
Individualized functional brain mapping machine learning prediction of 
symptom-change resulting from selective kappa-opioid antagonism in an 
anhedonic sample from a Fast-Fail trial

Matthew D. Sacchet a,b,*, Joseph L. Valenti a, Poorvi Keshava a, Shane W. Walsh a,  
Moria J. Smoski c , Andrew D. Krystal d,1, Diego A. Pizzagalli b,1

a Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
b Center for Depression, Anxiety and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
c Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
d Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA

A R T I C L E  I N F O

Keywords:
Individualized brain mapping
Machine learning
Selective kappa-opioid antagonism
Functional brain systems
Treatment prediction
Anhedonia
Transdiagnostic

A B S T R A C T

Background: Anhedonia remains a difficult-to-treat symptom and has been associated with poor clinical course 
transdiagnostically. Here, we applied machine learning models to individualized neural patches derived from 
fMRI data during the Monetary Incentive Delay Task in anhedonic participants (N = 67) recruited for a clinical 
trial examining K-opioid receptor (KOR) antagonism in the treatment of anhedonia.
Methods: Nine ensemble models were estimated using cortical, subcortical, and combined cortical subcortical 
features from individualized functional topographies to predict changes in symptoms of overall psychopathology 
(anhedonia, depression, anxiety). Analyses were performed on the KOR (N = 33) and placebo (N = 34) group.
Results: Initial models showed that only subcortical data predicting depression and anxiety symptom change had 
a significant Spearman correlation between veridical and predicted data (rho = 0.480 and rho = 0.415 respec
tively). Next, leave-one-out-cross-validation (LOOCV) showed that the best-performing models comprised only 
the subcortical individualized systems data, which correlated with clinical change for depression and anxiety 
scores for the KOR group with significantly higher accuracy (rho = 0.634 and rho = 0.562, respectively) 
compared to the placebo group (rho = 0.294 and rho = 0.034, respectively). Further, 25 subcortical neural 
features were identified based on correlation and ensemble determined importance in driving prediction. Final 
models for both depression and anxiety showed an overall higher representation of the dorsal attention network. 
Cortical and combined cortical-subcortical feature data showed no significant improvement in prediction of 
clinical change between the two groups.
Conclusion: Using an ensemble of machine learning approaches, we identified individual differences in subcor
tical individualized systems data that predicted clinical change that was specific to KOR antagonism.

Introduction

Despite significant research advances, treatment studies for mental 
health disorders continue following a rudimentary one-size-fits-all 
model [1]. This partly originated from the prevalent system of classi
fying mental disorders as latent constructs, which has led to highly 
heterogenous clinical and neurobiological presentations of disorders 
[2], high rates of comorbidity [3] and poor treatment outcomes [4]. For 
instance, only 30–50 % of patients diagnosed with mood disorders 

respond favorably to medication [5–8]. Even drugs that show promise in 
early preclinical studies, do not seem to translate their success in human 
clinical samples [9,10].

To overcome this crisis the NIMH proposed the Fast-Fail initiative 
(https://www.nimh.nih.gov/research/research-funded-by-nimh/res 
earch-initiatives/fast-fail-trials-fast), which followed a proof of mecha
nism model (POM) that tested drugs on their intended neural treatment 
target to allow for rapid assessment of “target engagement”. Here, we 
present secondary analyses from one of such study, the Mood and 
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Anxiety Spectrum Disorders (FAST-MAS) study. The goal of this trial was 
to test K-opioid receptor (KOR) antagonism in the treatment of anhe
donia, and specifically whether it would engage a key node within the 
brain reward system (the nucleus accumbens) [11]. Anhedonia is a 
complex transdiagnostic phenomenon that encompasses loss of interest, 
pleasure and motivation to pursue or enjoy otherwise rewarding acti
vities/experiences [12].

The current study leveraged machine learning approaches to char
acterize individualized neural patches derived from fMRI data obtained 
during reward anticipation in the Monetary Incentive Delay Task in a 
transdiagnostic population to predict treatment response to overall 
symptoms of psychopathology including, depression, anxiety and 
anhedonia. In line with the FAST-FAIL approach, the aim of this study 
was to use machine learning approaches to identify individualized 
functional brain organization patterns related to pharmacological 
compounds (specifically KOR antagonists) and their therapeutic effects 
using a data-driven approach. Traditionally, clinical trials take an 
extensive amount of time and resources to test the efficacy of drugs. Our 
study overcomes these limitations by proposing a statistical approach 
that aims to identify brain regions related to the effectiveness of drug 
compounds through limited human subject data. This approach prom
ises to aid in facilitating outcome prediction and mechanistic pathways, 
thereby allowing for a more rapid assessment of therapeutic potential of 
new compounds. Machine learning methods provide valuable opportu
nities for psychiatric research by allowing researchers to identify robust 
features and predictive data patterns that correlate to mental health 
outcomes – such as drug response, symptoms, or behavior – and consider 
the utility in prediction of future responses for individual participants [5, 
13]. Advanced computational methods are especially useful in facili
tating neuroscientific models in psychiatry which require systematic 
computations to identify distinct structures in brain function [14]. 
Moreover, machine learning techniques can help identify complex linear 
and non-linear relationships between multiple variables simultaneously 
[5]. Finally, ensemble methods present a key advantage in their ability 
to run prediction analysis with relatively smaller sample sizes [15–18]. 
This aligns closely with our objective of predicting drug compound 
outcomes in a resource-conscious manner, providing a more sustainable 
alternative to prolonged and costly clinical trials. This capability holds 
promise to both identify precise neural features and associate them with 
clinical variables.

This study also leveraged recent advances in neuropsychiatric 
precision-based techniques that highlight an individualized functional 
brain mapping approach to account for heterogeneity in individuals’ 
brain architecture. Given prior discrepancies in relationships between 
cortical and subcortical relationships to symptoms of mood disorders 
[19,20], this study investigated cortical and subcortical regions in 
isolation and together, in regards to their relationship with symptoms. 
These approaches were based on previously developed individualized 
neural mapping algorithms that can essentially converge cortical and 
subcortical topologies specific to each individual [21–23]. Here, using 
an iterative optimization method, person-specific functional patches 
were identified within hypothesized brain regions. Here, ‘patches’ refer 
to nodes or distinct regions of the brain that exhibit functional homo
geneity and highly correlated activity [24,25]. These patches were then 
used for subsequent analyses with the aim of developing more precise 
individualized treatment outcomes and predictions. Toward this aim, 
we used an ensemble model approach to identify higher performance 
and high robustness in assessing the dataset. We predicted individual
ized patch sizes would differentially predict response to KOR antago
nism – such as control system patches (particularly in ventromedial and 
lateral prefrontal cortices and striatum) relating to degree of response to 
the KOR antagonist (JNJ-67953964). Thus, we predicted that machine 
learning would link individualized brain features in such areas to 
treatment outcomes, and that features noted above would contribute 
most to performance.

Methods and materials

Procedures

This study was conducted as a multi-site, 8-week, double-blind, 
placebo-controlled, randomized trial with individuals within a mood 
or anxiety disorder reporting some degree of anhedonia. JNJ-67953964 
was administered to drug recipients in 10 mg doses daily. During 
baseline measurements and at the end of the 8-week period, MRI scans 
were completed. The original trial adhered to the International Con
ference on Harmonisation Good Clinical Practice guidelines and was 
approved by relevant institutional review boards. All participants or 
their legal representatives provided written informed consent [11]. 
Please see the published protocol for further details about the FAST-MAS 
trial [11].

Participants

From a total of 94 participants eligible for the original FAST-MAS 
trial, we included 67 participants who completed the 8-week treat
ment trial divided into the drug (N = 33) and placebo (N = 34) groups 
[11]. Data and clinical self-report measures were collected at the base
line visit (‘pre’ clinical scores) and clinical self-report was also collected 
at the end of the 8-week trial (‘post’ clinical scores) (see Supplemental 
Table 1).

Measures

Symptom measures

The Snaith Hamilton Pleasure Scale (SHAPS) is a 14-item self- 
assessment scale that assesses hedonic tone, with higher scores denot
ing more anhedonia [26].

