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Transdiagnostic

Background: Anhedonia remains a difficult-to-treat symptom and has been associated with poor clinical course
transdiagnostically. Here, we applied machine learning models to individualized neural patches derived from
fMRI data during the Monetary Incentive Delay Task in anhedonic participants (N = 67) recruited for a clinical
trial examining K-opioid receptor (KOR) antagonism in the treatment of anhedonia.

Methods: Nine ensemble models were estimated using cortical, subcortical, and combined cortical subcortical
features from individualized functional topographies to predict changes in symptoms of overall psychopathology
(anhedonia, depression, anxiety). Analyses were performed on the KOR (N = 33) and placebo (N = 34) group.
Results: Initial models showed that only subcortical data predicting depression and anxiety symptom change had
a significant Spearman correlation between veridical and predicted data (rho = 0.480 and rho = 0.415 respec-
tively). Next, leave-one-out-cross-validation (LOOCV) showed that the best-performing models comprised only
the subcortical individualized systems data, which correlated with clinical change for depression and anxiety
scores for the KOR group with significantly higher accuracy (rho = 0.634 and rho = 0.562, respectively)
compared to the placebo group (rho = 0.294 and rho = 0.034, respectively). Further, 25 subcortical neural
features were identified based on correlation and ensemble determined importance in driving prediction. Final
models for both depression and anxiety showed an overall higher representation of the dorsal attention network.
Cortical and combined cortical-subcortical feature data showed no significant improvement in prediction of
clinical change between the two groups.

Conclusion: Using an ensemble of machine learning approaches, we identified individual differences in subcor-
tical individualized systems data that predicted clinical change that was specific to KOR antagonism.

Introduction

Despite significant research advances, treatment studies for mental
health disorders continue following a rudimentary one-size-fits-all
model [1]. This partly originated from the prevalent system of classi-
fying mental disorders as latent constructs, which has led to highly
heterogenous clinical and neurobiological presentations of disorders
[2], high rates of comorbidity [3] and poor treatment outcomes [4]. For
instance, only 30-50 % of patients diagnosed with mood disorders
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respond favorably to medication [5-8]. Even drugs that show promise in
early preclinical studies, do not seem to translate their success in human
clinical samples [9,10].

To overcome this crisis the NIMH proposed the Fast-Fail initiative
(https://www.nimh.nih.gov/research/research-funded-by-nimh/res
earch-initiatives/fast-fail-trials-fast), which followed a proof of mecha-
nism model (POM) that tested drugs on their intended neural treatment
target to allow for rapid assessment of “target engagement”. Here, we
present secondary analyses from one of such study, the Mood and
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Anxiety Spectrum Disorders (FAST-MAS) study. The goal of this trial was
to test K-opioid receptor (KOR) antagonism in the treatment of anhe-
donia, and specifically whether it would engage a key node within the
brain reward system (the nucleus accumbens) [11]. Anhedonia is a
complex transdiagnostic phenomenon that encompasses loss of interest,
pleasure and motivation to pursue or enjoy otherwise rewarding acti-
vities/experiences [12].

The current study leveraged machine learning approaches to char-
acterize individualized neural patches derived from fMRI data obtained
during reward anticipation in the Monetary Incentive Delay Task in a
transdiagnostic population to predict treatment response to overall
symptoms of psychopathology including, depression, anxiety and
anhedonia. In line with the FAST-FAIL approach, the aim of this study
was to use machine learning approaches to identify individualized
functional brain organization patterns related to pharmacological
compounds (specifically KOR antagonists) and their therapeutic effects
using a data-driven approach. Traditionally, clinical trials take an
extensive amount of time and resources to test the efficacy of drugs. Our
study overcomes these limitations by proposing a statistical approach
that aims to identify brain regions related to the effectiveness of drug
compounds through limited human subject data. This approach prom-
ises to aid in facilitating outcome prediction and mechanistic pathways,
thereby allowing for a more rapid assessment of therapeutic potential of
new compounds. Machine learning methods provide valuable opportu-
nities for psychiatric research by allowing researchers to identify robust
features and predictive data patterns that correlate to mental health
outcomes — such as drug response, symptoms, or behavior — and consider
the utility in prediction of future responses for individual participants [5,
13]. Advanced computational methods are especially useful in facili-
tating neuroscientific models in psychiatry which require systematic
computations to identify distinct structures in brain function [14].
Moreover, machine learning techniques can help identify complex linear
and non-linear relationships between multiple variables simultaneously
[5]. Finally, ensemble methods present a key advantage in their ability
to run prediction analysis with relatively smaller sample sizes [15-18].
This aligns closely with our objective of predicting drug compound
outcomes in a resource-conscious manner, providing a more sustainable
alternative to prolonged and costly clinical trials. This capability holds
promise to both identify precise neural features and associate them with
clinical variables.

