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Abstract 
Major depressive disorder (MDD) is characterized by behavioral and neural abnormalities in 
processing both rewarding and aversive stimuli, which may impact motivational and affective 
symptoms. Learning paradigms have been used to assess reinforcement encoding abnormalities 
in MDD and their association with dysfunctional incentive-based behavior, but how the valence 
and context of information modulate this learning is not well understood. To address these gaps, 
we examined responses to positive and negative reinforcement across multiple temporal phases 
of information processing. While undergoing functional magnetic resonance imaging (fMRI), 
47 participants (23 unmedicated, predominantly medication-naïve participants with MDD and 
24 demographically-matched HC participants) completed a probabilistic, feedback-based rein- 

∗ Corresponding author at: New York State Psychiatric Institute, 1051 Riverside Drive, Unit 69, New York, NY 10032, United States. 
E-mail address: fschneier@nyspi.columbia.edu (F.R. Schneier). 

https://doi.org/10.1016/j.euroneuro.2021.08.002 
0924-977X/ © 2021 Elsevier B.V. and ECNP. All rights reserved. 

Downloaded for Anonymous User (n/a) at Harvard University from ClinicalKey.com by Elsevier on September 14, 
2021. For personal use only. No other uses without permission. Copyright ©2021. Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.euroneuro.2021.08.002
http://www.elsevier.com/locate/euroneuro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euroneuro.2021.08.002&domain=pdf
mailto:fschneier@nyspi.columbia.edu
https://doi.org/10.1016/j.euroneuro.2021.08.002


J.M. Reinen, A.E. Whitton, D.A. Pizzagalli et al. 

forcement learning task that allowed us to separate neural activation during motor response 
(choice) from reinforcement feedback and monetary outcome across two independent condi- 
tions: pursuing gains and avoiding losses. In the gain condition, MDD participants showed overall 
blunted learning responses (prediction error) in the dorsal striatum when receiving monetary 
outcome, and reduced responses in ventral striatum for positive, but not negative, predic- 
tion error. The MDD group showed enhanced sensitivity to negative information, and symptom 

severity was associated with better behavioral performance in the loss condition. These find- 
ings suggest that striatal responses during learning are abnormal in individuals with MDD but 
vary with the valence of information. 
© 2021 Elsevier B.V. and ECNP. All rights reserved. 
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. Introduction 

ajor depressive disorder (MDD) is characterized by mo- 
ivational and affective symptoms that are highly dis- 
bling and predict poor treatment response ( Treadway and 
ald, 2010 ). Evidence suggests that these motivational dis- 
urbances, particularly anhedonia, are related to hyposen- 
itive responses to rewarding experiences ( Pizzagalli et al., 
005 ) and abnormalities in the neural circuitry support- 
ng reinforcement processing ( Nestler and Carlezon, 2006 ; 
hitton et al., 2015 ). This blunting putatively contributes 
o deficits in outcome valuation, incentive salience, and 
ffort calculation, which then manifest as behavioral and 
ffective disturbances characterized by diminished re- 
ard pursuit and suboptimal action selection. To con- 
ect these processes, reinforcement learning paradigms 
ave been used to examine the mechanisms underly- 
ng the ability to encode and maintain information dur- 
ng goal-directed behavior. In depression, converging find- 
ngs indicate that responses in cortico-striatal regions crit- 
cal for feedback-driven learning ( Bartra et al., 2013 ; 
aw et al., 2006 ; Haber and Knutson, 2009 ) are blunted 
hen learning from rewarding feedback ( Admon and Pizza- 
alli, 2015 ; Bakker et al., 2018 ; Kumar et al., 2018 , 2008 ;
obinson et al., 2012 ; Steele et al., 2007 ). Although incon- 
istencies have been observed (e.g., Rutledge et al., 2017 ; 
outoussis et al., 2018 ), these are likely due to key as- 
ects of the paradigms used, stage of learning assessed, and 
ther contributing factors. For instance, not all paradigms 
llow reward anticipation- and outcome-related processes 
o be examined separately, despite evidence showing that 
hese distinct learning stages draw on distinct neurochem- 
cal and functionally interconnected brain systems that are 
mpacted in different ways in depression ( Barch et al., 2015 ; 
erridge and Robinson, 1998 ; Satterthwaite et al., 2015 ). 
urthermore, depression-related deficits in these processes 
ay be either enhanced or minimized by the time-course 
nd situational demands imposed by the paradigm, or by 
he characteristics of the depression sample selected (e.g., 
ymptom profile and/or medication use) ( Heller et al., 
009 ; McCabe et al., 2010 ; Robinson et al., 2012 ). 
Depression has also been associated with abnormal (of- 