The 17-item Hamilton Depression Rating Scale (HAM-D) [27] and 
the 14-item Hamilton Anxiety Rating Scale (HAM-A) [28] were used to 
assess the severity of depression and anxiety, respectively. A score of 20 
or higher on the HAM-D is typically considered to indicate moderate 
severity of depression [29].

Symptom change for each clinical measure was defined as the dif
ference between the ‘post’ and ‘pre’ trial scores.

MRI acquisition and preprocessing

MRI data acquisition and preprocessing was conducted using stan
dard procedures (see Supplement; MRI acquisition and preprocessing for 
details).

Individualized functional topologies

Iterative parcellation approaches were used to arrive at individual
ized brain parcellation guided by group-level functional network atlases, 
flexibly adjusted based on interindividual variability and SNR distri
butions per subject. With each iteration, the influence from group-level 
information in determining individual maps was lessened until the final 
system map comprised individualized neural systems mapping [22]. 
These individually-derived cortical networks were separated into 
patches using algorithms and unsmoothed region patches matched to 
116 cortical regions extracted from the group-level atlas as referenced 
[21]. Individual patches were labeled with ROIs based on overlapping 
vertices (>20) and nearest-neighbors approaches based on geodesic 
distance of neural surfaces (for full details, see [21]).

The subcortical individualized mapping, was based on the approach 
previously established by Greene and colleagues [23]. First the 
subcortical structures were segmented using FreeSurfer’s ‘recon-all’ 
segmentation tool, using a downsampled template-derived mask. For 
each subcortical structure, individual voxel timecourses were first 
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adjusted to account for signal bleed from nearby cortical regions by 
regressing out the average timecourse of all ipsilateral cortical voxels 
within 20 mm of the given structure. Then each voxel of the subcortical 
regions were correlated using partial correlation coefficients to the 
average time course of each individualized cortical network, which were 
derived using methods mentioned above. The highest correlation value 
to a network was used to ‘assign’ a cortical network to the subcortical 
voxels, and these subcortical voxels were then summed to determine 
subcortical cluster size.

Machine learning: ensemble modeling

Analyses were performed using MATLAB. Analyses were performed 
using MATLAB. Data analysis was conducted using extensive in-house 
software, incorporating foundational code from https://github.com/M 
eilingAva/Homologous-Functional-Regions, using approaches from 
Wang et al. and Li et al. [21,22].

Feature definition

Nuisance variables (gender, age, site) were regressed from individ
ualized subcortical clusters and cortical patch sizes across all FAST-MAS 
participants who completed the trial (33 drug and 34 placebo). Previous 
research has demonstrated the efficacy of ensemble statistical ap
proaches with relatively small sample sizes, validating their application 
in limited-participant studies. Residualized data were then normalized 
to Z-scale to follow other machine learning methods and to aid in 
interpretation of residual data [30,31].

Model specification, feature selection, and performance testing

Features from subcortical, cortical, and combined subcortical/ 
cortical datasets were used in conjunction with least squares ensemble 
models for predicting treatment outcomes [32]. This meant that three 
separate model types were generated. Choosing to create models with 
both datasets together and separate allowed for a better approach to 
understanding the relationships that drove prediction. If one dataset was 
able to better predict due to its relationship to treatment outcome, this 
would not be overshadowed by the other dataset worsening prediction. 
An ensemble model was used for its ability to perform strongly on data 
that are relatively small in sample sizes and have a higher number of 
features [33].

Feature selection was conducted by comparing feature data to 
treatment outcomes using Spearman correlations (as in [34–36]). At 
each 0.05 step between pt = 0.05 and pt = 1.00, features below the 
threshold (e.g., pt < .05, pt < .10, pt < .15… pt < 1.00), were included in 
the model, while features above the significance threshold were 
removed. Using a pt-value other than 0.05 as determinants for feature 
selection was conducted given the high number of features and 
ensemble feature weight determination. This protected against 
including an arbitrary number of features within the model. Addition
ally, this method allowed for false discovery rate (FDR) correction on the 
obtained scores. FDR correction was conducted on all findings for 
0.05-steps [37] between pt = 0.05 and pt = 1.00, indicating that significant values 

obtained during cross-validation may perform well on testing data if introduced to the model.
Further, the least squares ensemble model was selected because it 

uses boosting to achieve improved performance, and has demonstrated 
strong results previously with neuroimaging data [38]. In an ensemble 
model, features that improved model accuracy were enhanced and 
features that lowered model accuracy were penalized in subsequent 
modeling steps. 100 iterations were conducted to determine the ultimate 
feature weights and finalize the model. Initial models were created using 
HAM-D, SHAPS, and HAM-A change-scores without any feature selec
tion to obtain a null baseline comparison to compare against results with 
feature selection.

Leave-one-out-cross-validation (LOOCV) was conducted to complete 

feature selection (i.e., within each training dataset) as well as obtain a 
score of model performance, as assessed across folds against each left- 
out datapoint (Fig. 1). LOOCV was used to avoid leakage in the vali
dation data affecting feature selection [39]. Once all individuals 
received a prediction, these scores were compiled, and Spearman cor
relation was used to determine accuracy between predicted and verid
ical treatment outcomes. High correlations suggest that the predictive 
machine learning approach was successful in using only brain imaging 
data to predict treatment outcome. Only significant positive correlations 
were analyzed, as the model was gauging the predictive capability of the 
model.

The model-produced-fit using this selected feature data from the 
KOR group was then used to test on the placebo group. That is, placebo 
data points were predicted upon within each LOOCV drug model. The 
determined predicted placebo scores were compared against the verid
ical placebo data, and for each fold of the LOOCV drug model, a 
Spearman correlation score between predicted placebo data and verid
ical placebo data was calculated. High correlations indicate the model 
found trends within fMRI data that were not unique to the KOR group 
and was able to predict well placebo data, while low correlations indi
cate any predictive results on KOR group were independent of the 

Fig. 1. Study methods overview. Within the drug group, leave one out cross 
validation (LOOCV) was implemented to determine overall change-scores. Each 
data point was set aside one at a time as a test point provided on whether the 
index was selected, while the rest of the model underwent feature selection to 
then be fit into an ensemble model to predict on the test point. This would then 
be placed into a prediction list to be used to calculate overall correlation scores 
and further testing. These data were then cycled through for testing on the next 
point until all points were evaluated on.
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placebo data, relating towards the effectiveness of the drug.
After all folds of the LOOCV drug model were completed, the average 

of placebo Spearman correlation scores was then computed. This 
average was used as a prediction score for placebo data for each feature 
selection model, meaning that if this model was used on placebo data, 
this would be the outcome when tested on placebo subjects. If there was 
not a difference between placebo and drug subjects per model, then this 
implied that the model was predicting a general change effect that was 
not related to the drug. Testing on placebo data during each step of 
feature selection provided performance scores that could be used in 
comparison to drug recipient performance for each 0.05 threshold. This 
allowed for improvements of the model’s performance to be analyzed so 
that it was only improving prediction on drug recipient subjects.

Statistical comparison of model predictive performance on KOR and 
placebo groups (i.e., Spearman correlations) was completed by 
comparing the predicted drug-group and the predicted placebo-group 
Spearman correlation scores using a Fishers R-to-Z test [36,40]. Signif
icant differences in this statistic indicate that the model was only pre
dicted on drug specific change during the trial.

Feature interpretation

Feature interpretation was only conducted if models for a given 
feature set (cortical, subcortical, or combined) exhibited significant 
performance after multiple comparisons correction using FDR across pt- 
value threshold, and, furthermore, if drug prediction models also 
significantly performed higher than the placebo outcome prediction, as 
assessed by the Fishers R-to-Z test. The pt-value threshold with the 
strongest predictive performance that met the qualifications above was 
used to identify features associated with this top performance.