This study also leveraged recent advances in neuropsychiatric
precision-based techniques that highlight an individualized functional
brain mapping approach to account for heterogeneity in individuals’
brain architecture. Given prior discrepancies in relationships between
cortical and subcortical relationships to symptoms of mood disorders
[19,20], this study investigated cortical and subcortical regions in
isolation and together, in regards to their relationship with symptoms.
These approaches were based on previously developed individualized
neural mapping algorithms that can essentially converge cortical and
subcortical topologies specific to each individual [21-23]. Here, using
an iterative optimization method, person-specific functional patches
were identified within hypothesized brain regions. Here, ‘patches’ refer
to nodes or distinct regions of the brain that exhibit functional homo-
geneity and highly correlated activity [24,25]. These patches were then
used for subsequent analyses with the aim of developing more precise
individualized treatment outcomes and predictions. Toward this aim,
we used an ensemble model approach to identify higher performance
and high robustness in assessing the dataset. We predicted individual-
ized patch sizes would differentially predict response to KOR antago-
nism - such as control system patches (particularly in ventromedial and
lateral prefrontal cortices and striatum) relating to degree of response to
the KOR antagonist (JNJ-67953964). Thus, we predicted that machine
learning would link individualized brain features in such areas to
treatment outcomes, and that features noted above would contribute
most to performance.
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Methods and materials
Procedures

This study was conducted as a multi-site, 8-week, double-blind,
placebo-controlled, randomized trial with individuals within a mood
or anxiety disorder reporting some degree of anhedonia. JNJ-67953964
was administered to drug recipients in 10 mg doses daily. During
baseline measurements and at the end of the 8-week period, MRI scans
were completed. The original trial adhered to the International Con-
ference on Harmonisation Good Clinical Practice guidelines and was
approved by relevant institutional review boards. All participants or
their legal representatives provided written informed consent [11].
Please see the published protocol for further details about the FAST-MAS
trial [11].

Participants

From a total of 94 participants eligible for the original FAST-MAS
trial, we included 67 participants who completed the 8-week treat-
ment trial divided into the drug (N = 33) and placebo (N = 34) groups
[11]. Data and clinical self-report measures were collected at the base-
line visit (‘pre’ clinical scores) and clinical self-report was also collected
at the end of the 8-week trial (‘post’ clinical scores) (see Supplemental
Table 1).

Measures
Symptom measures

The Snaith Hamilton Pleasure Scale (SHAPS) is a 14-item self-
assessment scale that assesses hedonic tone, with higher scores denot-
ing more anhedonia [26].

The 17-item Hamilton Depression Rating Scale (HAM-D) [27] and
the 14-item Hamilton Anxiety Rating Scale (HAM-A) [28] were used to
assess the severity of depression and anxiety, respectively. A score of 20
or higher on the HAM-D is typically considered to indicate moderate
severity of depression [29].

Symptom change for each clinical measure was defined as the dif-
ference between the ‘post’ and ‘pre’ trial scores.

MRI acquisition and preprocessing

MRI data acquisition and preprocessing was conducted using stan-
dard procedures (see Supplement; MRI acquisition and preprocessing for
details).

Individualized functional topologies

Iterative parcellation approaches were used to arrive at individual-
ized brain parcellation guided by group-level functional network atlases,
flexibly adjusted based on interindividual variability and SNR distri-
butions per subject. With each iteration, the influence from group-level
information in determining individual maps was lessened until the final
system map comprised individualized neural systems mapping [22].
These individually-derived cortical networks were separated into
patches using algorithms and unsmoothed region patches matched to
116 cortical regions extracted from the group-level atlas as referenced
[21]. Individual patches were labeled with ROIs based on overlapping
vertices (>20) and nearest-neighbors approaches based on geodesic
distance of neural surfaces (for full details, see [21]).

