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ABSTRACT

BACKGROUND: Reward processing deficits have been increasingly associated with trauma exposure and are a core
feature of posttraumatic stress disorder (PTSD). While altered resting-state functional connectivity (rsFC) of ventral
striatal regions, including the nucleus accumbens (NAcc), has been associated with anhedonia in some stress-
related disorders, relationships between NAcc rsFC and anhedonia have not previously been investigated in
trauma-exposed individuals. Additionally, relationships between anhedonia and reward-related decision making
remain unexplored in relation to trauma exposure. We hypothesized that elevated anhedonia would be associated
with altered rsFC between NAcc and default mode network regions and with increased delay discounting.
METHODS: The sample included 51 participants exposed to a DSM-IV PTSD Criterion A event related to community
trauma. Participants completed the Clinician Administered PTSD Scale, the Snaith-Hamilton Pleasure Scale, the Beck
Depression Inventory, a computerized delay discounting paradigm, and resting-state functional magnetic resonance
imaging. rsFC data were analyzed in SPM12 and CONN.

RESULTS: Higher levels of anhedonia were associated with increased rsFC between seed regions of bilateral NAcc
and areas of right dorsomedial prefrontal cortex. This relationship remained significant after accounting for Clinician
Administered PTSD Scale total scores, Beck Depression Inventory total scores, or diagnostic group in the regression.
Additionally, anhedonia was associated with elevated (increased) delay discounting.

CONCLUSIONS: Greater anhedonia was related to higher positive connectivity between NAcc and right dorsomedial
prefrontal cortex and to increased delay discounting, i.e., greater preference for smaller immediate versus larger
delayed rewards. These findings contribute to a growing body of literature emphasizing the importance of anhedonia
in trauma-exposed individuals.
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Reward
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Anhedonia and Trauma Exposure receive primary rewards (8), and lower satisfaction on receiving
unexpected rewards (9). Functional neuroimaging studies also
demonstrate abnormal reward-related brain circuitry in PTSD,
including lower activation in the nucleus accumbens (NAcc)
and medial prefrontal cortex (mPFC) in response to reward
feedback (7); lower activation of the ventral striatum when
viewing happy faces (10); and less engagement of temporal
pole, superior temporal cortex, and left parahippocampal and
fusiform gyrus in response to positive affect (11).

There is also a growing literature indicating that anhedonia
symptoms and reward processing deficits are outcomes of
traumatic stress among individuals who do not meet criteria for
PTSD. Specifically, trauma exposure is associated with reduced
reward responsiveness (12) and with blunted ventral striatal
activity on reward-related tasks (13). Critically, while cross-
sectional studies in humans cannot establish the causal

While the role of anhedonia in major depressive disorder (MDD)
has received extensive scrutiny (1-3), only recently have
reward-processing deficits become implicated as a central
component of the emotional and behavioral dysfunction
caused by psychological trauma. Evidence from three major
lines of research support this claim, including the literature on
posttraumatic stress disorder (PTSD). Studies on the symptom
structure of PTSD suggest that the DSM-5 cluster of negative
alterations in cognitions and mood splits into separate factors
reflecting anhedonia and negative affect (4,5), indicating that
anhedonia is a core dimensional component of posttraumatic
psychopathology. Moreover, patients with PTSD self-report
reductions in positive emotionality and hedonic deficits (6).
They also show performance deficits on reward-based tasks,
including slower learning rates (7), less effort exertion to
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relationships between high anhedonia and trauma exposure,
preclinical studies in rodents suggest that anhedonia-like
behaviors can arise as a consequence of exposure to severe
stress via alteration of dopaminergic pathways (14,15). Thus,
there is an association between trauma exposure and anhedonia
and reward processing deficits that is not exclusive to PTSD
samples. This motivates identification of neural mechanisms
that may mediate relationships between trauma and anhedonia.
Critically, research has shown that anhedonia and reward
processing deficits in trauma-exposed individuals are not
merely attributable to depression. Although MDD occurs in
approximately half of individuals with PTSD (16,17) and in a
substantial percentage of trauma-exposed individuals (18,19),
anhedonia also is seen at high rates in trauma-exposed in-
dividuals who do not have MDD. Of note, anhedonia is nearly
as common in patients with PTSD and without MDD (63%
anhedonic) as in patients with both PTSD and MDD (67 %) (20).
Additionally, abnormalities in learning rates on reward-based
tasks and neural activity in reward-related regions are pre-
sent in PTSD samples even when individuals with comorbid
MDD are excluded (9,10). Collectively, these results support
the claim that anhedonia is an outcome of trauma exposure,
above and beyond putative associations with depression.