Important features were first grouped by frequency of selection 
during feature selection. Using a method similar to LOOCV, the data 
from each participant was removed one at a time and the correlation 
threshold was applied on features within the dataset [34,35]. If a feature 
was present, then it was given a score of 1, otherwise it was given a score 
of 0. After the count of times a feature was present was tallied, each 
feature was given a score out of the number of individuals (Nk = 33) to 
determine the number of folds it was present in. The more times that a 
feature was present within the model, the higher impact it had on 

Fig. 2. Prediction of clinical outcomes without feature selection in the KOR group. The y-axis plots the data that used to train ensemble models organized by (i) 
subcortical only, (ii) cortical only, or (iii) both subcortical and cortical data combined. The x-axis signifies the change in scoring metric that was used for each target 
variable in the ensemble model, namely Hamilton Depression Rating Scale (HAM-D), Snaith–Hamilton Pleasure Scale (SHAPS) and Hamilton Anxiety Rating Scale 
(HAM-A). These scatterplots weigh the veridical (actual) outcome of the drug treatment against the predicted (scores generated through our ensemble models) 
outcome decided by the ensemble model. The scoring metric uses Spearman correlation to judge the similarity between the veridical outcome and the predicted 
outcome. Each graph is labeled with the spearman correlation score (r) and spearman significance value (p). The closer this value is to one, the stronger the 
relationship is.
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predictive performance.
It was then decided to analyze the occurrence of features to see if 

they occurred within 70 % of LOOCV folds (see Supplement: Justifica
tion for LOOCV threshold).

After obtaining this information, features were sorted by importance 
determined by the ensemble model. Specifically, the top 25 most 
important features were sorted based on location and network affiliation 
within the brain. Counts of location and network affiliation were then 
statistically compared based on frequency using ANOVA. Next post hoc 
tests were used to determine if there were significant differences in 
frequency of occurrence. This analysis revealed which location and 
network affiliations are most relevant to the predictive modeling in 
terms of both correlational strength and feature importance.

Results

Assessment of ensemble model performance using subcortical 
individualized brain systems features to predict JNJ-67953964 treatment 
outcomes

Without feature selection, ensemble models were able to predict 
clinical outcomes using subcortical individualized system features 
(HAM-D r = 0.480, p = 0.004, FDR-corrected across pt-value thresh
old = 0.007; SHAPS r = 0.168, p = 0.360, FDR-corrected across pt-value 
threshold = 0.360; HAM-A r = 0.415, p = 0.016, FDR-corrected across 
pt-value threshold = 0.0327). r = 0.415 respectively for the HAM-D, 
SHAPS, and HAM-A change-scores (Fig. 2).

Next, feature selection was used to improve model performance. 
During this feature selection, HAM-D change-scores showed the stron
gest results at the pt = 0.45 threshold when using only subcortical 

Fig. 3. Prediction of clinical outcomes using feature selection for KOR and placebo groups. The y-axis plots the data that were used to train ensemble models 
organized by (i) subcortical only, (ii) cortical only, or (iii) both subcortical and cortical data combined. The x-axis represents the change in scoring metric that was 
used for each target variable in the ensemble model, namely the Hamilton Depression Rating Scale (HAM-D), Snaith–Hamilton Pleasure Scale (SHAPS) and Hamilton 
Anxiety Rating Scale (HAM-A). Each plot shows the Spearman correlation value of veridical (actual) outcomes (x-axis) against the predicted (scores generated 
through our ensemble models) outcome for each pt-value threshold (y-axis). The dashed line represents the uncorrected threshold for correlation significance while 
the thicker line represents the threshold for correlation significance after correction. The hollow points along the x-axis signify the veridical to predicted Spearman 
correlation values that were shown to be significantly higher than veridical to predicted Spearman correlation amongst placebo data using a Fisher R-to-Z test.
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individualized systems features, with the strongest Spearman correla
tion of r = 0.634 (uncorrected: p < 0.001; corrected: p = 0.001). 
Thresholds between the pt range of 0.35–1.00 (corrected and uncor
rected: p < 0.01) as well as pt = 0.10 (uncorrected: p = 0.033; corrected: 
p = 0.043) all displayed significant positive correlations after FDR 
correction (Supplemental Table 2, Fig. 3).

Prediction of SHAPS change-scores using subcortical only features 
was strongest at the pt-value threshold of 0.50, with a Spearman corre
lation of r = 0.377 which was significant before (uncorrected: 
p = 0.030), but not after FDR correction (corrected: p = 0.355) 
(Supplemental Table 3, Fig. 3).

Prediction of HAM-A change-scores using subcortical only features 
was strongest at the pt-value threshold of 0.65, with a Spearman corre
lation of r = 0.562 which maintained significance after FDR correction 
(uncorrected: p < 0.001; corrected: p = 0.007). Thresholds between the 
ranges of pt = 0.30–1.00 as well as pt = 0.10, 0.15 were significant after 
FDR correction (corrected and uncorrected: p < 0.05) (Supplemental 
Table 4, Fig. 3).

Subcortical drug ensemble accuracy

Using only subcortical individualized systems data, HAM-D change- 
score drug prediction performance in the range pt = 0.40–0.50 were 
significantly more accurate than placebo performance using Fishers R- 
to-Z analysis (Supplemental Table 2, Fig. 3). SHAPS drug prediction 
performance, while not significantly accurate, was significantly more 
accurate for the KOR compared to placebo outcome predictions at pt- 
thresholds of 0.45, 0.50, 0.65, 0.70, and 0.75 (Supplemental Table 3, 
Fig. 3). HAM-A drug prediction performance in the range pt = 0.45–0.70 
as well as pt = 0.10 were significantly more accurate than placebo group 
prediction scores (Supplemental Table 4, Fig. 3).

Cortical drug ensemble accuracy

Without feature selection, models trained on cortical individualized 
systems data did not significantly predict any symptom change (see 
Supplement: Cortical Drug Ensemble Accuracy for details).

Combined subcortical and cortical drug ensemble accuracy

Without feature selection, models trained on combined subcortical 
and cortical individualized systems data did not significantly predict any 
symptom change (see Supplement: Combined Subcortical and Cortical 

Drug Ensemble Accuracy for details).

Feature normalization

All results were repeated under the conditions of using normalized or 
nonnormalized data during data preprocessing where covariate vari
ables were regressed out and residuals were created and fit in the model. 
These analytic decisions had no effect on the results.

Subcortical feature abstraction

Since the strongest results were observed at subcortical HAM-D at pt 
= 0.45 and subcortical HAM-A at pt = 0.65, features were further 
analyzed at these two threshold levels (Supplemental Table 2, Supple
mental Table 4, Fig. 4).

The dorsal attention area within the subcortical HAM-A feature set 
was the only region that showed significantly greater occurrence 
compared to the other top 25 neural features (p = 0.027) (see Supple
ment: Subcortical Feature Abstraction for details).

Discussion

The subcortical features dataset proved successful with feature se
lection and performed well with the training data, while the results from 
the cortical and cortical and subcortical combined data were not as 
strong. This is not surprising as depression is a highly complex pathology 
characterized by alterations in various subcortical regions [41]. For 
instance, anhedonia, a core symptom of depression [42] is implicated by 
dysfunctions in the mesolimbic reward circuit which primarily involves 
connectivity between prefrontal cortex (PFC) and various subcortical 
structures [20,43–45]. Further studies examining the role of the sub
cortex in MDD have found atrophy [46,47] and abnormal volumes in 
subcortical structures which are associated with illness duration and 
antidepressant treatment outcomes [47]. Therefore, our results showing 
improved predictive capacity of the subcortical dataset are in line with 
prior work and suggest that subcortical features may play a substantial 
role in treatment prediction. However, while these subcortical regions 
appear to predict treatment outcomes, it is unclear whether these re
gions are all directly targeted by KOR antagonism. Significant correla
tions between HAM-D and HAM-A veridical scores and predicted scores 
demonstrate the successful link between machine learning biomarker 
outcomes and clinical utility. This connection could potentially lead to 
promising biomarker-based assessments of depression and anxiety 

Fig. 4. Highest scoring features and clinical symptom-change in KOR group. From the previous analyses, the highest scoring feature selected models were identified 
and plotted. Hamilton Depression Rating Scale (HAM-D) (left) and Hamilton Anxiety Rating Scale (HAM-A) (right) outcomes are plotted using subcortical data at the 
p = 0.45 and p = 0.65, respectively. Veridical (actual) outcomes are plotted on the x-axis against the predicted (scores generated through our ensemble models) 
outcome data on the y-axis.
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symptoms in clinical populations, and aid in developing efficient bio
logically meaningful treatment targets in early stages of drug develop
ment, in line with the initial goals of the Fast-Fail trial.

