

Panic disorder OCD  0.6334 [0.53 0.72] <0.0001  0.4199 [0.28 0.54] <0.0001 

Panic disorder SAD  0.7023 [0.61 0.78] <0.0001  0.5746 [0.46 0.67] <0.0001 

Panic disorder Total anxiety  0.904 [0.87 0.93] <0.0001  0.8281 [0.77 0.87] <0.0001 

MDD GAD  0.7786 [0.71 0.83] <0.0001  0.7298 [0.64 0.80] <0.0001 

MDD OCD  0.6596 [0.56 0.74] <0.0001  0.5137 [0.39 0.62] <0.0001 

MDD SAD  0.6346 [0.53 0.72] <0.0001  0.5815 [0.46 0.68] <0.0001 

MDD Total anxiety  0.8215 [0.76 0.87] <0.0001  0.8058 [0.74 0.86] <0.0001 

GAD OCD  0.7191 [0.63 0.79] <0.0001  0.6598 [0.56 0.74] <0.0001 

GAD SAD  0.7154 [0.63 0.79] <0.0001  0.7383 [0.66 0.80] <0.0001 

GAD Total anxiety  0.911 [0.88 0.93] <0.0001  0.9023 [0.87 0.93] <0.0001 

OCD SAD  0.5645 [0.44 0.66] <0.0001  0.6327 [0.53 0.72] <0.0001 

OCD Total anxiety  0.7676 [0.69 0.83] <0.0001  0.6855 [0.59 0.76] <0.0001 

SAD Total anxiety  0.8051 [0.74 0.86] <0.0001  0.812 [0.75 0.86] <0.0001 

Pairwise Pearson correlations among Revised Child Anxiety and Depression Scale (RCADS) 

subscales at the baseline and 1-year follow-up assessments for the BANDA adolescents (n = 

150). RCADS subscales included generalized anxiety (GAD), major depressive disorder (MDD), 

obsessive-compulsive disorder (OCD), panic disorder, separation anxiety disorder (SAD), and 

social phobia. Total Anxiety reflects the sum of all subscales except for MDD, whereas Total 

includes all subscales. P values are two-sided and Bonferroni-corrected for multiple 

comparisons.   
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Figure S1. CONSORT diagram of included and excluded participants.  

 

(A) Flow of exclusion for ABCD participants. rs-fMRI data were obtained from the fully 

preprocessed ABCD-BIDS Community Collection 3165 (Feczko et al., 2021) which only 

included data from the Annual Curated ABCD 4.0 Data Release (Barch et al., 2018) that had 

passed the Data Analysis Imaging Center quality control (Chai et al., 2012). (B) Flow of 

exclusion for BANDA participants. ABCD: Adolescent Brain Cognitive Development Study; 

BANDA: Boston Adolescent Neuroimaging of Depression and Anxiety; CBCL: Child Behavior 

Checklist, Anxious/Depressed subscale raw scores; fMRI: functional magnetic resonance 

imaging; NDA: National Institute of Mental Health Data Archive; RCADS: Revised Child 

Depression and Anxiety Scale, total raw scores. 
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Figure S2. Symptom severity and in-scanner head mean motion correlation. 

 

The scatterplots represent Pearson’s correlations coefficients r between depression and anxiety 

symptom severity at the baseline and 1-year follow-up assessments with in-scanner head mean 

motion (framewise displacement in mm Chai et al., 2012) for the included participants of the 

ABCD (left) and BANDA cohorts (right). Symptom severity was calculated using the CBCL 

Anxious/Depressed subscale t-transformed scores in ABCD and using the RCADS t-transformed 

total scores in BANDA, respectively. The plots report the 99% confidence interval (shaded 

areas). ABCD: Adolescent Brain Cognitive Development Study; BANDA: Boston Adolescent 

Neuroimaging of Depression and Anxiety; base: baseline assessment; CBCL: Child Behavior 

Checklist Anxious/Depressed subscale, t-transformed scores; CPM: connectome-based 

predictive modeling; y1: 1-year follow-up assessment; RCADS: Revised Child Depression and 

Anxiety Scale, t-transformed total scores. *: p < 0.001.  
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Figure S3. Internal validation and predictions specificity in ABC 

(Left) Null distribution of ρ values generated from 1,000 permutations derived with shuffled data 

(i.e., connectivity values of one participant were used to predict the symptom severity of another 

random participant). The permuted distribution is centered around ρ = 0 (white dashed line). 

Negative ρ values represent cases where the predictions were inaccurate, for example mild 

symptoms were predicted but severe symptoms were observed. Network significance (pperm, red 

dashed line) was defined as the proportion of permuted ρ values larger than the ρ value (average 

of 100 iterations) generated by the observed data (Shen et al., 2017). (Right) To evaluate the 

specificity of the Symptoms Network to anxiety and depression in the ABCD children, we 

computed Spearman’s partial correlation with each of all CBCL subscales as outcome (adjusting 

for baseline CBCLbase, sex, age, and mean head motion). Note, the results shown here differ from 

those reported in the main text (e.g., for CBCLy1, red bar), in that here we use the Networks 

Symptoms to extract network strengths from participants, we use Spearman’s partial correlation 

and not cross-validation and permutation testing, and we used the full sample (n = 3,718). 