Anhedonia and NAcc Resting-State Connectivity

Given its central role in representing reward valuation (21,22), it
is unsurprising that the intrinsic coordination of functional cir-
cuits involving the NAcc is associated with anhedonia. In a
large transdiagnostic study of reward sensitivity, Sharma et al.
(23) found that across diagnostic categories, lower reward
sensitivity was associated with decreased NAcc connectivity,
with default mode network (DMN) regions involved in self-
generated thinking and introspection (24) and with increased
NAcc connectivity with cingulo-opercular network regions (i.e.,
right insula and supplementary motor regions). Gabbay et al.
(25) demonstrated in adolescents with MDD that greater
anhedonia was associated with lower positive resting-state
functional connectivity (rsFC) between the left NAcc and the
subgenual anterior cingulate cortex and caudate. Wang et al.
(26) contrasted striatal connectivity in undergraduates with
high versus low social anhedonia. Elevated social anhedonia
was associated with higher connectivity between the bilateral
NAcc and the medial frontal gyrus and lower connectivity
between the NAcc and the posterior cingulate cortex.
Together, these prior investigations suggest that anhedonia
may be associated with altered FC between the NAcc and
DMN territories, including medial prefrontal regions such as
dorsomedial frontal cortex (23) or medial frontal gyrus (26).
To our knowledge, there is no prior literature on the rela-
tionship between NAcc connectivity and anhedonia in trauma-
exposed samples. In one study, Zhu et al. (27) identified
lower NAcc-thalamus and NAcc-hippocampus connectivity in
patients with comorbid PTSD and MDD compared with pa-
tients with PTSD only and trauma-exposed control subjects.
Across all participants with PTSD, lower NAcc-thalamus con-
nectivity was associated with depression symptom severity
but not with PTSD symptom severity. Thus, this study identi-
fied NAcc rsFC abnormalities in PTSD that appeared to be
particularly associated with depressive symptoms. However, it
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did not examine potential relationships with anhedonia,
despite a parallel literature in healthy participants implicating
increased NAcc-mPFC connectivity in relation to anhedonia.
The present study is the first to examine relationships between
NAcc rsFC and anhedonia in a trauma-exposed sample.

Reward-Related Decision Making and Anhedonia

Most studies of anhedonia in trauma-exposed populations rely
solely on self-report measures of anhedonic symptoms. While
both questionnaire-based measures of anhedonia and
performance-based tasks assess underlying constructs
related to reward processing, the relationship between self-
reported hedonic deficits and decision making is still unclear
(28). In contrast to self-report questionnaires, reward-related
decision-making tasks do not require introspection (28,29),
may be less subject to response biases and demand charac-
teristics, and may have more direct translational potential in
animal models. For all these reasons, extending research on
anhedonia to include performance on reward-related tasks is
an important direction.