The initial subcortical and HAM-D and HAM-A models showed sig
nificant correlations between veridical (actual) and predicted (scores 
generated by our ensemble models) data. Results were strengthened by 
using various thresholds of correlation-based feature selection. The 
strongest resulting levels of significance for feature selection were pt 
= 0.45 and pt = 0.65 for HAM-D and HAM-A models, respectively. 
However, our model did not predict significant symptom change in 
anhedonia. However, given that anhedonia is a complex condition 
involving various mechanisms such as deficits in neurotransmitters 
[48], altered functional connectivity [49] and anatomical abnormalities 
[50]; it is possible that our analysis that solely relied on functional 
patches was insufficient to predict changes in this symptom. Addition
ally, another possible reason why the models did not predict changes in 
anhedonia scores could be due to the self-report nature of SHAPS. The 
SHAPS conceptualizes anhedonia as a relatively stable "trait-like" 
construct, and primarily captures anticipatory or remembered pleasure 
rather than real-time fluctuations in reward processes. Consequently, 
our method may not have been sufficiently sensitive to detect changes in 
self-report based on individualized neural biomarkers. This challenge 
may also arise from the complexity of neural reward processing, wherein 
distinct neural systems underlie distinct aspects of the reward process, 
such as motivation, anticipation, and consummation, which could in
fluence the ability to accurately model and predict changes in 
self-reported anhedonia over time. This methodology included both 
linear and nonlinear relationships through the use of correlation and the 
ensemble model in order to best predict change scores. The improve
ment based on feature selection and model usage demonstrates the 
complexity of individualized neural approaches and the need for ap
proaches that explore this complexity. Future research could benefit 
from expanding on current approaches to feature selection in order to 
encapsulate both linear and nonlinear patterns within data, either with a 
thresholding type approach or other methodologies. Expanding the 
complexity at which data are treated allowed for stronger prediction and 
increasing the likelihood of a tool that could be used more efficiently to 
predict treatment success. These results were tested against placebo 
data, which showed that there were significantly better results of pre
diction among the pt = 0.45 and pt = 0.65 for HAM-D and HAM-A 
models. This was crucial in showing that the results were specific to 
treated individuals. The specificity of these findings to treated in
dividuals, further supports these models as a tool for treatment.

When developing models with cortical feature data and combined 
cortical-subcortical feature data, there were no significantly improved 
predictions of clinical change scores between groups. While this does not 
indicate that cortical regions of the brain are not involved within in
teractions with KOR, it merely suggests that their activity may not have 
had a strong enough relationship with change scores to be used as 
biomarker within these ensemble models.

Given that HAM-A and HAM-D models were significantly correlated 
to predicted and veridical scores, additional analyses of neural features 
within these models were conducted. While most feature occurrences 
did not vary significantly between the models for the various clinical 
change score predictors, one network was significantly greater in 
occurrence than others for HAM-A score prediction, specifically the 
dorsal attention areas. While dorsal regions have been previously 
identified as a feature discriminating prediction of depressed versus 
bipolar in support vector machine (SVM) classifiers trained on multi
modal MRI data [51], our results pointed towards an implication of the 
dorsal attention region in the treatment response for anxiety. However, 
since the study by Jie and colleagues did not exclude for anxiety dis
orders [51], and given the common co-morbidity of anxiety and 
depression [52], it may be possible that dorsal attention regions have 
meaningful implications for anxiety and specifically co-morbid depres
sion and anxiety as opposed to depression alone. The dorsal attention 

region is primarily involved in top down regulation via allocation of 
attention to stimuli [53]. A prior study found increased functional 
connectivity between the dorsal attention network (DAN) and the 
amygdala in individuals with high trait anxiety [54]. Given amygdala’s 
primary role in processing threat stimuli [55,56], higher connectivity 
between the amygdala and DAN have suggested an increased attentional 
bias towards threat related stimuli [54,57], which is well established 
underlying mechanism of anxiety. Further, trait anxiety is also consid
ered to be a risk factor for depression [58]. Interestingly, in line with our 
results, individuals co-morbid anxiety and depression show higher 
threat bias than individuals with depression alone [59]. Other than the 
dorsal attention areas having significance over other features within the 
subcortical HAM-A model, no other regions appeared to differ in fre
quency and makeup at a significant level for the HAM-D or HAM-A 
features. These results demonstrate the significance of investigating 
individualized neural systems holistically without the biases of linear 
group-level influences which may lead to oversimplified conclusions by 
not accounting for individual variability in neural functional organiza
tion. This approach may allow for more likelihood of trial success as it 
ensures that meaningful systems which may have non-linear relation
ships to these systems are not overlooked in predicting treatment 
outcomes.

Despite considerable strengths, we highlight several limitations. 
While our study did include training and validation data, we did not 
have a separate hold-out or testing dataset. This was due to a relatively 
small sample size for such machine learning performance designs and 
the fact that only one RCT has been conducted so far using a KOR 
antagonist. We addressed this important limitation by assessing p-values 
and FDR corrections to provide a benchmark of statistical strength. 
Alternate methods of choosing ideal features in machine learning 
models could have been explored, such as SelectKBest, however the 
thresholding approach used in the present study was selected for its 
ability to filter out arbitrary feature numbers at varying levels. Further, 
use of LOOCV for cross validation allowed greater amounts of data 
within the small sample size to be allocated to training rather than 
testing, but is ultimately associated with high variance and weaker 
generalization performance [60]. Finally, participant data indicated 
mild to moderate levels of depression, anxiety, and anhedonia at base
line, which may limit the generalizability of the findings to populations 
with more severe psychopathology or to those without any psychiatric 
symptoms.

Future research could include stringent testing-training splits instead 
of LOOCV approaches to evaluate whether ensemble models may 
accurately predict similar feature selection outputs. Additionally, while 
our relatively smaller sample size was adequate for analyses based on 
previous studies, future research would benefit from validating these 
findings using a large sample. Future research would also benefit from 
examining whether our findings replicate in samples with more severe 
psychopathology. Expanding the range of symptoms severity will help 
clarify the extent to which these findings generalize across more severe 
psychopathology and could have meaningful treatment implications. 
Overall, this study aimed to use individualized data in conjunction with 
machine learning to further explore the effectiveness of a data-driven 
approach to identify neural features of importance. The resultant 
models ran successfully, and in the case of subcortical feature selection, 
appeared to extract neural features related to affective processing in 
prediction of drug, and notably not placebo responses in depressed and 
anhedonic participants. The success of these models demonstrates the 
value of machine learning-based methodologies in creating biomarker- 
based tools for predictive treatment. Data-driven approaches such as 
this allow for more multi-faceted and complex relationships between 
individualized neural markers and treatment prediction may yield more 
conservative, and notably more accurate treatment targets compared to 
traditional group-aggregate linear correlational approaches.
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Supplementary Methods 

Participants: 

163 participants were screened for the original FAST-MAS trial. From the total screened, 94 were 
eligible to participate in the study determined by qualifying scores (see next section, Measures). Five 
participants dropped out of the trial before baseline measurements were acquired. As a result, 89 
participants completed baseline measurements. Of this sample, participants were randomized to the KOR  
(N=45) or the placebo (N=44) group. All participants had a SHAPS score ≥ 20. 

From the screened sample, a total of 67 participants completed the 8-week treatment trial and had 
fMRI data that could be used in the current analyses. This resulted in roughly equivalent group sizes for 
drug (n=33) and placebo (n=34) groups [1].  

MRI Acquisition and Preprocessing 

fMRI data were collected during resting-state and the Monetary Incentive Delay (MID) task. Resting-
state and contrasts of interest used for the MID task in the original study were all aggregated to produce 
continuous runs to be analyzed, aligning with previous work using individualized systems approaches [2–
5]. 

fMRI data were collected with Gradient-echo echo-planer axial scans using the following parameters: 
TR/TE: 2000/30ms, flip angle: 70 deg, FOV: 25.6 cm, matrix: 64x64, 32 axial slices, acceleration factor=2, 
voxel size: 4x4x4 mm. 

fMRI data processing was completed using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of 
FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Registration to high resolution structural and 
standard space images was conducted with FLIRT [6, 7] with registration from high resolution structural to 
standard space with FNIRT nonlinear registration [8]. 