The subcortical individualized mapping, was based on the approach
previously established by Greene and colleagues [23]. First the
subcortical structures were segmented using FreeSurfer’s ‘recon-all’
segmentation tool, using a downsampled template-derived mask. For
each subcortical structure, individual voxel timecourses were first
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adjusted to account for signal bleed from nearby cortical regions by
regressing out the average timecourse of all ipsilateral cortical voxels
within 20 mm of the given structure. Then each voxel of the subcortical
regions were correlated using partial correlation coefficients to the
average time course of each individualized cortical network, which were
derived using methods mentioned above. The highest correlation value
to a network was used to ‘assign’ a cortical network to the subcortical
voxels, and these subcortical voxels were then summed to determine
subcortical cluster size.

Machine learning: ensemble modeling

Analyses were performed using MATLAB. Analyses were performed
using MATLAB. Data analysis was conducted using extensive in-house
software, incorporating foundational code from https://github.com/M
eilingAva/Homologous-Functional-Regions, using approaches from
Wang et al. and Li et al. [21,22].

Feature definition

Nuisance variables (gender, age, site) were regressed from individ-
ualized subcortical clusters and cortical patch sizes across all FAST-MAS
participants who completed the trial (33 drug and 34 placebo). Previous
research has demonstrated the efficacy of ensemble statistical ap-
proaches with relatively small sample sizes, validating their application
in limited-participant studies. Residualized data were then normalized
to Z-scale to follow other machine learning methods and to aid in
interpretation of residual data [30,31].

Model specification, feature selection, and performance testing

Features from subcortical, cortical, and combined subcortical/
cortical datasets were used in conjunction with least squares ensemble
models for predicting treatment outcomes [32]. This meant that three
separate model types were generated. Choosing to create models with
both datasets together and separate allowed for a better approach to
understanding the relationships that drove prediction. If one dataset was
able to better predict due to its relationship to treatment outcome, this
would not be overshadowed by the other dataset worsening prediction.
An ensemble model was used for its ability to perform strongly on data
that are relatively small in sample sizes and have a higher number of
features [33].

Feature selection was conducted by comparing feature data to
treatment outcomes using Spearman correlations (as in [34-36]). At
each 0.05 step between p, = 0.05 and p; = 1.00, features below the
threshold (e.g., p; < .05, p < .10, p; < .15... p; < 1.00), were included in
the model, while features above the significance threshold were
removed. Using a p-value other than 0.05 as determinants for feature
selection was conducted given the high number of features and
ensemble feature weight determination. This protected against
including an arbitrary number of features within the model. Addition-
ally, this method allowed for false discovery rate (FDR) correction on the
obtained scores. FDR correction was conducted on all findings for
0.05-steps [37] between p; = 0.05 and p; — 1.00, indicating that significant values
obtained during cross-validation may perform well on testing data if introduced to the model.

Further, the least squares ensemble model was selected because it
uses boosting to achieve improved performance, and has demonstrated
strong results previously with neuroimaging data [38]. In an ensemble
model, features that improved model accuracy were enhanced and
features that lowered model accuracy were penalized in subsequent
modeling steps. 100 iterations were conducted to determine the ultimate
feature weights and finalize the model. Initial models were created using
HAM-D, SHAPS, and HAM-A change-scores without any feature selec-
tion to obtain a null baseline comparison to compare against results with
feature selection.

Leave-one-out-cross-validation (LOOCV) was conducted to complete
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feature selection (i.e., within each training dataset) as well as obtain a
score of model performance, as assessed across folds against each left-
out datapoint (Fig. 1). LOOCV was used to avoid leakage in the vali-
dation data affecting feature selection [39]. Once all individuals
received a prediction, these scores were compiled, and Spearman cor-
relation was used to determine accuracy between predicted and verid-
ical treatment outcomes. High correlations suggest that the predictive
machine learning approach was successful in using only brain imaging
data to predict treatment outcome. Only significant positive correlations
were analyzed, as the model was gauging the predictive capability of the
model.

The model-produced-fit using this selected feature data from the
KOR group was then used to test on the placebo group. That is, placebo
data points were predicted upon within each LOOCV drug model. The
determined predicted placebo scores were compared against the verid-
ical placebo data, and for each fold of the LOOCV drug model, a
Spearman correlation score between predicted placebo data and verid-
ical placebo data was calculated. High correlations indicate the model
found trends within fMRI data that were not unique to the KOR group
and was able to predict well placebo data, while low correlations indi-
cate any predictive results on KOR group were independent of the
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Fig. 1. Study methods overview. Within the drug group, leave one out cross
validation (LOOCV) was implemented to determine overall change-scores. Each
data point was set aside one at a time as a test point provided on whether the
index was selected, while the rest of the model underwent feature selection to
then be fit into an ensemble model to predict on the test point. This would then
be placed into a prediction list to be used to calculate overall correlation scores
and further testing. These data were then cycled through for testing on the next
point until all points were evaluated on.


https://github.com/MeilingAva/Homologous-Functional-Regions
https://github.com/MeilingAva/Homologous-Functional-Regions

M.D. Sacchet et al.

placebo data, relating towards the effectiveness of the drug.