Intertemporal choice paradigms can be used to evaluate
changes in reward-related decision making associated with
psychopathology. The process of assigning a lower subjective
value to rewards available after a delay is known as delay dis-
counting (DD). In humans, DD can be measured using para-
digms that ask people to choose between small rewards
available immediately or larger rewards available after specified
delays (e.g., “Would you rather have $10 now or $17 in a
week?”). Elevated preference for smaller sooner rewards versus
larger delayed rewards (increased DD) has been reported in
externalizing disorders (30,31), alcohol and substance use dis-
orders (32-34), and suicidal behavior (35,36), all of which occur
at elevated rates in trauma-exposed samples. One prior study
compared DD between subjects with comorbid MDD and PTSD
and subjects with MDD only; both groups showed increased DD
of future gains relative to healthy participants (37). This study did
not include a PTSD-only group, but given known reward pro-
cessing deficits in trauma-exposed samples, increased DD in
trauma-exposed individuals might be anticipated.

The extent to which alteration in the DD rate relates to
anhedonia essentially remains an open question, although this
has been investigated in a single study of healthy college
students. Lempert and Pizzagalli (38) found that greater
anhedonia was associated with decreased DD in a sample of
healthy undergraduates with no history of MDD or current
psychopathology. However, to our knowledge, there have
been no prior reports of relationships between anhedonia
symptoms and DD across broader ranges of anhedonia
symptoms than are commonly seen in healthy undergraduates.
While Lempert and Pizzagalli (38) found that decreased DD
was associated with anhedonia in healthy individuals,
increased DD has been more frequently associated with
increased vulnerability to psychopathology (39). The literature
on DD in internalizing disorders is mixed, with reports of
increased, decreased, or unchanged DD in individuals with
high trait anxiety (40-42) and social anxiety (43,44) but
increased DD in MDD (45-47). It is possible that inconsistent
findings of increased versus decreased DD in internalizing
disorders may relate to the presence or absence of significant
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anhedonia in the included samples, a feature that is not typi-
cally assessed or characterized.

Summary

The present study examined relationships between anhedonia
symptoms, NAcc rsFC, and DD in a community-based sample
of adults exposed to a DSM-IV Criterion A event. We hypoth-
esized that anhedonia would be associated with altered rsFC
between the NAcc and DMN regions, including mPFC; our
hypothesis was nondirectional, as previous work has demon-
strated that anhedonia is associated with decreased NAcc-
mPFC connectivity [e.g., with subgenual anterior cingulate
cortex (25)] or increased NAcc-mPFC connectivity [e.g., with
medial frontal gyrus (26)]. Based on the literature reviewed
above, we hypothesized that greater anhedonia would be
associated with increased DD in trauma-exposed individuals,
even after accounting for severity of PTSD symptoms and
depression symptoms.

METHODS AND MATERIALS

Participants

This sample included 51 right-handed participants exposed to
a Criterion A event, 20 to 50 years of age, recruited via
advertisements or by recontacting participants of prior
research studies. All participants provided written informed
consent. The Institutional Review Board of McLean Hospital
and the Partners Human Research Committee approved the
study procedures. The study complied with the ethical stan-
dards of the relevant national and institutional committees on
human experimentation. Participants were paid up to $200 for
their participation in a 2-day protocol. Inclusion and exclusion
criteria are described in the Supplement.

Clinical Interviews and Measures

PTSD symptom ratings were made with the Clinician Admin-
istered PTSD Scale (CAPS), current and lifetime diagnostic
version (48). The DSM-IV CAPS yields total symptom severity
scores as well as subscale scores for re-experiencing, avoid-
ance and numbing, and hyperarousal symptoms. Current and
lifetime histories of other psychiatric diagnoses were obtained
using the Structured Clinical Interview for DSM-IV Axis | Dis-
orders (49). Both interviews were administered by doctoral-
level clinical psychologists.

To assess anhedonia, participants completed the Snaith-
Hamilton Pleasure Scale (SHPS) (50), a 14-item self-report
scale assessing recent hedonic experiences. Each item has
four response options indicating how strongly a person agrees
that they would enjoy engaging in particular activities. Re-
sponses were scored from 0 (strongly agree) to 3 (strongly
disagree) and summed; high scores reflect low capacity for
hedonic experience (anhedonia), while low scores reflect high
capacity for hedonic experience. The SHPS demonstrates
adequate test-retest reliability, internal consistency, and
convergent and discriminant validity in nonclinical and psy-
chiatric samples (51-53).