en enhanced) responses to negative stimuli, and this has 
een linked to symptom severity ( Gotlib et al., 2004 ; 
amilton and Gotlib, 2008 ). Learning studies have gener- 
lly supported this, demonstrating hypersensitive, or less- 
mpaired, behavioral and neural responses to negative feed- 
ack ( Chase et al., 2010 ; Johnston et al., 2015 ; Ubl et al.,
90 
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015 ) alongside hyposensitive responses to positive feed- 
ack (for reviews, see Eshel and Roiser 2010 ; Whitton et al., 
015 ). While it remains unknown whether altered responses 
o negative stimuli in depression may be attributed to 
he contextual framing of affective information ( Eshel and 
oiser, 2010 ), comorbidity with anxiety, or global affective 
rocessing abnormalities ( Bylsma et al., 2008 ), negative af- 
ect (including anxiety) and anhedonia often co-occur in 
DD ( Watson et al., 1995 ). Accordingly, gaining a better 
nderstanding of reinforcement processing in MDD is cru- 
ial for understanding maladaptive processes that may bias 
ttention, learning, and memory towards negative ( Doré
t al., 2018 ; Eshel and Roiser, 2010 ) and away from positive
nformation. 
To elucidate the mechanisms supporting positive and neg- 

tive information processing, reinforcement learning mod- 
ls estimate state-specific choice values derived from prior 
xperience. The metric critical for updating behavior is 
he prediction error (PE), which signifies whether infor- 
ation received was better (positive PE) or worse (nega- 
ive PE) than expected. Prior studies have implicated the 
triatum and its cortical connections in learning from posi- 
ive and negative PEs ( Hart et al., 2014 ), with ventral and
nterior regions associated with processing positive infor- 
ation ( Bartra et al., 2013 ), and dorsal and posterior re- 
ions implicated in processing negative or aversive infor- 
ation ( Seymour et al., 2007 ). Although they overlap, stri- 
tal subdivisions are also posited to support distinct aspects 
f learning. Ventral regions and their midbrain dopaminer- 
ic inputs facilitate updating value predictions by evaluat- 
ng experienced reward relative to expectations ( Haber and 
nutson, 2009 ; O’Doherty et al., 2004 ). Dorsal striatal re- 
ions may maintain action-reinforcement associations by 
onnecting salient stimuli to appropriate approach or avoid- 
nce motor responses ( Bartra et al., 2013 ; O’Doherty et al., 
004 ; Seymour et al., 2007 ). Consequently, localizing PE ab- 
ormalities in MDD may aid in linking regional distinction of 
E deficits with symptoms related to value-based cognition 
nd motivated action, respectively. 
To address inconsistencies in the literature, including 

ariability across motivational context (gain/loss condi- 
ions), PE valence, striatal localization, medication, and 
ubstance use, we administered a reinforcement learn- 
ng task in a group of treatment-naïve individuals with 
DD and a demographically-matched healthy control group 
HCs) with functional magnetic resonance imaging (fMRI). 
o enhance precision with respect to identifying distinct 
ncentive-related abnormalities, we specifically examined 
 from ClinicalKey.com by Elsevier on September 14, 
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E learning signals when participants first received feed- 
ack (“correct” or “incorrect”) about their choice, and then 
eceived a subsequent monetary gain or loss. Motivational 
ontext ( Reinen et al., 2014 ) was varied using two con- 
itions, one aimed at accumulating monetary gains, and 
nother aimed at avoiding losses. We examined responses 
o positive, negative, and general (positive and negative) 
Es in ventral and dorsal striatum, as well as at a whole- 
rain level, across learning stages, and according to motiva- 
ional demands of the learning condition. Given prior find- 
ngs of reward-related blunting in MDD ( Kumar et al., 2018 ; 
obinson et al., 2012 ), we expected that striatal learning 
ignals would be reduced in MDD when learning to accumu- 
ate gains but relatively enhanced when learning to avoid 
osses, and we aimed to explore this disparity both at the 
evel of discrete trials and across broader motivational con- 
ext (experimental condition for seeking gain or avoiding 
oss). Further, we expected that learning behavior and stri- 
tal response would show a relationship with severity of mo- 
ivational symptoms, including anhedonia and anxiety. 

. Experimental procedures 

.1. Participants 

he data reported here were part of a multimodal, lon- 
itudinal study examining the neural bases of MDD, anhe- 
onia, and symptom response to treatment. MDD partic- 
pants were recruited from outpatient research clinics at 
he New York State Psychiatric Institute and Mount Sinai 
edical Center, and HC participants were recruited from 

he community through online notices. At baseline, partici- 
ants completed eligibility assessment, a battery of clinical 
atings, functional imaging, and the reinforcement learning 
ask described here. Findings from a PET study assessing ca- 
acity for dopamine release, followed by 6 weeks of clin- 
cal assessments during treatment with pramipexole, are 
eported elsewhere (see Fig. S1 in Schneier et al., 2018 ; 
hitton et al., 2020 ). Study procedures were approved by 
he Institutional Review Boards of both institutions, and all 
articipants provided informed consent prior to study pro- 
edures. 
Fifty-two participants (26 MDD/26 HC, ages 18–50) were 

ecruited to complete the functional imaging study. Only 
wo of the MDD participants had ever taken psychotropic 
edication (both for < 2 weeks, and > 5 years prior to study 
articipation). Two participants did not complete scanning, 
wo were non-compliant, and for one participant there were 
can-related technical issues (only behavioral data used). In 
otal, the behavioral analyses included a sample of 24 HC 

articipants and 24 MDD participants; scanning analyses in- 
luded 24 HC participants and 23 MDD participants. 
Diagnoses were assessed by psychiatric interview and 