Further preprocessing included motion correction using MCFLIRT [6, 7], slice-timing correction using 
Fourier-space time-series phase-shifting, non-brain removal using BET spatial smoothing with a FWHM 
5mm Gaussian kernel, grand-mean intensity normalization of the entire 4D dataset by a single 
multiplicative factor, and high pass temporal filtering (Gaussian-weighted least-squares straight line fitting, 
with sigma=45.0s) [7, 9]. 

Feature Selection Comparison 

 As a final analysis with pt-value threshold feature selection coupled with the ensemble model 
feature weight abstraction, a model was generated with the top 25 Spearman-correlated neural features. 
This was done to determine whether the method of feature selection used, where various steps of 
correlational significance was used as a filter, would perform better than just using the flat number of 
significant features, as other papers have used (J. Liu et al. 2021).  Twenty-five was chosen as the 
number of features used to mirror the number of features analyzed during feature interpretation. The 
models created using the top 25 Spearman-correlated features used LOOCV to create a comparable 
validation score as the previous feature selection method. The validation scores were compared to the 
models that performed most highly during feature selection, similar to the metrics that were used to 
determine what models were analyzed during feature interpretation. This comparison would then have a 
Fishers R-to-Z test applied to assess if there was a significantly better Spearman correlation determined 
based on the method of feature selection. 

Justification for LOOCV threshold 

This threshold was selected for high qualitative occurrence, such that lower presence typically 
suggested a steep drop among remaining features (Supplemental Fig. 1). All features meeting this 
threshold were analyzed in an ensemble model in order to abstract the feature weights determined during 
training. These two steps allowed the extraction of information related to the strengths of the linear and 
nonlinear relationships of the features and outcomes, assessing how important they are to outcome 
prediction and model performance. 
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Supplementary Results 

Feature Selection Comparison 

Since the best performing models during feature selection were the pt<0.45 HAM-D model and the 
pt<0.65 HAM-A model, these two were used to determine significance of using this method of feature 
selection. This resulted in two new models generated using subcortical HAM-D and HAM-A data; only 
using the top 25 correlational features to the respective change scores in the model. 

For the new HAM-D model, the Spearman correlation determined by LOOCV was r=0.355 (p=0.042). 
When compared to the subcortical pt<0.45 HAM-D model, a Fishers r-to-z test was not significant 
(p=0.070). For the new HAM-A model, the Spearman correlation determined by LOOCV was r=0.366 
(p=0.036). When compared to the subcortical pt<0.65 HAM-A model, a Fishers R-to-Z test was not 
significant (p=0.164). 

Cortical Drug Ensemble Accuracy  

Spearman correlations for cortical data were r=–0.009, r=–0.522, r=0.213 for HAM-D, SHAPS, and 
HAM-A, respectively (Fig. 2). Cortical data did now show any positive significant Spearman correlation 
(corrected and uncorrected: p>0.05) (Fig. 3). There were no values in which HAM-D, HAM-A, or SHAPS 
KOR predictive performance was significantly better than placebo predictive performance using Fisher R-
to-Z significance test (Supplemental Tables 5-7, Fig. 3). 

Combined Subcortical and Cortical Drug Ensemble Accuracy 

Without feature selection, combined subcortical and cortical individualized systems data Spearman 
correlations were r=0.156, r=–0.093, r=0.310 for HAM-D, SHAPS, and HAM-A, respectively (Fig. 2). The 
combined data were also not significant. Combined data showed significant positive Spearman 
correlation in HAM-D predictions against true scores for pt -values 0.15, 0.30, and 0.70 post FDR 
correction (p<0.050) (Supplemental Table 8, Fig. 3). None of these were Fisher R-to-Z significant. No 
SHAPS or HAM-A scores were significant post FDR correction, but HAM-A was significantly better than 
placebo scores at the pt=0.20 threshold (p=0.040) (Supplemental Table 9, Supplemental Table 10, Fig. 
3). 

Subcortical Feature Abstraction 

Of the top 25 neural features abstracted from these thresholds (see Supplemental Table 11 and 12), 
five were shared between the HAM-D and HAM-A abstracted features. These features were the 
relationships between the (i) right hippocampus and dorsal attention regions, (ii) left nucleus accumbens 
and dorsal attention regions, (iii) right putamen and dorsal attention regions, (iv) left amygdala and 
temporal parietal, and (v) right amygdala and limbic regions.  

Of the HAM-D selected features, there was a slightly higher percentage of right hemisphere features 
chosen; this contrasted with HAM-A selected features, which showed a moderately higher percentage of 
left hemisphere features. HAM-D selected features showed a strong number of putamen, global pallidus, 
amygdala, and hippocampus regions, while the nucleus accumbens, thalamus, and caudate nucleus 
regions were less represented (Supplemental Fig. 2). HAM-A selected features appeared qualitatively 
evenly distributed among the regions, although the putamen and nucleus accumbens regions were more 
highly represented. These qualitative trends towards differential representation of regions did not appear 
to be significantly different however, when statistically probed with a one-way ANOVA test for both HAM-
D and HAM-A abstracted features (p=0.318, p=0.456). Tests for multiple comparisons did not appear to 
statistically differentiate the frequencies for region representation either. 

The most prominent cortical networks of the HAM-D selected features were dorsal attention areas, 
limbic regions, and temporal parietal regions. Of the HAM-A selected features, the dorsal attention areas, 
limbic regions, and temporal parietal were most prominent. Almost all cortical networks were present in 
both HAM-D and HAM-A change-scores, but the salience/ventral attention A network was not present 
among either group of selected features, nor was the default network among HAM-D selected features 
(Supplemental Fig. 2).  
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While trends may have suggested dissimilar region frequency occurrences, there were low numbers 
of significant differences in feature occurrence. One exception was within the subcortical HAM-A feature 
set: the dorsal attention area was significantly greater in occurrence than default, salience ventral 
attention, and control regions, which were not present in subcortical HAM-A selected features (p=0.027). 
No other differences in frequency were significantly different for HAM-D comparisons. 

Supplementary Discussion 

Feature Selection Comparison 

 Further tests were used to assess whether using the top 25 correlating features were significant 
in a model predicting clinical change scores. While the algorithmic feature selection performed better than 
just taking the top 25 correlative features, this was not significant. This lack of significance of subcortical 
regions/ cortical networks towards the model reflects the inherent nuanced complexity of neural systems 
involved in the mechanisms underlying psychopathology and indicates the need for further individualized 
neural approaches to psychopathology. Prediction of treatment response via machine learning models 
have been performed across a number of studies [10, 11], but this study is the first-to-date, as far as we 
are aware, of features derived from individual neural network maps rather than collective group-averaged 
neural datasets. 

Cortical and Combined Subcortical and Cortical Drug Ensemble Accuracy 

The null findings for improved predictions of clinical symptom change from the cortical and 
combined data may suggest, that unique information derived from subcortical features within the 
ensemble models may be relatively more relevant to symptom response across time with respect to KOR 
antagonists as this dataset was found to be significant both with and without feature selection. Given the 
high performance at threshold levels of pt=0.45 and pt=0.65, subcortical features were further assessed at 
these two levels which suggested regions encompassing the hippocampus, left nucleus accumbens, right 
putamen, right and left amygdala, temporal parietal regions, limbic regions, and dorsal attention regions. 
These regions may provide predictive capacities of drug response in line with hypotheses on likely 
relationships within affective systems. Further research could help solidify regions such as these as 
adequate biomarkers towards treatment tools when treating depressive and anxiety symptoms. 
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Supplementary Tables and Figures 

 Total Drug Placebo 
Count 67 33 34 
Mean age in years (SD) 39.8 

(13.4) 
40.3 
(13.6) 

39.6 
(13.4) 

Gender, % female 58.2 60.6 55.9 
Race %    
Caucasian 65.7 69.7 61.8 
African American 22.3 24.2 20.6 
Asian 2.9 0 5.8 
American Indian/Alaskan Native 0 0 0 
More than one race 7.4 6 8.8 
Ethnicity, % Hispanic or Latino 10.5 9.1 11.8 
Mean baseline HAM-D (SD) 14.8 (5.3) 14.5 (4.7) 15.0 (5.9) 
Mean baseline SHAPS (SD) 34.3 (6.8) 35.1 (8.1) 33.6 (5.2) 
Mean baseline HAM-A (SD) 14.8 (6.3) 14.1 (5.2) 15.6 (7.1) 
Mean post HAM-D (SD)  9.8   (6.6) 10.9 (7.3) 
Mean post SHAPS (SD)  30.9 (7.8) 31.4 (6.8) 
Mean post HAM-A (SD)  9.7   (7.4) 10.8 (7.4) 
 

Supplemental Table 1. Study Participant Demographic and Baseline Data. Summary of participant 
demographic features and Hamilton Depression Rating Scale (HAM-D), Snaith–Hamilton Pleasure Scale 
(SHAPS) and Hamilton Anxiety Rating Scale (HAM-A) data by mean and standard deviation (SD at 
baseline and an 8-week follow up. 
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Supplemental Table 2: Hamilton Depression Rating Scale (HAM-D) Change Score determined by 
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical 
data model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation 
scores and significance scores are determined by Spearman correlation of veridical data against 
predicted data determined by the determined ensemble model. 