After all folds of the LOOCV drug model were completed, the average
of placebo Spearman correlation scores was then computed. This
average was used as a prediction score for placebo data for each feature
selection model, meaning that if this model was used on placebo data,
this would be the outcome when tested on placebo subjects. If there was
not a difference between placebo and drug subjects per model, then this
implied that the model was predicting a general change effect that was
not related to the drug. Testing on placebo data during each step of
feature selection provided performance scores that could be used in
comparison to drug recipient performance for each 0.05 threshold. This
allowed for improvements of the model’s performance to be analyzed so
that it was only improving prediction on drug recipient subjects.

Statistical comparison of model predictive performance on KOR and
placebo groups (i.e., Spearman correlations) was completed by
comparing the predicted drug-group and the predicted placebo-group
Spearman correlation scores using a Fishers R-to-Z test [36,40]. Signif-
icant differences in this statistic indicate that the model was only pre-
dicted on drug specific change during the trial.
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Feature interpretation

Feature interpretation was only conducted if models for a given
feature set (cortical, subcortical, or combined) exhibited significant
performance after multiple comparisons correction using FDR across p;-
value threshold, and, furthermore, if drug prediction models also
significantly performed higher than the placebo outcome prediction, as
assessed by the Fishers R-to-Z test. The psvalue threshold with the
strongest predictive performance that met the qualifications above was
used to identify features associated with this top performance.

Important features were first grouped by frequency of selection
during feature selection. Using a method similar to LOOCV, the data
from each participant was removed one at a time and the correlation
threshold was applied on features within the dataset [34,35]. If a feature
was present, then it was given a score of 1, otherwise it was given a score
of 0. After the count of times a feature was present was tallied, each
feature was given a score out of the number of individuals (Nk = 33) to
determine the number of folds it was present in. The more times that a
feature was present within the model, the higher impact it had on
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Fig. 2. Prediction of clinical outcomes without feature selection in the KOR group. The y-axis plots the data that used to train ensemble models organized by (i)
subcortical only, (ii) cortical only, or (iii) both subcortical and cortical data combined. The x-axis signifies the change in scoring metric that was used for each target
variable in the ensemble model, namely Hamilton Depression Rating Scale (HAM-D), Snaith-Hamilton Pleasure Scale (SHAPS) and Hamilton Anxiety Rating Scale
(HAM-A). These scatterplots weigh the veridical (actual) outcome of the drug treatment against the predicted (scores generated through our ensemble models)
outcome decided by the ensemble model. The scoring metric uses Spearman correlation to judge the similarity between the veridical outcome and the predicted
outcome. Each graph is labeled with the spearman correlation score (r) and spearman significance value (p). The closer this value is to one, the stronger the

relationship is.
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predictive performance.

It was then decided to analyze the occurrence of features to see if
they occurred within 70 % of LOOCYV folds (see Supplement: Justifica-
tion for LOOCV threshold).

After obtaining this information, features were sorted by importance
determined by the ensemble model. Specifically, the top 25 most
important features were sorted based on location and network affiliation
within the brain. Counts of location and network affiliation were then
statistically compared based on frequency using ANOVA. Next post hoc
tests were used to determine if there were significant differences in
frequency of occurrence. This analysis revealed which location and
network affiliations are most relevant to the predictive modeling in
terms of both correlational strength and feature importance.
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Results

Assessment of ensemble model performance using subcortical
individualized brain systems features to predict JNJ-67953964 treatment
outcomes

Without feature selection, ensemble models were able to predict
clinical outcomes using subcortical individualized system features
(HAM-D r = 0.480, p = 0.004, FDR-corrected across psvalue thresh-
old = 0.007; SHAPS r = 0.168, p = 0.360, FDR-corrected across p;-value
threshold = 0.360; HAM-A r = 0.415, p = 0.016, FDR-corrected across
pervalue threshold = 0.0327). r = 0.415 respectively for the HAM-D,
SHAPS, and HAM-A change-scores (Fig. 2).