onfirmed by trained clinicians using the Structured Clini- 
al Interview for the DSM-IV ( First et al., 1996 ). Eligibility 
creening included blood/urine testing including urine tox- 
cology, an electrocardiogram, and medical history and ex- 
mination. Female participants were not pregnant, nursing, 
ostmenopausal, or using hormonal contraception meth- 
ds. MDD participants were experiencing a major depres- 
ive episode without psychotic features and had a Hamil- 
91 
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on Rating Scale for Depression ( Hamilton, 1986 ) 17-item 

otal score of 17–28. They had no lifetime diagnosis of psy- 
hotic, attention-deficit, or bipolar disorders, substance- 
se disorders (including alcohol and nicotine); nicotine or 
llicit drug use (past 3 months), active suicidal ideation, or 
amily history of schizophrenia. MDD participants also had 
o more than two weeks of lifetime treatment with psy- 
hotropic medication ( n = 22 had no lifetime psychotropic 
edication). HC participants were matched for age, sex, 
ace/ethnicity, and had no lifetime psychiatric disorders. 
emographics, clinical characteristics, and clinical rating 
cales used are reported in Table 1 and in the Supplemen- 
ary materials. 

.2. Behavioral paradigm and learning model 

articipants completed a probabilistic, feedback-based re- 
nforcement learning task ( Reinen et al., 2014 ) designed 
o separate choice, feedback, and outcome events while 
ndergoing fMRI. Studies have shown that this task elic- 
ts responses in the striatum, prefrontal cortex, and limbic 
egions while participants actively learn, motivated sepa- 
ately by gains or losses ( Insel et al., 2014 ; Reinen et al.,
016 ). The task structure was specifically designed to sepa- 
ate motor responses, which recruit striatal resources, from 

esponses during the cognitive processes of anticipatory and 
onsummatory learning, and to be analogous across gain and 
oss contexts, allowing us to compare motivational contexts 
f approach versus avoidance. In other words, the best loss 
voidance ($0 loss) in the loss condition was comparable to 
he best win ($1) in the gain condition ( Fig. 1 a–d). Partici-
ants completed two counterbalanced phases (60 trials) of 
on-intermixed conditions: a gain condition, incentivized by 
arning money, and a loss condition, incentivized by avoid- 
ng losing money from an endowment. Through trial and 
rror, participants first made a choice between two stim- 
li and next received stochastically-delivered verbal feed- 
ack (“correct” or “incorrect”, 70/30 contingency), which 
robabilistically predicted a subsequent monetary outcome 
 Fig. 1 a–d). Although “correct” feedback was associated 
ith higher expected value outcome than “incorrect”, the 
xact magnitude of the reward on each trial was unpre- 
ictable, thereby generating a PE at both feedback and re- 
ard presentation. This allowed us to examine PEs when in- 
ividuals received feedback about reward anticipation and 
 temporally separate reward outcome (consummatory) re- 
eipt. 
To assess behavior and compute parametric regressors for 

he imaging analysis, we implemented a variant of a ba- 
ic Q-learning model used in multiple established paradigms 
 Daw, 2011 ). This model was adapted for this two-stage task 
nd was utilized to acquire standard estimates of behavioral 
einforcement learning parameters for each condition and 
articipant based on a similar approach used previously with 
his same task ( Reinen et al., 2014 , 2016 ). The participant-
pecific values generated from this approach included learn- 
ng rates and inverse temperature/beta, similar to a weight 
y which Q-values are related to participant choices (see 
upplementary materials and the Supplementary data for 
einen et al., 2016 , Reinforcement Learning Model Analy- 
es, for details). From these estimates, group metrics were 
 from ClinicalKey.com by Elsevier on September 14, 
n. Copyright ©2021. Elsevier Inc. All rights reserved.
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Table 1 Participant Demographics. Mean and standard deviation (in parentheses) for group demographics and clinical symptoms 
are presented for each group. Asterisk denotes significant difference between groups based on two-sample t-tests ( p < 0.05). Statis- 
tics are reported as Chi-square tests (for n) or t-statistics (for continuous metrics). 

Participant Demographics HCs ( n = 24) MDD ( n = 24) Statistic P-Value 

Years of Education, M (SD) 15.38 (1.50) 14.54 (1.47) 1.943 0.058 
Age at Consent in Years, M (SD) 26.89 (5.50) 26.58 (6.40) 0.175 0.862 
Handedness (Edinburgh), M (SD) 63.13 (46.54) 61.88 (39.72) 0.100 0.921 
NAART IQ, M (SD) 111.19 (8.33) 111.56 (8.09) −0.152 0.88 
Sex, n (%) < 0.001 > 0.999 

Female 12 (50) 12 (50) 
Male 12 (50) 12 (50) 

Race, n (%) 0.188 0.98 
Asian 3 (12.5) 3 (12.5) 
African American 4 (16.7) 5 (20.8) 
Other 7 (29) 6 (25) 

Ethnicity, n (%) 0.375 0.54 
Hispanic 7 (29) 9 (37.5) 
Non-Hispanic 17 (70.8) 15 (62.5) 

Hamilton Depression 17 Total ∗, M (SD) 0.17 (0.38) 20.08 (2.69) −35.977 < 0.001 
Mood and Anxiety Questionnaire (MASQ) Anhedonic Depression ∗, M 