Consequently, the bar graph does not represent predictions, rather in-sample correlations. 

Nonetheless, the correlation estimates for the different CBCL subscales offer a comparison 

between the performance of Symptoms Network for anxiety and depression as compared to other 

symptoms.   
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Figure S4. External validation and predictions specificity from ABCD to BANDA. 

(Left) Observed vs. predicted RCADSy1 scores in BANDA adolescents (n = 150). Predicted 

RCADSy1 scores were generated from functional connectivity based on the ABCD-derived 

Symptoms Network. The generalizability of the Symptoms Network from ABCD to BANDA 

was assessed using Spearman’s rank correlation to minimize the impact of symptom scores 

skewness (Spearman’s r = 0.222, p = 0.007). The fitted trend line and 95% CI are shown for 

visualization purposes (Pearson’s r = 0.210, p = 0.011). (Right) To assess the specificity of the 

Symptoms Network to internalizing symptoms (rather than to a more general vulnerability to 

psychopathology), the Symptoms Network was used to predict a range of self-reported measures 

in BANDA at the 1-year follow-up, including internalizing psychopathology, other 

psychopathology, cognitive measures, and general demographic measures. The barplot displays 

the Spearman’s ρ correlation coefficients (y-axis) of the main model presented in the manuscript 

(i.e., RCADSy1; blue bar, the first bar on the left) as it compares to all other measures (x-axis) 

acquired at the 1-year follow-up assessment and a few demographic measures acquired at 

baseline. Every model was corrected for RCADSbase, sex at birth, age, and mean head motion. 

Measures included the BIS-BAS (Carver & White, 1994) drive, reward responsiveness, and fun 

seeking subscales; Chapman Handedness Inventory (Chapman & Chapman, 1987), CSSRS 

(Posner et al., 2011), MFQ (Angold et al., 1995), RBQA (Auerbach & Gardiner, 2012); SHAPS 

(Carver & White, 1994), STAI (Spielberger et al., 1970), and WASI-II (Wechsler, 2018). 

BISBAS: Behavioral Inhibition and Behavioral Activation Questionnaire; CSSRS: Columbia 

Suicide Severity Rating Scale; y1: 1-year follow-up assessment; MFQ: Mood and Feelings 

Questionnaire; STAI: State-Trait Anxiety Inventory; RBQA: Risky Behavior Questionnaire for 

Adolescents; RCADS: Revised Child Anxiety and Depression Scale; SHAPS: Snaith-Hamilton 

Pleasure Scale; WASI-II: Wechsler Abbreviated Scale of Intelligence.  
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Figure S5. fMRI quality control distributions in BANDA. 

 

(A) Density distributions of functional connectivity strengths (r coefficients) after denoising 

between 1,000 randomly selected voxels for each participant (BANDA n = 150). (B) QC-FC 

correlation distribution between functional connectivity estimates and in-scanner mean head 

motion. The red dotted line represents a theoretical artifact-free null-hypothesis distribution 

(Morfini et al., 2023). Higher levels of overlap between the QC-FC distribution and the red 

dotted line (e.g., above 95%) can be considered indicative of negligible modulations in the 

connectivity correlation structure driven by a source of noise. FC: functional connectivity; NH: 

null hypothesis; QC: quality control. 
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Figure S6. Gordon parcellation assignment to Yeo 7 canonical networks.  

 

The brain images represent the 333 cortical Gordon parcels (Gordon et al., 2016) and the 19 

subcortical parcels from the Freesurfer Atlas (Fischl et al., 2002) color-coded following the 

assignment to the canonical networks defined by Yeo and colleagues (Yeo et al., 2011).  
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Figure S7. Absolute network-network counts of the Symptoms Network.  

Absolute counts of the connections from the Symptoms Network. Counts are reported for 

cortical-to-cortical (left) and cortical-to-subcortical connections (right). DAN: Dorsal Attention 

Network; DMN: Default Mode Network; FPN: Frontoparietal Network; VAN: Ventral Attention 

Network; SMN: Somatomotor Network. 
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Figure S8. Within-participant between-connections mean functional connectivity of the 

subcortical-to-cortical connections of the Symptoms Network in BANDA.  

 

The plots represent the distributions of within-participant between-connection mean functional 

connectivity for every overrepresented subcortical-to-cortical-network pair of the Symptoms 

Network. For example, for every participant separately, we calculated the mean functional 

connectivity for all connections of a specific subcortical-to-cortical network pair. Each boxplot 

represents the distribution of the mean functional connectivity for a subset of connections for the 

included (n = 150) BANDA adolescents. To aid results interpretation, connections were split into 

a set of connections positively (purple, top) or negatively (green, bottom) correlated with 

RCADSy1. For example, higher mean connectivity values in the boxplot for DAN-amygdala 

were correlated with worse RCADSy1 severity in the positive connections (first purple boxplot) 

but were correlated with milder RCADSy1 severity in the (first green boxplot). DAN: Dorsal 

Attention Network; DMN: Default Mode Network; FPN: Frontoparietal Network; SMN: 

Somatomotor Network; VAN: Ventral Attention Network.  
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