Additional questionnaire measures included the Beck
Depression Inventory (BDI) version IA (54), a 21-item self-report
measure of depressive symptoms, with each item rated on a
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scale of 0 to 3 points; the Adverse Childhood Experiences
questionnaire, a 10-item self-report measure of childhood
abuse, neglect, and stressful life experiences (55); and the Life
Events Checklist (56), a measure of lifetime exposure to
potentially traumatic Criterion A events.

Magnetic Resonance Imaging Acquisition,
Processing, and Analysis

Magnetic resonance imaging scans were performed using a
32-channel head coil on a 3.0T Siemens MAGNETOM Tim Trio
scanner (Siemens, Erlangen, Germany) (acquisition parameters
are provided in the Supplement). Data preprocessing was
conducted in SPM12 (Wellcome Trust Centre for Neuro-
imaging, London, United Kingdom), using standard pre-
processing steps (slice time correction, realignment and
unwarping, normalization in Montreal Neurological Institute
space, and smoothing with a 6-mm kernel). Volumes of
excessive motion or signal spiking were calculated for
subsequent censoring in the noise correction step using the
Artifact Detection Toolbox (Supplement).

After preprocessing, physiological noise correction was
performed using the CONN FC toolbox version 15.h (https://
www.nitrc.org/projects/conn/)  (57). CompCor (58) was
employed to estimate and remove physiological noise from
white matter and cerebrospinal fluid using principal compo-
nents analysis. For each subject, noise correction consisted of
linear regression of 1) white matter and cerebrospinal fluid
components yielded by the above principal components
analysis, 2) regressors for motion and for outlier volumes
(output from Artifact Detection Toolbox), 3) a regressor to
exclude the first volume of the time series, and 4) the main
effect of rest as well as its first temporal derivative (to eliminate
ramping effects). After the denoising regression, a bandpass
filter (0.008-0.09 Hz) was applied to the residual time series.
These corrections resulted in a residual blood oxygen level-
dependent time course at each voxel, which was used in
subsequent analyses.

For the first level whole-brain connectivity analysis, bilateral
NAcc seeds were derived from the FSL Harvard-Oxford Atlas
maximum likelihood subcortical atlas implemented in CONN.
Pearson correlations between the time course of each NAcc
seed and the time course of all other voxels in the brain were
computed, and Fisher’s z transformation was applied. At the
second level, first-level maps were entered into a whole-brain
regression analysis and were regressed against SHPS
scores, controlling for age and sex. Results across the com-
bined NAcc seeds were obtained at a height threshold
of Puncorrectea < 001, cluster threshold p < .05 cluster-size
Praise discovery rate correcteds tWO-tailed. These thresholds were
conservatively selected to protect against type | errors; at this
cluster-defining threshold, the familywise error rate is accu-
rately controlled (59).

DD Analyses

DD data were collected using a computerized adjusting
amount paradigm (60). For each trial, participants chose be-
tween a small amount available immediately or $10 available
after a delay. Rewards were hypothetical; participants were
asked to choose as if one random trial would be selected for a
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real payout. Discounting was assessed at six delays (1, 2, 10,
30, 180, and 365 days). Indifference points reflect the sub-
jective value of $10 at the given delay point. We implemented
nonlinear multilevel modeling in R (R Foundation for Statistical
Computing, Vienna, Austria) to analyze DD data (60)
(Supplement). This approach involves simultaneous estima-
tion of k, the hyperbolic DD parameter, at the individual subject
level and at the group level, with down-weighting of cases with
incomplete data or poor consistency in choice behavior. This
approach allows inclusion of inconsistent discounters in the
model, a considerable advantage over other methods of
handling DD data, such as applying consistency criteria to
hold-out cases with inconsistent discounting.