(SD) 
37.67 (9.71) 81.96 (10.24) −15.376 < 0.001 

Mood and Anxiety Questionnaire (MASQ) Anxious Arousal ∗, M (SD) 18.92 (2.62) 25.54 (7.75) −3.967 < 0.001 
Mood and Anxiety Questionnaire (MASQ) General Distress 

Depressive ∗, M (SD) 
14.21 (2.81) 39.21 (10.71) −11.061 < 0.001 

Mood and Anxiety Questionnaire (MASQ) Total ∗, M (SD) 83.75 (13.53) 170.46 (25.80) −14.582 < 0.001 
Apathy Evaluation Rating Scale (AES) ∗, M (SD) 23.83 (4.98) 41.09 (8.99) −8.222 < 0.001 
Snaith Hamilton Pleasure Scale (SHAPS) Franken Total ∗, M (SD) 20.33 (8.98) 31.83 (6.72) −5.024 < 0.001 
Temporal Experience of Pleasure Scale (TEPS) Anticipatory Total ∗, M 

(SD) 
48.96 (5.29) 36.25 (8.25) 6.355 < 0.001 

Temporal Experience of Pleasure Scale (TEPS) Consummatory Total ∗, 
M (SD) 

38.38 (7.35) 30.38 (7.76) 3.668 0.001 

MDD Age of Onset in Years, M (SD) NA 17.77 (7.02) 
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ssessed and used to generate participant- and trial-specific 
earning signal prediction error (PE) regressors for the fMRI 
eneral linear model (GLM)-based analyses. 
Additional exploratory models were run to further assess 

ehavior, including assessing learning rates from positive or 
egative feedback and sensitivity to the valence of PE (pos- 
tive versus negative reward outcomes). These models were 
epeated to explore how the parameters varied by partic- 
pant group as well as by patient symptom severity. These 
odel specifications, alternative approaches, and parame- 
er estimation are detailed in the Supplementary materi- 
ls. Other behavioral metrics, including optimal choice (the 
roportion of time a participant chose the more frequently 
ewarded shape) and reaction time (RT) were analyzed for 
roup and condition effects. 
Several alternative imaging models were explored to en- 

ure consistency of results across model complexity and 
arameter generation approach, and to confirm that the 
elevant conclusions from the neuroimaging results con- 
erged across these approaches. We compared across re- 
ressor generation and fMRI contrast analyses for (1) max- 
mum likelihood and Bayesian regressor estimates (Sup- 
lementary materials, Fig. S3); (2) model-based regres- 
ors and qualitative regressors, including correct and in- 
orrect outcomes for feedback and high and low rewards 
m

92 
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t outcome (Supplementary materials, Fig. S4); (3) various 
wo-stage models used in prior tasks (see Supplementary 
aterials, Fig. S5); and (4) various correction thresholds 
see Supplementary materials, Fig. S6). Convergent findings 
re outlined and discussed in detail in the Supplementary 
aterials, section on Convergence Across Alternative fMRI 
odels. 

.3. Scanning data acquisition and analysis 

ll scans were performed at NY State Psychiatric Institute 
n a GE Signa 3T scanner (Milwaukee, WI) using a Nova 32 
hannel head coil. Participants viewed images projected on 
 screen while in a supine position, and used a hand-held 
rackball to respond during the task. T1-weighted structural 
mages (1 mm isotropic voxels, 200 slices, FOV = 25.6, flip 
ngle = 12, TI = 450) and whole-brain functional EPI images 
TR = 2000 ms, TE = 28 ms, flip angle = 77 °, FOV = 19.2,
 mm isotropic voxels, 42 slices) were acquired in 178 
olumes, in six runs of 20 trials each. The first five 
olumes were discarded to allow for magnetic stabiliza- 
ion. Group differences in motion estimates were assessed 
ased on the individual mean absolute displacement of raw 
easurements. 

 from ClinicalKey.com by Elsevier on September 14, 
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Fig. 1 Reinforcement Learning Paradigm. Each participant completed a probabilistic reward-based learning task in two contexts, 
(A) incentivized by gaining money, and (B) incentivized by avoiding losing money. Condition order and stimuli were counterbalanced. 
(C) There was a 70/30 probabilistic contingency that linked the choice to verbal feedback. Though expected value was higher with 
“correct” feedback and lower with “incorrect” feedback, there was a (D) 50% uncertainty of reward receipt magnitude. 
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Functional images were preprocessed and analyzed 
ith SPM8 (Wellcome Department of Imaging Neu- 
oscience, London, UK) and analyzed with NeuroElf 
 http://neuroelf.net/ ). Functional images were first slice- 
ime corrected and realigned to the first volume of each 
un to correct for motion. Images were then warped to 
he Montreal Neurological Institute template and smoothed 
ith a 6 mm Gaussian kernel. Data were forced to sin- 
le precision to decrease the impact of rounding errors. 
ignal-to-noise ratio, motion, and alignment were exam- 
ned for each participant (see Supplementary materials). 
fter preprocessing, we implemented a first-level statisti- 
al analysis using a standard GLM. The model included five 
tick function regressors of interest per condition (choice, 
eedback, outcome), and two trial-specific parametric re- 
ressors that were convolved with the hemodynamic re- 
ponses for feedback PE and monetary reward PE. Learn- 
ng rates and beta parameters for the model-based fMRI 
nalyses were estimated using a Bayesian framework based 
n a variant of a two-stage reinforcement learning model 
 Daw et al., 2011 ; Sutton and Barto, 1998 ) described above 
nd in the Supplementary materials. As in prior analyses of 
his task, a high pass temporal filter and motion parameters 
ere incorporated into the model as regressors of no inter- 
st ( Reinen et al., 2016 ). Gain and loss condition learning 
ignals were examined as separate regressors in the same 
odel. Additional GLM-based analyses were conducted us- 