Next, feature selection was used to improve model performance.
During this feature selection, HAM-D change-scores showed the stron-
gest results at the p, = 0.45 threshold when using only subcortical
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individualized systems features, with the strongest Spearman correla-
tion of r=0.634 (uncorrected: p < 0.001; corrected: p = 0.001).
Thresholds between the p, range of 0.35-1.00 (corrected and uncor-
rected: p < 0.01) as well as p; = 0.10 (uncorrected: p = 0.033; corrected:
p =0.043) all displayed significant positive correlations after FDR
correction (Supplemental Table 2, Fig. 3).

Prediction of SHAPS change-scores using subcortical only features
was strongest at the p,-value threshold of 0.50, with a Spearman corre-
lation of r=0.377 which was significant before (uncorrected:
p =0.030), but not after FDR correction (corrected: p = 0.355)
(Supplemental Table 3, Fig. 3).

Prediction of HAM-A change-scores using subcortical only features
was strongest at the p,-value threshold of 0.65, with a Spearman corre-
lation of r = 0.562 which maintained significance after FDR correction
(uncorrected: p < 0.001; corrected: p = 0.007). Thresholds between the
ranges of p; = 0.30-1.00 as well as p; = 0.10, 0.15 were significant after
FDR correction (corrected and uncorrected: p < 0.05) (Supplemental
Table 4, Fig. 3).

Subcortical drug ensemble accuracy

Using only subcortical individualized systems data, HAM-D change-
score drug prediction performance in the range p, = 0.40-0.50 were
significantly more accurate than placebo performance using Fishers R-
to-Z analysis (Supplemental Table 2, Fig. 3). SHAPS drug prediction
performance, while not significantly accurate, was significantly more
accurate for the KOR compared to placebo outcome predictions at p;-
thresholds of 0.45, 0.50, 0.65, 0.70, and 0.75 (Supplemental Table 3,
Fig. 3). HAM-A drug prediction performance in the range p, = 0.45-0.70
as well as p; = 0.10 were significantly more accurate than placebo group
prediction scores (Supplemental Table 4, Fig. 3).

Cortical drug ensemble accuracy
Without feature selection, models trained on cortical individualized

systems data did not significantly predict any symptom change (see
Supplement: Cortical Drug Ensemble Accuracy for details).

Combined subcortical and cortical drug ensemble accuracy
Without feature selection, models trained on combined subcortical

and cortical individualized systems data did not significantly predict any
symptom change (see Supplement: Combined Subcortical and Cortical
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Drug Ensemble Accuracy for details).

Feature normalization

All results were repeated under the conditions of using normalized or
nonnormalized data during data preprocessing where covariate vari-
ables were regressed out and residuals were created and fit in the model.
These analytic decisions had no effect on the results.

Subcortical feature abstraction

Since the strongest results were observed at subcortical HAM-D at p,
=0.45 and subcortical HAM-A at p, = 0.65, features were further
analyzed at these two threshold levels (Supplemental Table 2, Supple-
mental Table 4, Fig. 4).

The dorsal attention area within the subcortical HAM-A feature set
was the only region that showed significantly greater occurrence
compared to the other top 25 neural features (p = 0.027) (see Supple-
ment: Subcortical Feature Abstraction for details).

Discussion

The subcortical features dataset proved successful with feature se-
lection and performed well with the training data, while the results from
the cortical and cortical and subcortical combined data were not as
strong. This is not surprising as depression is a highly complex pathology
characterized by alterations in various subcortical regions [41]. For
instance, anhedonia, a core symptom of depression [42] is implicated by
dysfunctions in the mesolimbic reward circuit which primarily involves
connectivity between prefrontal cortex (PFC) and various subcortical
structures [20,43-45]. Further studies examining the role of the sub-
cortex in MDD have found atrophy [46,47] and abnormal volumes in
subcortical structures which are associated with illness duration and
antidepressant treatment outcomes [47]. Therefore, our results showing
improved predictive capacity of the subcortical dataset are in line with
prior work and suggest that subcortical features may play a substantial
role in treatment prediction. However, while these subcortical regions
appear to predict treatment outcomes, it is unclear whether these re-
gions are all directly targeted by KOR antagonism. Significant correla-
tions between HAM-D and HAM-A veridical scores and predicted scores
demonstrate the successful link between machine learning biomarker
outcomes and clinical utility. This connection could potentially lead to
promising biomarker-based assessments of depression and anxiety