  

HAM-D       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.1243 0.4908 0.4908 0.1722 0.4241 0.4556 

0.1 0.3731 0.0325 0.0433 0.1734 0.1985 0.2647 

0.15 0.3565 0.0417 0.0521 0.2277 0.2908 0.3635 

0.2 0.3052 0.0841 0.0990 0.2654 0.4328 0.4556 

0.25 0.1872 0.2970 0.3126 0.2714 0.3641 0.4284 

0.3 0.2450 0.1694 0.1882 0.2258 0.4684 0.4684 

0.35 0.4969 0.0033 0.0073 0.2182 0.1033 0.2512 

0.4 0.6171 0.0001 0.0009 0.2224 0.0268 0.2512 

0.45 0.6341 0.0001 0.0009 0.2938 0.0410 0.2512 

0.5 0.6187 0.0001 0.0009 0.2690 0.0404 0.2512 

0.55 0.5866 0.0003 0.0017 0.2604 0.0565 0.2512 

0.6 0.5470 0.0010 0.0039 0.2562 0.0846 0.2512 

0.65 0.5246 0.0017 0.0049 0.2538 0.1035 0.2512 

0.7 0.5033 0.0028 0.0071 0.2554 0.1267 0.2512 

0.75 0.5377 0.0013 0.0042 0.2624 0.0973 0.2512 

0.8 0.4890 0.0039 0.0078 0.2600 0.1471 0.2512 

0.85 0.4622 0.0068 0.0097 0.2605 0.1810 0.2586 

0.9 0.4662 0.0062 0.0096 0.2586 0.1738 0.2586 

0.95 0.4838 0.0043 0.0078 0.2473 0.1411 0.2512 

1 0.4803 0.0047 0.0078 0.2531 0.1507 0.2512 
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SHAPS       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.0186 0.9182 0.9182 -0.1011 0.3196 0.3196 
0.1 0.1470 0.4145 0.5113 -0.0884 0.1778 0.2092 
0.15 0.2371 0.1840 0.4089 -0.1173 0.0802 0.1782 
0.2 0.1629 0.3651 0.5113 -0.0917 0.1585 0.2050 
0.25 0.1706 0.3426 0.5113 -0.1126 0.1326 0.1983 
0.3 0.1610 0.3707 0.5113 -0.1151 0.1388 0.1983 
0.35 0.1408 0.4346 0.5113 -0.1084 0.1640 0.2050 
0.4 0.2736 0.1234 0.3545 -0.1082 0.0642 0.1645 
0.45 0.3224 0.0673 0.3545 -0.1145 0.0397 0.1624 
0.5 0.3768 0.0306 0.3545 -0.1339 0.0191 0.1624 
0.55 0.2731 0.1241 0.3545 -0.1259 0.0561 0.1645 
0.6 0.2411 0.1765 0.4089 -0.1393 0.0658 0.1645 
0.65 0.3541 0.0432 0.3545 -0.1306 0.0251 0.1624 
0.7 0.3107 0.0785 0.3545 -0.1373 0.0364 0.1624 
0.75 0.2971 0.0932 0.3545 -0.1393 0.0406 0.1624 
0.8 0.1540 0.3922 0.5113 -0.1290 0.1329 0.1983 
0.85 0.0736 0.6841 0.7201 -0.1357 0.2059 0.2167 
0.9 0.1431 0.4269 0.5113 -0.1405 0.1324 0.1983 
0.95 0.0801 0.6577 0.7201 -0.1400 0.1939 0.2154 

1 0.1677 0.3508 0.5113 -0.1444 0.1096 0.1983 
 
Supplemental Table 3: Snaith–Hamilton Pleasure Scale (SHAPS) Change Score determined by 
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical 
data model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation 
scores and significance scores are determined by Spearman correlation of veridical data against 
predicted data determined by the determined ensemble model. 
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HAM-A       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.3352 0.0565 0.0598 0.0065 0.0908 0.1225 
0.1 0.4615 0.0069 0.0220 0.0226 0.0314 0.0966 
0.15 0.3746 0.0317 0.0453 0.0265 0.0758 0.1222 
0.2 0.3349 0.0568 0.0598 0.0484 0.1209 0.1273 
0.25 0.2442 0.1707 0.1707 0.0671 0.2386 0.2386 
0.3 0.3628 0.0380 0.0478 0.0578 0.1041 0.1225 
0.35 0.4200 0.0150 0.0327 0.0539 0.0621 0.1222 
0.4 0.4206 0.0148 0.0327 0.0397 0.0553 0.1222 
0.45 0.4799 0.0047 0.0188 0.0498 0.0324 0.0966 
0.5 0.5339 0.0014 0.0085 0.0379 0.0147 0.0845 
0.55 0.4557 0.0077 0.0220 0.0237 0.0338 0.0966 
0.6 0.5252 0.0017 0.0085 0.0398 0.0169 0.0845 
0.65 0.5624 0.0007 0.0066 0.0336 0.0093 0.0845 
0.7 0.5620 0.0007 0.0066 0.0538 0.0115 0.0845 
0.75 0.3754 0.0313 0.0453 0.0660 0.0997 0.1225 
0.8 0.3878 0.0258 0.0429 0.0482 0.0794 0.1222 
0.85 0.3623 0.0382 0.0478 0.0510 0.0998 0.1225 
0.9 0.3573 0.0412 0.0485 0.0651 0.1141 0.1268 
0.95 0.4025 0.0202 0.0367 0.0649 0.0789 0.1222 

1 0.4149 0.0163 0.0327 0.0727 0.0750 0.1222 
 
Supplemental Table 4: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by 
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical 
data model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation 
scores and significance scores are determined by Spearman correlation of veridical data against 
predicted data determined by the determined ensemble model. 
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HAM-D       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 -0.0486 0.7881 0.8887 0.0371 0.3689 -0.0486 
0.1 -0.2474 0.1652 0.8166 -0.1388 0.3297 -0.2474 
0.15 -0.2269 0.2041 0.8166 -0.1654 0.4014 -0.2269 
0.2 -0.0356 0.8443 0.8887 -0.1166 0.3751 -0.0356 
0.25 -0.2987 0.0913 0.8166 -0.0371 0.1450 -0.2987 
0.3 -0.2301 0.1977 0.8166 -0.0222 0.2038 -0.2301 
0.35 -0.2500 0.1605 0.8166 -0.0001 0.1594 -0.2500 
0.4 -0.1209 0.5027 0.8378 -0.0189 0.3444 -0.1209 
0.45 -0.1462 0.4168 0.8378 -0.0084 0.2938 -0.1462 
0.5 -0.0434 0.8103 0.8887 -0.0151 0.4559 -0.0434 
0.55 0.0486 0.7881 0.8887 -0.0172 0.3986 0.0486 
0.6 0.0942 0.6019 0.8887 -0.0327 0.3096 0.0942 
0.65 0.0766 0.6716 0.8887 -0.0311 0.3368 0.0766 
0.7 0.1425 0.4287 0.8378 -0.0354 0.2423 0.1425 
0.75 0.1758 0.3279 0.8378 -0.0290 0.2099 0.1758 
0.8 0.0537 0.7668 0.8887 -0.0415 0.3550 0.0537 
0.85 0.1223 0.4979 0.8378 -0.0424 0.2594 0.1223 
0.9 0.1407 0.4348 0.8378 -0.0422 0.2365 0.1407 
0.95 0.1524 0.3970 0.8378 -0.0555 0.2070 0.1524 