ng the similar specifications detailed above. First, we ex- 
mined positive and negative PEs separately. Values were 
ased on the PE valence generated by the model based on 
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hether an outcome was better or worse than expected. To 
mprove power, available regression beta values for feed- 
ack and outcome events were collapsed across each other 
roducing a model with five stick-function regressors of 
nterest per condition (choice, positive outcomes, nega- 
ive outcomes), and trial-specific parametric regressors that 
ere convolved with the hemodynamic responses (choice 
alue, positive PE, and negative PE). 
For both GLMs, we first addressed our hypotheses within 

pecific regions. Responses were extracted from a priori - 
efined regions of interest (ROI) using automated functional 
maging meta-analysis ( Yarkoni et al., 2011 ) using the terms 
ventral striatum “ and “dorsal striatum”. Values were ex- 
racted from a 6-mm sphere (radius) surrounding the peak 
oordinates and their bilateral counterparts. ANOVAs with 
actors of condition and group were calculated for feed- 
ack/reward and positive/negative PE. Next, results were 
xamined using a whole-brain approach by masking out-of- 
rain and white matter voxels, and then selecting voxels 
hat passed a test for family-wise error (FWE) of p < 0.005 
sing AlphaSim MonteCarlo simulation. To reduce the pos- 
ibility of false positives, results were validated using con- 
ervative permutation (nonparametric) tests using cluster 
orrection of at least p < 0.02 (see Supplementary materi- 
ls). For each regressor, mean global signal was treated as 
 covariate, but was assessed for qualitative similarity with 
nd without global signal. 
Finally, we addressed the primary hypothesis that learn- 

ng responses are related to affective and motivational 
ymptoms of depression. From the battery of clinical as- 
 from ClinicalKey.com by Elsevier on September 14, 
n. Copyright ©2021. Elsevier Inc. All rights reserved.

http://neuroelf.net/


J.M. Reinen, A.E. Whitton, D.A. Pizzagalli et al. 

Fig. 2 Behavioral Results. (A) Participants’ reaction time to choices became shorter as they progressed across blocks (10 tri- 
als/block) in both conditions. (B) Likewise, participants improved performance as reflected in the percentage of time they chose 
the correct (optimal) shape, or the one most associated with a rewarding outcome. (C) Model-based analyses indicate there is 
a group effect greater than 0 based on negative feedback PE valence (top panel; grp = group, con = condition). (D) A correlation 
between anhedonic depression severity and loss performance was observed in the MDD group ( r = 0.42, p = 0.04). All group labels 
are consistent with colors in the top row legend. 
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essments, we selected two measures a priori to analyze 
MRI results for possible relationship to anhedonia and anx- 
ous arousal: Anhedonic Depression and Anxious Arousal sub- 
cales of the Mood and Anxiety Symptoms Questionnaire 
MASQ); see Supplementary materials). These measures 
ere chosen because they offered co-validated metrics for 
nhedonia and anxiety, and have been shown to effectively 
iscriminate between symptom dimensions ( Watson et al., 
995 ). Using these two subscales therefore allowed us to 
est whether any effects observed were specific to anhedo- 
ia or whether they also extended to other separate forms 
f negative affect (i.e., anxiety). Accordingly, we calcu- 
ated Pearson correlations with behavioral learning metrics 
optimal choice, learning rates) and symptom scores. After 
ehavioral relationships were assessed, we extracted values 
ased on regions defined by the functional group results in 
triatum and calculated correlations with participants’ an- 
edonia and anxiety symptom scores. 

. Results 

.1. Demographic and behavioral measures 

roups did not differ on demographic variables or fMRI mo- 
ion estimates (all ps > 0.05; see Table 1 and Supplemen- 
ary materials). The MDD group was characterized by de- 
ressive symptoms of moderate severity ( Table 1 ). Reac- 
ion time (RT) and optimal choice (defined as the per- 
entage of trials each participant chose the shape that 
S
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as more frequently rewarded) were first assessed by 
lock (6 blocks of 10 trials). As expected, main effects of 
lock were observed for both RT (F 1,544 = 11.46, p < 0.01; 
ig. 2 A) and optimal choice (F 1,544 = 6.50, p < 0.01, Fig. 2 B),
here participants responded more quickly and chose more 
ptimally over time. However, contrary to our hypothe- 
es, no effect of group or condition emerged for ei- 
her RT (F 1,144 group = 0.36, p = 0.55; F 1,144 condition = 2.08,
 = 0.15) or optimal choice (F 1,544 group = 2.84, p = 0.09;
 1,544 condition = 0.10, p = 0.75), indicating that learning- 
elated changes in RT and accuracy were not any weaker 
n the MDD group relative to the controls. 
Standard reinforcement learning metrics ( Daw et al., 