RESULTS

Usable resting-state functional magnetic resonance imaging
data were available for 51 participants, and 40 of those par-
ticipants also completed the DD paradigm. Fifty participants
had complete BDI scores; 1 participant’s BDI score could not
be used owing to selection of multiple response options on
several items (Table 1). SHPS scores (n = 51) were normally
distributed, and there were no outliers. Two participants had
past alcohol abuse, 3 had past cannabis abuse, and 2 had past
alcohol dependence. Three participants were currently taking
stable doses of antidepressant medications (bupropion,
duloxetine, sertraline). Eleven participants had current MDD,
and an additional 12 participants had past MDD.

Demographic Correlates of Anhedonia

Consistent with previous reports (61,62), men (mean 13.76, SD
7.674) endorsed greater anhedonia than women (mean 9.43,
SD 7.468) (t49 = 2.01, p = .049). SHPS scores were not asso-
ciated with age (r49 = .19, p = .176). However, given known
effects of age and sex on FC (63-65), these variables were
included as nuisance covariates in all subsequent analyses.

Clinical Correlates of Anhedonia

Higher SHPS scores were associated with greater current
CAPS total scores (r47 = .70, p < .001) and with higher scores on

Table 1. Demographic and Clinical Characteristics of

Participants

Mean (SD) Minimum Maximum
Sex, Male/Female, n 30/21
Age, Years 32.27 (7.61) 20.36 49.73
SHPS 11.22 (7.78) 0 31
BDI (n = 50) 12.00 (11.19) 0 40
LEC 7.43 (3.50) 1 18
ACE Scale 3.69 (2.45) 0 9
CAPS, Current 29.37 (29.20) 0 101
CAPS, Re-experiencing 7.47 (8.06) 0 26
CAPS, Avoidance 13.33 (13.87) 0 44
CAPS, Hyperarousal 8.57 (8.97) 0 33
CAPS, Lifetime 49.92 (33.55) 0 114

ACE, Adverse Childhood Experiences; BDI, Beck Depression
Inventory; CAPS, Clinician-Administered PTSD Scale; LEC, Life
Events Checklist; SHPS, Snaith-Hamilton Pleasure Scale.
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each CAPS subscale (re-experiencing: ry7; = .60, p < .001;
avoidance: ry7 = .71, p < .001; hyperarousal: r,; = .62, p < .001)
(Table 2). Eleven participants met Structured Clinical Interview
for DSM-IV Axis | Disorders criteria for current MDD. Greater
anhedonia (higher SHPS) was strongly associated with
depression severity (higher BDI total score) (r46 = .71, p < .001).
Importantly, the correlation between SHPS scores and CAPS
total scores remained statistically significant after controlling for
BDI scores (r45 = .38, p = .009); the correlations between SHPS
and re-experiencing and avoidance CAPS subscales also
remained significant, whereas the association with hyper-
arousal decreased to a nonsignificant trend (r = .28, p = .056).

rsFC Correlates of Anhedonia

Higher levels of anhedonia (higher SHPS scores) were asso-
ciated with significantly increased rsFC between seed regions
of bilateral NAcc and areas of right dorsomedial PFC (DMPFC)
(Figures 1 and 2). Importantly, the correlation between SHPS
scores and NAcc-to-DMPFC connectivity remained significant
after adding CAPS total scores, BDI total scores, trauma load
(Life Events Checklist), childhood trauma exposure (Adverse
Childhood Experiences questionnaire), or group (PTSD par-
ticipants, trauma-exposed non-PTSD participants) to the
regression model (Table 3). Thus, connectivity between NAcc
and DMPFC was robustly associated with anhedonia, even
after accounting for the effects of total symptom severity or
diagnostic status.