1 -0.0091 0.9601 0.9601 -0.0679 0.4089 -0.0091 
 
Supplemental Table 5: Hamilton Depression Rating Scale (HAM-D) Change Score determined by 
Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data 
model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation scores 
and significance scores are determined by Spearman correlation of veridical data against predicted data 
determined by the determined ensemble model. 
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SHAPS       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 -0.5901 0.0003 0.0041 -0.2590 0.0535 -0.5901 
0.1 -0.3527 0.0441 0.0735 -0.1003 0.1478 -0.3527 
0.15 -0.2317 0.1944 0.2046 -0.2096 0.4638 -0.2317 
0.2 -0.4288 0.0128 0.0256 -0.1999 0.1590 -0.4288 
0.25 -0.2621 0.1407 0.1563 -0.1800 0.3680 -0.2621 
0.3 -0.1997 0.2651 0.2651 -0.1714 0.4544 -0.1997 
0.35 -0.3205 0.0690 0.0862 -0.1286 0.2140 -0.3205 
0.4 -0.4460 0.0093 0.0232 -0.1214 0.0812 -0.4460 
0.45 -0.2787 0.1163 0.1369 -0.1250 0.2654 -0.2787 
0.5 -0.3742 0.0319 0.0581 -0.1055 0.1309 -0.3742 
0.55 -0.3425 0.0510 0.0785 -0.0990 0.1572 -0.3425 
0.6 -0.3286 0.0619 0.0858 -0.0955 0.1689 -0.3286 
0.65 -0.3257 0.0643 0.0858 -0.0997 0.1764 -0.3257 
0.7 -0.4306 0.0124 0.0256 -0.0549 0.0566 -0.4306 
0.75 -0.4606 0.0070 0.0200 -0.0381 0.0362 -0.4606 
0.8 -0.5049 0.0027 0.0091 -0.0598 0.0264 -0.5049 
0.85 -0.5541 0.0008 0.0041 -0.0564 0.0133 -0.5541 
0.9 -0.5697 0.0005 0.0041 -0.0680 0.0119 -0.5697 
0.95 -0.5581 0.0007 0.0041 -0.0776 0.0155 -0.5581 

1 -0.5220 0.0018 0.0073 -0.0948 0.0294 -0.5220 
 
Supplemental Table 6: Snaith–Hamilton Pleasure Scale (SHAPS) Change Score determined by 
Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data 
model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation scores 
and significance scores are determined by Spearman correlation of veridical data against predicted data 
determined by the determined ensemble model. 
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HAM-A       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.1702 0.3437 0.8592 -0.1288 0.1196 0.1702 
0.1 -0.0209 0.9079 0.9270 -0.1376 0.3232 -0.0209 
0.15 0.0905 0.6166 0.8680 -0.1799 0.1436 0.0905 
0.2 0.0533 0.7684 0.8680 -0.1450 0.2181 0.0533 
0.25 -0.2308 0.1962 0.6663 -0.1580 0.3837 -0.2308 
0.3 -0.0817 0.6511 0.8680 -0.1320 0.4214 -0.0817 
0.35 -0.1029 0.5690 0.8680 -0.1353 0.4489 -0.1029 
0.4 -0.0709 0.6952 0.8680 -0.1454 0.3842 -0.0709 
0.45 -0.2290 0.1999 0.6663 -0.1511 0.3761 -0.2290 
0.5 -0.3069 0.0824 0.6663 -0.1421 0.2484 -0.3069 
0.55 -0.2355 0.1870 0.6663 -0.1493 0.3632 -0.2355 
0.6 -0.1215 0.5008 0.8680 -0.1251 0.4942 -0.1215 
0.65 -0.2313 0.1952 0.6663 -0.1145 0.3189 -0.2313 
0.7 -0.2352 0.1876 0.6663 -0.1291 0.3340 -0.2352 
0.75 0.0503 0.7812 0.8680 -0.1146 0.2592 0.0503 
0.8 0.0166 0.9270 0.9270 -0.1190 0.2975 0.0166 
0.85 0.1142 0.5267 0.8680 -0.0964 0.2045 0.1142 
0.9 0.0985 0.5855 0.8680 -0.0943 0.2250 0.0985 
0.95 0.1451 0.4205 0.8680 -0.1051 0.1630 0.1451 

1 0.2129 0.2342 0.6691 -0.1085 0.1021 0.2129 
 
Supplemental Table 7: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by 
Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data 
model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation scores 
and significance scores are determined by Spearman correlation of veridical data against predicted data 
determined by the determined ensemble model. 
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HAM-D       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.1206 0.5039 0.5039 0.1094 0.4824 0.1206 
0.1 0.4117 0.0173 0.0691 0.1617 0.1418 0.4117 
0.15 0.5096 0.0024 0.0310 0.2029 0.0820 0.5096 
0.2 0.3866 0.0263 0.0700 0.2142 0.2289 0.3866 
0.25 0.4134 0.0168 0.0691 0.1884 0.1654 0.4134 
0.3 0.4644 0.0065 0.0432 0.2263 0.1436 0.4644 
0.35 0.2886 0.1033 0.1292 0.2419 0.4222 0.2886 
0.4 0.3049 0.0845 0.1126 0.2543 0.4152 0.3049 
0.45 0.3473 0.0477 0.0867 0.2697 0.3688 0.3473 
0.5 0.3555 0.0423 0.0846 0.2722 0.3589 0.3555 
0.55 0.3379 0.0544 0.0907 0.2593 0.3679 0.3379 
0.6 0.3834 0.0276 0.0700 0.2503 0.2813 0.3834 
0.65 0.3825 0.0280 0.0700 0.2478 0.2792 0.3825 
0.7 0.4992 0.0031 0.0310 0.2474 0.1241 0.4992 
0.75 0.3599 0.0397 0.0846 0.2493 0.3168 0.3599 
0.8 0.3077 0.0815 0.1126 0.2475 0.3993 0.3077 
0.85 0.3069 0.0824 0.1126 0.2391 0.3873 0.3069 
0.9 0.2145 0.2307 0.2714 0.2383 0.4609 0.2145 
0.95 0.1654 0.3578 0.3975 0.2361 0.3867 0.1654 

1 0.1555 0.3877 0.4081 0.2369 0.3704 0.1555 
 
Supplemental Table 8: Hamilton Depression Rating Scale (HAM-D) Change Score determined by 
Combined Data Ensemble Model Results by Threshold. Summary of results based on the combined 
data model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation 
scores and significance scores are determined by Spearman correlation of veridical data against 
predicted data determined by the determined ensemble model. 

 

  



  14

SHAPS       
Feature 

Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 

Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 -0.0705 0.6965 0.8194 -0.1388 0.3937 -0.0705 
0.1 0.0586 0.7458 0.8287 -0.1530 0.2028 0.0586 
0.15 0.1185 0.5114 0.7636 -0.1511 0.1447 0.1185 
0.2 0.0447 0.8047 0.8471 -0.1601 0.2104 0.0447 
0.25 0.0000 1.0000 1.0000 -0.1518 0.2751 0.0000 
0.3 -0.1418 0.4313 0.7636 -0.1304 0.4820 -0.1418 
0.35 -0.1776 0.3227 0.7636 -0.1142 0.4001 -0.1776 
0.4 -0.1567 0.3839 0.7636 -0.1105 0.4272 -0.1567 
0.45 -0.3445 0.0496 0.7636 -0.0898 0.1467 -0.3445 
0.5 -0.2743 0.1224 0.7636 -0.1109 0.2532 -0.2743 
0.55 -0.2146 0.2303 0.7636 -0.1174 0.3480 -0.2146 
0.6 -0.1699 0.3445 0.7636 -0.1078 0.4024 -0.1699 
0.65 -0.1595 0.3752 0.7636 -0.0887 0.3893 -0.1595 
0.7 -0.1523 0.3974 0.7636 -0.1065 0.4279 -0.1523 
0.75 -0.1423 0.4297 0.7636 -0.0918 0.4208 -0.1423 
0.8 -0.1317 0.4650 0.7636 -0.1025 0.4540 -0.1317 
0.85 -0.1121 0.5345 0.7636 -0.0997 0.4804 -0.1121 
0.9 -0.1252 0.4877 0.7636 -0.1020 0.4635 -0.1252 
0.95 -0.0791 0.6617 0.8194 -0.1034 0.4619 -0.0791 