011 ; Reinen et al., 2016 ) were used to assess beta, learn-
ng rate, and parameters examining the effect of positive 
r negative information on outcomes (for details, see 
upplementary materials and Table S1). Results revealed a 
roup effect for the parameter that captured the impact 
f negative feedback information on feedback, where this 
arameter was greater in the MDD group relative to the 
ontrol group ( P = 0.02) across conditions. This suggests 
hat negative feedback may have a greater impact in 
pdating learned values in individuals with MDD. Similarly, 
his negative feedback effect also varied positively with 
ASQ anhedonic and anxious arousal symptoms (both 
s = 0.01), as was observed in the model using symptoms 
o examine parameter variability instead of a group label. 
dditional findings, including group effects of beta and a 
rending effect of reduced influence of positive valence in 
he gain condition for the MDD group, are discussed in the 
upplementary materials. 
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Fig. 3 Learning Signal Differences for HCs > MDD. (A) Regions of interest defined by automated meta-analysis (neurosynth.org) using 
terms “ventral” (teal) and “dorsal” (yellow) striatum. (B) Whole-brain corrected results (FWE corrected p < 0.005) were examined 
as they differed for HC > MDD for prediction error learning signals during presentation monetary outcome in the gain condition and 
(C) results for HC > MDD represent positive PE across feedback and outcome in the gain condition. No significant results were found 
for the loss condition or negative PE in the striatum. 
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.2. Group differences in overall (Positive and 

egative) PE response 

.2.1. Overall PE response in regions of interest (ROIs) 
ur first analysis of PE used a condition (gain, loss) x group 

HC, MDD) ANOVA to assess PE response in the each of the a 
riori defined ROIs ( Fig. 3 A). ANOVAs were conducted for PE 
t feedback and PE at outcome in right and left striatum. 
or PE at feedback, we identified a main effect of condi- 
ion in the left and right dorsal striatum (left: F 1,90 = 4.29, 
 = 0.04; right: F 1,90 = 7.7, p < 0.01). For PE at outcome,
 main effect of condition (F 1,90 = 5.79, p = 0.018, see 
upplementary Fig. S2), as well as a main effect of group 

F 1,90 = 4.08, p = 0.046) emerged for the right dorsal stria- 
um, and there was also a nonsignificant trend for group 

n the left dorsal striatum (F 1,90 = 3.35, p = 0.07). Further- 
ore, for PE at outcome, there was a nonsignificant trend 
or a group -by- condition interaction of outcome PE in right 
orsal striatum (F 1,90 = 3.37, p = 0.069). Other effects of 
roup were not significant (all ps > 0.05). Given these find- 
ngs, we conducted post hoc t-tests to examine group differ- 
nces in dorsal striatum PEs, in the gain and loss conditions 
eparately. We found significant group differences for out- 
ome PE only in the gain condition in the right (HC > MDD, 
 45 = 2.47, p = 0.017) and left dorsal striatum (HC > MDD, 
 45 = 2.11, p = 0.04), indicating greater response in these 
egions in controls; all other ps > 0.05 for feedback PE and 
or the loss condition). 

.2.2. Overall PE response across the whole-brain 

e then evaluated whole-brain group differences for 
C > MDD participants in response to overall (positive and 
egative) PE learning signals. For the gain condition, sig- 
ificant findings survived cluster correction ( p < 0.005) only 
or the outcome PE, and greater response in HC was ev- 
dent in bilateral thalamus (peak = 18, −24,12, k = 354, 
 max = 4.6), extending to regions of right dorsal striatum 

peak = 15,12,6, k = 36, t max = 3.29; Fig. 3 B), right infe-
ior frontal gyrus (peak = 57,18, −6, k = 474, t max = 4.51) ex-
ending to BA 11 (peak = 9,18, −21, k = 27, t max = 3.52), and
edial culmen (peak = 9, −42, −3, k = 338, t max = 5.18). No-
ably, differences in the gain condition for HC > MDD were 
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lso identified in all alternative imaging models in dor- 
al striatum (see Supplementary materials and Figs. S3–S6), 
ighlighting the robustness of these findings. In the loss con- 
ition, notably, no significant group differences were iden- 
ified in the striatum, but we did find blunted feedback 
E responses in MDD in the anterior cingulate extending to 
edial PFC (peak = 3,39,3, k = 114, t max = 4.97), and en-
anced outcome PE responses in MDD in the left cerebellum 

peak = −21, −81, −36, k = 273, t max = −4.43). 

.3. Group differences in positive and negative 

E response 

.3.1. Group differences in positive and negative PE in 

egions of interest (ROIs) 
e next examined positive versus negative PE response 
cross all trial events. In a similar approach to prior anal- 
ses, we first used ANOVA with factors of condition, group, 
nd valence to assess positive and negative PE response 
n a priori defined ROIs ( Fig. 3 A). A significant group -by-
ondition interaction was found for positive PE valence 
n left ventral (F 1, 180 5.92, p = 0.015) and dorsal striatum 

F 1,180 = 6.7, p = 0.01). Post hoc t-tests revealed significant 
roup differences (HC > MDD) revealing greater response in 
C only for positive PE valence in the gain condition in 
oth regions (left ventral: t 45 = 2.76, p < 0.01, left dorsal: 
 45 = 2.33, p = 0.03). No main effects of group or interac-
ions emerged for the right striatum or for negative PE (all 
 1,180 > 2.99, all ps > 0.09). 