Reward-Related Decision-Making Correlates of
Anhedonia

Multilevel modeling in R was used to examine relationships
between anhedonia and DD in the subset of participants
(n = 40) who completed the computerized DD paradigm. After
controlling for sex and age, higher SHPS scores were signifi-
cantly associated with higher log k (i.e., increased DD) (t197 =
2.78, p = .0060). Thus, increasing anhedonic symptoms were
associated with greater preference for smaller sooner rewards
versus larger delayed rewards.

A model also including bilateral NAcc-to-DMPFC connec-
tivity values did not provide a better fit to the DD data (Akaike
information criterion = 939.9 for this model; Akaike information
criterion = 937.7 for the model including sex, age, and SHPS
only), indicating that FC values were not significant predictors
of discounting. SHPS remained the only significant predictor of
discounting in the model.

Anhedonia Mediates the Relationship Between
CAPS Scores and NAcc-DMPFC Connectivity

As evident in Table 2, CAPS scores also were associated with
right NAcc-DMPFC connectivity. Therefore, the indirect effect
of SHPS score in mediating the relationship between total
CAPS scores and NAcc-DMPFC connectivity was computed.
There was a significant indirect effect of SHPS scores (95%
bootstrapped confidence interval [Cl] = 0.0016 to 0.0049 [right]
and 95% bootstrapped Cl = 0.0011 to 0.0042 [left]), indicating
that SHPS scores mediate the relationship between CAPS
total scores and NAcc-DMPFC connectivity. In a reversed
model in which CAPS was proposed as a mediator of the
relationship between SHPS and NAcc-DMPFC connectivity,
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Table 2. Partial Correlations Between All Study Variables, Controlling for Age and Sex

SHPS BDI CAPS Current CAPS Reexp. CAPS Avoid. CAPS Hyper. DD (log k) rNAcc-DMPFC  INAcc-DMPFC
SHPS
BDI 7087
CAPS Current 6977 7327
CAPS Reexp. .6047 .6337 .9027
CAPS Avoid. 7087 7497 .957¢ 7687
CAPS Hyper. .618° 6677 .9527 .839° .863°
DD (log k) 4237 4787 .3257 144 .3847 .310
rNAcc-DMPFC  .6107 241 347 .329% .3437 .2987 .086
INAcc-DMPFC 4517 .104 225 .226 .206 .208 .064 .8697

Avoid., avoidance; BDI, Beck Depression Inventory; CAPS, Clinician Administered PTSD Scale; DD, delay discounting; DMPFC, dorsomedial
prefrontal cortex; Hyper., hyperarousal; INAcc, left nucleus accumbens; Reexp., re-experiencing; rNAcc, right nucleus accumbens; SHPS,

Snaith-Hamilton Pleasure Scale.
4p < .05.

there was no significant indirect effect (95% bootstrapped
Cl = —0.0094 to 0.0035 [right] and 95% bootstrapped
Cl = —0.0090 to 0.0038 [left]), indicating that the relationship
between anhedonia and NAcc-DMPFC rsFC is not mediated
by PTSD symptom severity.

DISCUSSION

In this study of trauma-exposed adults, greater anhedonia was
associated with higher positive connectivity between the NAcc
and the right DMPFC. Of note, this association persisted after
controlling for PTSD severity, depression severity, trauma load,
early adverse experiences, or group status. From a behavioral
perspective, greater self-reported anhedonia was associated
with increased DD performance (greater preference for imme-
diate vs. delayed rewards). Although overall PTSD symptom
severity also was associated with higher NAcc-DMPFC
connectivity, this effect was mediated by anhedonia. As
anticipated, NAcc rsFC was related to anhedonia in this
trauma-exposed sample. Specifically, increased rsFC from the
NAcc to a medial prefrontal region, the DMPFC, was associ-
ated with greater anhedonia. Broadly speaking, the current
result in trauma-exposed samples is consistent with an exist-
ing literature implicating higher striatal-DMPFC connectivity in
internalizing samples, including individuals with MDD (66) and
obsessive-compulsive disorder (67).