1 -0.0928 0.6074 0.8098 -0.1130 0.4683 -0.0928 
 
Supplemental Table 9: Snaith–Hamilton Pleasure Scale (SHAPS) Change Score determined by 
Combined Ensemble Model Results by Threshold. Summary of results based on the combined data 
model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation scores 
and significance scores are determined by Spearman correlation of veridical data against predicted data 
determined by the determined ensemble model.  
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HAM-A       
Feature 
Selection 
Threshold 

Correlation 
Score 

Correlation 
Significance 

Corrected 
Correlation 
Significance 

Placebo 
Correlation 
Score 

Fisher r-z 
Significance 

Corrected 
Fisher r-z 

0.05 0.2653 0.2933 0.3551 0.4186 0.2156 0.2828 
0.1 0.1356 0.0976 0.0425 0.0153 0.2282 0.1108 

0.15 0.2086 0.2086 0.2086 0.2086 0.3102 0.2086 
0.2 -0.0219 -0.0147 -0.0315 -0.0022 -0.0280 -0.0407 

0.25 0.1257 0.1080 0.0579 0.0400 0.1674 0.0978 
0.3 0.2653 0.2933 0.3551 0.4186 0.2156 0.2828 

0.35 0.1356 0.0976 0.0425 0.0153 0.2282 0.1108 
0.4 0.2086 0.2086 0.2086 0.2086 0.3102 0.2086 

0.45 -0.0219 -0.0147 -0.0315 -0.0022 -0.0280 -0.0407 
0.5 0.1257 0.1080 0.0579 0.0400 0.1674 0.0978 

0.55 0.2653 0.2933 0.3551 0.4186 0.2156 0.2828 
0.6 0.1356 0.0976 0.0425 0.0153 0.2282 0.1108 

0.65 0.2086 0.2086 0.2086 0.2086 0.3102 0.2086 
0.7 -0.0219 -0.0147 -0.0315 -0.0022 -0.0280 -0.0407 

0.75 0.1257 0.1080 0.0579 0.0400 0.1674 0.0978 
0.8 0.2653 0.2933 0.3551 0.4186 0.2156 0.2828 

0.85 0.1356 0.0976 0.0425 0.0153 0.2282 0.1108 
0.9 0.2086 0.2086 0.2086 0.2086 0.3102 0.2086 

0.95 -0.0219 -0.0147 -0.0315 -0.0022 -0.0280 -0.0407 
1 0.1257 0.1080 0.0579 0.0400 0.1674 0.0978 

 
Supplemental Table 10: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by 
Combined Data Ensemble Model Results by Threshold. Summary of results based on the combined 
data model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation 
scores and significance scores are determined by Spearman correlation of veridical data against 
predicted data determined by the determined ensemble model. 
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HAM- D 

Feature % of Model 
Occurrence 

Importance 

Left Putamen – Dorsal Attention B 100 0.033957759 

Left Hippocampus – Somatomotor B 100 0.019215166 

Right Caudate Nucleus – Limbic A 87.88 0.010810147 

Right Putamen – Default C 100 0.008783307 

Right Hippocampus – Dorsal Attention B 100 0.006860286 

Left Amygdala – Central Visual 81.82 0.004269485 

Left Amygdala – Dorsal Attention B 100 0.003669994 

Right Amygdala – Default A 100 0.001511568 

Right Amygdala – Limbic B 84.85 0.001199421 

Left Thalamus – Default A 100 0.001146271 

Right Putamen – Temporal Parietal 100 0.000754547 

Left Nucleus Accumbens – Dorsal Attention A 100 0.000538508 

Right Thalamus – Dorsal Attention B 100 0.000507222 

Right Putamen – Dorsal Attention A 100 0.000447356 

Right Global Pallidus – Ventral Attention B 100 0.000284192 

Left Global Pallidus – Control B 100 0.000232368 

Left Hippocampus – Temporal Parietal 100 0.000208981 

Right Global Pallidus – Somatomotor A 100 0.000195525 

Left Global Pallidus – Default C 100 0.000127003 

Left Caudate Nucleus – Dorsal Attention B 100 1.03E-04 

Left Amygdala – Temporal Parietal 100 4.67E-05 

Left Putamen – Dorsal Attention A 100 3.99E-05 

Right Putamen – Control B 87.88 2.60E-05 

Right Hippocampus – Dorsal Attention A 100 1.58E-05 

Right Global Pallidus – Limbic B 96.97 1.55E-05 

 
Supplemental Table 11: Hamilton Depression Rating Scale (HAM-D) 25 Key Abstracted Features.  
List of the key features within the best performing HAM-D subcortical model. Key features were defined 
as being in 70% of LOOCV models after feature selection and the top 25 ensemble weighting. Features 
are described by their region-network named pair, percent of models appeared in, and ensemble model 
determined importance.  Features are ranked by ensemble importance. 
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HAM - A 

Features % of Model 
Occurrence 

Importance 

Right Hippocampus – Dorsal Attention A 100 0.051589 

Left Nucleus Accumbens – Dorsal Attention A 100 0.034451 

Left Putamen – Peripheral Vision 100 0.015294 

Left Nucleus Accumbens – Temporal Parietal 96.97 0.013756 

Right Putamen – Dorsal Attention A 100 0.006324 

Left Hippocampus – Somatomotor A 100 0.004929 

Right Thalamus – Dorsal Attention A 96.97 0.002749 

Right Nucleus Accumbens – Limbic A 96.97 0.001101 

Left Nucleus Accumbens – Ventral Attention B 100 0.00095 

Right Putamen – Limbic A 81.82 0.000948 

Left Amygdala – Temporal Parietal 100 0.000476 

Right Amygdala – Somatomotor A 100 0.000306 

Left Thalamus – Temporal Parietal 100 0.000299 

Left Nucleus Accumbens – Dorsal Attention B 87.88 0.000261 

Right Global Pallidus – Default C 93.94 0.000183 

Right Caudate Nucleus – Default C 90.91 0.000166 

Right Caudate Nucleus – Control B 75.76 0.000129 

Left Putamen – Dorsal Attention A 100 0.000125 

Left Global Pallidus – Limbic B 100 0.000108 

Left Putamen – Somatomotor B 100 7.93E-05 

Left Putamen – Central Visual 96.97 6.41E-05 

Right Amygdala – Limbic A 100 4.73E-05 

Right Hippocampus – Default B 100 4.18E-05 

Right Nucleus Accumbens – Dorsal Attention 
A 100 2.96E-05 

Left Caudate Nucleus – Control C 100 2.76E-05 

 
Supplemental Table 12: Hamilton Anxiety Rating Scale (HAM-A) 25 Key Abstracted Features.  List 
of the key features within the best performing HAM-A subcortical model. Key features were defined as 
being in 70% of LOOCV models after feature selection and the top 25 ensemble weighting. Features are 
described by their region-network named pair, percent of models appeared in, and ensemble model 
determined importance. Features are ranked by ensemble importance.  
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Supplemental Figure 1: Feature Occurrence for KOR group during feature selection 

From the peak performing HAM-D and HAM-A subcortical feature selected models (p < 0.45, p<0.65), the 
occurrence of what percent of folds each feature was selected to be in during feature selection.  
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Supplemental Figure 2. Feature Selection 
From the peak performing Hamilton Depression Rating Scale (HAM-D) and Hamilton Anxiety Rating 
Scale (HAM-A) subcortical feature selected models (p < 0.45, p<0.65), the top 25 features relevant to 
each peak correlational threshold feature selected model were abstracted. Features were determined to 
be most relevant by feature selection occurrence, how many folds did each feature appear in when the 
correlational threshold was applied (n>70% of folds), and the abstracted feature importance generated by 
the ensemble model. The cortical networks (top) represent the sum of all the subcortical voxels won by 
that particular cortical network. The subcortical structures (bottom) represent the location of the voxel 
regardless of their cortical network label. All plots illustrate frequency of occurrence, and are not 
differentiated based on left or right hemisphere. 
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