.3.2. Group differences in positive and negative PE 

cross the whole-brain 

hole-brain group differences (HC > MDD) likewise revealed 
ignificant differences in the striatum only for positive PE 
n the gain condition. Here, we identified group differ- 
nces indicating relatively enhanced responses in HC in a 
luster in the medial prefrontal cortex (peak = −9,57,6, 
 = 434, t max = 4.54) extending to left ventral striatum 

peak = −15,9,12, k = 30, t max = 3.81; Fig. 3 C). MDD pa-
ients showed increased responses relative to HC for neg- 
tive PE in the gain condition in the right cerebellum 
 from ClinicalKey.com by Elsevier on September 14, 
n. Copyright ©2021. Elsevier Inc. All rights reserved.
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peak = 18, −78, −33, k = 105, t max = −4.05), and in the
eft parahippocampal gyrus (peak = −30, −3, −27, k = 141, 
 max = −5.15) extending to cerebellum (peak = 18, −33, −12, 
 = 113, t max = −4.76), and medial temporal gyrus 
peak = 54,0, −27, k = 128, t max = −4.97) for positive PE in
he loss condition. 

.4. Learning signals and clinical symptoms 

earson correlations were used to test the hypothesis that 
earning behavior is related to the clinical symptoms of 
DD. First, we examined the correlation between learn- 
ng rate (alpha) and optimal choice in the MDD group as 
hey related to MASQ scores for anhedonic depression and 
nxious arousal. While symptoms were not correlated with 
earning rate (all ps > 0.05), increasing severity of anhedo- 
ia was associated with increases in optimal choice in the 
oss condition ( r = 0.42, p = 0.04; Fig. 2 D). Subsequent 
xploratory analyses were used to relate clinical symptoms 
o the imaging findings described above. We evaluated re- 
ationships between learning signals in functionally defined 
OIs and MASQ scores. We extracted responses from partici- 
ants based on group effects identified in the peak striatum 

luster (peak = 15,12,6, Fig. 3 B), and evaluated the corre- 
ation between the response in this region and self-reported 
evels of anhedonia and anxiety. In MDD participants, nega- 
ive PE response in the left ventral striatum in the gain con- 
ition showed a trend correlation with severity of anxiety 
 r = 0.53, p = 0.009; corrected p = 0.07; all other ps > 0.05,
ee Supplementary materials for additional analyses). 

. Discussion 

he present findings provide evidence that in unmedicated 
ndividuals with MDD, striatal learning signals are blunted in 
esponse to positive information. This was observed more 
enerally in the gain condition at outcome and in responses 
ime-locked to positive PEs at both feedback and outcome. 
elative to HC participants, MDD participants showed re- 
uced overall PE responses in the dorsal striatum when in- 
entivized by rewards but not losses, and in more ventral 
egions in response to positive, but not negative, PE (note, 
owever, that the group -by- condition interaction was not 
ignificant, limiting the specificity of the findings). In MDD, 
e did not find evidence for loss learning deficits in the 
triatum, and instead identified increased behavioral sensi- 
ivity to negative PE learning signals. Critically, the relation- 
hip between learning and anhedonia was preferential to 
otivational context, such that MDD participants with more 
evere motivational symptoms performed better at learning 
o avoid losses but showed greater striatal PE blunting from 

ositive outcomes. These results add to the growing body 
f literature supporting a reward processing deficit in MDD 

 Admon and Pizzagalli, 2015 ), and reveal that this may differ 
ased on the valence and motivational framing of learned 
ontent. 
Although substantial evidence associates depression and 

epressive symptoms with reward processing abnormali- 
ies in the striatum ( Admon et al., 2015 ; Admon and 
izzagalli, 2015 ; Heller et al., 2009 ; Pizzagalli et al., 
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009 ; Satterthwaite et al., 2015 ), the current literature 
ontains mixed evidence for striatal PE integrity in MDD 

 Gradin et al., 2011 ; Greenberg et al., 2015 ; Kumar et al.,
018 ; Moutoussis et al., 2018 ; Rutledge et al., 2017 ; 
bl et al., 2015 ). Inconsistent findings illustrate the im- 
ortance of heterogeneity within MDD samples, as well 
s in design and analyses of feedback processing studies. 
hese differences include not accounting for the pharma- 
ological impact on reward responses in medicated sam- 
les ( McCabe et al., 2010 ), variability in framing of task 
hoices that have long been known to influence choice be- 
avior ( Tom et al., 2007 ; Tversky and Kahneman, 1981 ), and
estricting analyses to specific anatomical subdivisions of 
triatum. We and others studying MDD have identified differ- 
nces in PEs in the caudate and putamen ( Insel et al., 2019 ;
umar et al., 2018 ; Robinson et al., 2012 ), which lies dorsal
o the regions typically identified as a region of interest for 
eward PE. Responses in dorsal striatum have been linked 
o stimulus-action encoding ( Haruno and Kawato, 2006 ) and 
orming associations necessary to act upon learned value- 
ased cues. It is therefore possible that our findings, which 
ocused on affective symptoms, may reflect abnormalities 
n linking positive outcomes to motor system responses, 
hich may be a mechanism implicated in biotypes of de- 
ression characterized by avolition and fatigue. 
We also found evidence that motivational framing is im- 