These results are consistent with results of a prior study in
healthy participants demonstrating that anhedonia is

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging November 2018; 3:959-967 www.sobp.org/BPCNNI

associated with increased NAcc-medial frontal gyrus con-
nectivity (26); the current study extends this finding to a sample
of trauma-exposed participants. The DMPFC region in this
study falls within the dorsal DMN (Figure 3A) (68), suggesting
that anhedonia may occur in the setting of amplified coordi-
nation of a functional circuit linking the NAcc with a specific
region of DMN involved in self-focused appraisal. One possi-
bility is that in some trauma-exposed individuals, amplified
monitoring of self-focused thinking may hijack striatal reward
systems, perhaps interfering with the responsiveness of those
reward systems to other routine sources of reward. This is
consistent with findings of amplified DMPFC activity in
response to reward outcomes in this region in MDD (69).
Alternatively, amplified rsFC in anhedonia could reflect
compensatory efforts by medial prefrontal self-monitoring
systems to recruit striatal reward regions. Additionally, it is
possible that anhedonia in trauma-exposed individuals occurs
in the setting of increased interaction between striatal reward
systems and DMN regions, perhaps at the expense of coor-
dination between the NAcc and regions involved in external
attention. While prior studies of healthy participants have
implicated broader sets of brain regions, including salience
network regions, the present study points to central relevance
of the DMPFC as a neural correlate of anhedonia in trauma-
exposed individuals.

The interpretation of the finding that higher NAcc-DMPFC
rsFC is associated with anhedonia is somewhat complicated
by functional heterogeneity within the DMPFC. Amodio and Frith

Figure 1. Cluster characterized by a relationship
between increased anhedonia (higher Snaith-
Hamilton Pleasure Scale score) and increased con-
nectivity with bilateral nucleus accumbens, after
controlling for age and sex. Cluster size = 95 voxels;
peak = [14, 56, 16]; cluster prse discovery rate = -021.
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Figure 2. Scatterplots showing the association between Snaith-Hamilton Pleasure Scale (SHPS) scores and right and left nucleus accumbens (NAcc) to
dorsomedial prefrontal cortex (DMPFC) cluster connectivity values. Raw scores (not partialled out for age and sex) are displayed at the top for visualization
purposes. Partial plots are displayed at the bottom, residualized for age and sex.

(70) identified the particular region of the right DMPFC emerging
from the present analysis as part of the anterior rostral mPFC
(x| <20,y > 20, z > 0), an area implicated in social cognition,
including self-knowledge, person perception, and mentalizing.
Activation in this region is reduced in individuals with high levels
of social anhedonia during an emotional face discrimination task
(71). A recent functional parcellation study of the DMPFC iden-
tified four subregions with separable connectivity patterns,
including right caudal, left caudal, rostroventral, and ros-
trodorsal subregions (72). The cluster in the present study
partially overlaps with the rostrodorsal subregion (Figure 3B),
which has strong connections to DMN regions (including pos-
terior cingulate and inferior parietal cortex) as well as to the
amygdala and hippocampus. One possibility that could be
explored in future work is that the association between anhe-
donia and increased NAcc-DMPFC connectivity following
trauma exposure could arise in the context of elevated input to
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the DMPFC from hippocampal and amygdalar regions. Finally,
there is evidence that the DMPFC works in parallel with the
dorsolateral PFC to support cognitive control, particularly via
self-monitoring of cognitive performance (72). It is possible that
anhedonia may be associated with excessive self-monitoring,
leading to excessive downregulation of reward responsivity.
The present study’s identification of this relationship contributes
to the increasing recognition of the centrality of anhedonia in
trauma-related and stress-related disorders and identifies a
possible neural circuit for future investigation and potentially
ultimately treatment targeting.