ortant. Task structure was essentially identical across con- 
itions, yet MDD-related attenuation in the striatum was 
nly significantly different from HC participants in the gain 
ondition, which involved learning to accumulate rewards. 
e did not identify group differences in PE response in the 

oss condition, although we and others have demonstrated 
nhanced or intact loss learning in behavior and imaging, 
ith some proposing loss hypersensitivity to be related to 
nxious subtypes of depression ( Eshel and Roiser, 2010 ; 
enriques et al., 1994 ; Henriques and Davidson, 2000 ; 
izzagalli et al., 2011 ; Robinson et al., 2012 ; Ubl et al.,
015 ). In the present MDD cohort, we found anhedonia was 
elated to better loss learning performance and negative 
Es were related to anxious arousal, demonstrating an asso- 
iation between sensitivity to negative outcomes and symp- 
om severity. This suggests that the affective symptoms of 
DD may arise from multidimensional influences, including 
bnormal reward encoding and relatively preserved aver- 
ion responses. Collectively, these may coalesce to highlight 
nformation about negative outcomes, ultimately contribut- 
ng to abnormal motivational processing and imbalanced ap- 
roach and avoidance behavior. 
The MDD group showed evidence of blunted striatal ac- 

ivation during the presentation of monetary reward out- 
ome. A substantial body of literature has differentiated 
he underlying neural mechanisms of reward anticipation 
ersus consummation ( Berridge and Robinson, 1998 ). The 
ask design allowed us to distinguish between reinforce- 
ent events, and the findings do suggest that blunted stri- 
tal responses occur at the time of consumption, but sev- 
ral caveats exist. First, this does not negate the possibility 
hat group differences in PE response also occur at feed- 
ack or anticipation, as these were observable using region- 
pecific correction and for positive PE when we collapsed 
cross feedback and outcome events. Second, this paradigm 

oes not enable us to discern between affective and per- 
 from ClinicalKey.com by Elsevier on September 14, 
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eptual processing, given that they are inseparable during 
he reward outcome event. Future studies using different 
ask paradigms should seek to examine the neural process- 
ng systems in learning stages independently in order to un- 
erstand their relationship to depressive symptoms. 
Although this study hypothesized response differences in 

he striatum, the MDD group’s deficits in PEs in the gain 
ondition extended to thalamus, posterior cingulate, or- 
itofrontal cortex, cerebellum, and temporal gyrus, which 
ave been implicated in value processing for both positive 
nd negative outcomes ( Bartra et al., 2013 ; Garrison et al., 
013 ). Notably, MDD participants also showed marked differ- 
nces in responses to positive PE, or better-than-expected 
nformation, based on condition. In the gain condition, MDD 

articipants showed blunted positive PE response in me- 
ial PFC, striatum, parahippocampal gyrus, and cingulate 
Supplementary materials, Table S4). However, in the loss 
ondition, MDD participants showed enhanced responses in 
arahippocampal regions and temporal gyrus (Supplemen- 
ary materials, Table S4). This finding supports the growing 
ody of evidence showing that, in addition to having blunted 
eward processing, individuals with depression may experi- 
nce negative stimuli as being relatively salient. 
A major strength of this study was the assessment of 

n unmedicated and predominantly medication-naïve MDD 

ample (91.3% medication-naïve), which allowed us to infer 
hat our findings were not modulated by pharmacological 
ffects ( McCabe et al., 2010 ). However, due to the costly 
ature of multimodal imaging (fMRI, PET) the study was 
imited by sample size, and the young age of this sample 
imits generalizability to other age groups. Furthermore, 
everal of our observed effects fell to trend-level when 
e corrected for multiple testing, indicating that the find- 
ngs require replication. Although we were able to iden- 
ify several clinically meaningful correlational relationships, 
uture studies would benefit from examining learning ef- 
ects in a large sample across a spectrum of symptom- 
ased subgroups ( Drysdale et al., 2017 ). A second consider- 
tion is that we did not observe the predicted overall group 
ifference in learning from gains in the MDD group that 
as been reported in prior studies ( Pizzagalli et al., 2008 ; 
obinson et al., 2012 ; Vrieze et al., 2013 ) (although we did 
bserve some conditional effects and dimensional associa- 
ions between learning symptom severity, see the Supple- 
entary materials, p5, and Supplementary Table S1). This 
eans that while the present imaging results showed re- 
uced response to positive information, the behavioral find- 
ngs in this respect are inconclusive. The absence of these 
roup and condition differences may be due to the simple 
ature of the reinforcement learning task used. Future stud- 
es may wish to use more difficult learning contingencies, 
ncluding dynamic or reversal contingencies, to extract nu- 
nces of value updating behavior. 
In summary, the present results demonstrate an MDD- 

elated deficit for positive information processing in the 
triatum, and abnormal negative information processing in 
he cortex in depression. Variability in anhedonic symp- 
oms revealed a multi-dimensional pattern, both related 
o improved behavioral performance in the loss condition, 
nd to blunted responses in striatum in the gain condi- 
ion. Collectively, these findings underscore the importance 
f affective valence in modulating learning signals in de- 
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ression, and highlight the dorsal striatum as an emerging 
otential biomarker linked to the motivational symptoms 
f MDD. 
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