In this sample, greater anhedonia was associated with
altered choice behavior, i.e., increased DD. This contrasts with
a prior study of healthy undergraduates, in whom greater
anhedonia was associated with decreased DD (38). One
potential interpretation of the association between increased
DD and anhedonia in the present sample is that this merely
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Table 3. Partial Correlations Between Anhedonia Scores
and Resting-State Functional Connectivity, Controlling for
Possible Demographic and Clinical Confounds

Right NAcc-DMPFC Left NAcc-DMPFC

Connectivity Connectivity
SHPS (Age, Sex) .610 451
SHPS (Age, Sex, CAPS .548 421
Total)
SHPS (Age, Sex, BDI .641 .538
Total)
SHPS (Age, Sex, 515 335
Diagnostic Group)
SHPS (Age, Sex, LEC) .584 .485
SHPS (Age, Sex, ACE) .599 446

Possible demographic and clinical confounds are in parentheses. All
variance inflation factor values are under 2.5, indicating no problematic
multicollinearity in each model. All correlations are statistically
significant at p < .05.

ACE, Adverse Childhood Experiences; BDI, Beck Depression
Inventory; CAPS, Clinician Administered PTSD Scale; DMPFC,
dorsomedial prefrontal cortex; LEC, Life Events Checklist; NAcc,
nucleus accumbens; SHPS, Snaith-Hamilton Pleasure Scale.

reflects the general relationship between increased DD and
psychological distress (39). Another possibility, not testable in
the present dataset, is that anhedonia may be associated with
pessimism about the future, or reduced certainty about the
delivery of delayed rewards. Notably, DD rates are also lower
when individuals engage in episodic future thinking (73), and
positive (but not negative) episodic future thinking is reduced in
PTSD (74). The extent to which the effects of anhedonia on DD
may be attributable to reductions in positive episodic future
thinking is currently unknown. Future studies should include
measures assessing beliefs about the certainty of reward de-
livery and episodic future thinking to evaluate these possibil-
ities. In the present study, DMPFC-NAcc connectivity did not
contribute to the prediction of DD rates over and above the
contribution of SHPS and demographic predictors, which may
occur if the relationship between anhedonia and DD arises
because both relate to a third mechanism (e.g., episodic future
thinking). From a clinical perspective, one implication of the
present finding is that trauma-exposed individuals with
elevated anhedonia may be particularly prone to comorbidities
characterized by impulsive choice (increased DD), such as
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substance use, aggression, and suicidal behavior. Future
studies identifying longitudinal relationships between these
constructs in relation to the time of trauma exposure will be
needed to clarify whether, for instance, increased baseline DD
is a vulnerability factor for developing anhedonia following
trauma exposure or whether anhedonia following trauma
exposure leads to acceleration in the DD rate.

This study has several limitations. First, because this study
developed from a broader project examining trauma-related
neurochemistry, individuals with current or recent substance
use disorders were excluded. While this provides greater
precision about the role of trauma exposure for neuroimaging
analyses, it likely truncates the distribution of impulsive deci-
sion making present in this sample. Second, although this
project collected data from non-trauma-exposed control
subjects in the context of broader aims, these data were not
included in the present analysis because of a lack of sufficient
variability in anhedonia. Intentionally recruiting non-trauma-
exposed control subjects across a broad range of anhedonia
would allow for analyses that differentiate whether anhedonia
itself is related to NAcc-DMPFC connectivity or whether the
relationship occurs in the context of trauma exposure. Third,
collection of DD data was added after the study was underway,
and DD data were not available for all participants who had
rsFC data. Finally, the sample size prevents us from con-
ducting more fine-grained trauma-related analyses, such as
exploring whether the observed effects are specific to partic-
ular types of trauma exposure.

Despite these limitations, in this trauma-exposed cohort,
greater anhedonia was associated with higher NAcc-DMPFC
rsFC and with increased DD (i.e., increased preference for
smaller immediate rewards vs. larger future rewards). These
findings contribute to a growing body of literature emphasizing
the importance of anhedonia as a clinical construct in trauma-
related and stress-related disorders.
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