HAM-A (p < 0.65)
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Fig. 4. Highest scoring features and clinical symptom-change in KOR group. From the previous analyses, the highest scoring feature selected models were identified
and plotted. Hamilton Depression Rating Scale (HAM-D) (left) and Hamilton Anxiety Rating Scale (HAM-A) (right) outcomes are plotted using subcortical data at the
p = 0.45 and p = 0.65, respectively. Veridical (actual) outcomes are plotted on the x-axis against the predicted (scores generated through our ensemble models)

outcome data on the y-axis.
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symptoms in clinical populations, and aid in developing efficient bio-
logically meaningful treatment targets in early stages of drug develop-
ment, in line with the initial goals of the Fast-Fail trial.

The initial subcortical and HAM-D and HAM-A models showed sig-
nificant correlations between veridical (actual) and predicted (scores
generated by our ensemble models) data. Results were strengthened by
using various thresholds of correlation-based feature selection. The
strongest resulting levels of significance for feature selection were p;
= 0.45 and p; = 0.65 for HAM-D and HAM-A models, respectively.
However, our model did not predict significant symptom change in
anhedonia. However, given that anhedonia is a complex condition
involving various mechanisms such as deficits in neurotransmitters
[48], altered functional connectivity [49] and anatomical abnormalities
[50]; it is possible that our analysis that solely relied on functional
patches was insufficient to predict changes in this symptom. Addition-
ally, another possible reason why the models did not predict changes in
anhedonia scores could be due to the self-report nature of SHAPS. The
SHAPS conceptualizes anhedonia as a relatively stable "trait-like"
construct, and primarily captures anticipatory or remembered pleasure
rather than real-time fluctuations in reward processes. Consequently,
our method may not have been sufficiently sensitive to detect changes in
self-report based on individualized neural biomarkers. This challenge
may also arise from the complexity of neural reward processing, wherein
distinct neural systems underlie distinct aspects of the reward process,
such as motivation, anticipation, and consummation, which could in-
fluence the ability to accurately model and predict changes in
self-reported anhedonia over time. This methodology included both
linear and nonlinear relationships through the use of correlation and the
ensemble model in order to best predict change scores. The improve-
ment based on feature selection and model usage demonstrates the
complexity of individualized neural approaches and the need for ap-
proaches that explore this complexity. Future research could benefit
from expanding on current approaches to feature selection in order to
encapsulate both linear and nonlinear patterns within data, either with a
thresholding type approach or other methodologies. Expanding the
complexity at which data are treated allowed for stronger prediction and
increasing the likelihood of a tool that could be used more efficiently to
predict treatment success. These results were tested against placebo
data, which showed that there were significantly better results of pre-
diction among the p, = 0.45 and p; = 0.65 for HAM-D and HAM-A
models. This was crucial in showing that the results were specific to
treated individuals. The specificity of these findings to treated in-
dividuals, further supports these models as a tool for treatment.

When developing models with cortical feature data and combined
cortical-subcortical feature data, there were no significantly improved
predictions of clinical change scores between groups. While this does not
indicate that cortical regions of the brain are not involved within in-
teractions with KOR, it merely suggests that their activity may not have
had a strong enough relationship with change scores to be used as
biomarker within these ensemble models.

Given that HAM-A and HAM-D models were significantly correlated
to predicted and veridical scores, additional analyses of neural features
within these models were conducted. While most feature occurrences
did not vary significantly between the models for the various clinical
change score predictors, one network was significantly greater in
occurrence than others for HAM-A score prediction, specifically the
dorsal attention areas. While dorsal regions have been previously
identified as a feature discriminating prediction of depressed versus
bipolar in support vector machine (SVM) classifiers trained on multi-
modal MRI data [51], our results pointed towards an implication of the
dorsal attention region in the treatment response for anxiety. However,
since the study by Jie and colleagues did not exclude for anxiety dis-
orders [51], and given the common co-morbidity of anxiety and
depression [52], it may be possible that dorsal attention regions have
meaningful implications for anxiety and specifically co-morbid depres-
sion and anxiety as opposed to depression alone. The dorsal attention
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region is primarily involved in top down regulation via allocation of
attention to stimuli [53]. A prior study found increased functional
connectivity between the dorsal attention network (DAN) and the
amygdala in individuals with high trait anxiety [54]. Given amygdala’s
primary role in processing threat stimuli [55,56], higher connectivity
between the amygdala and DAN have suggested an increased attentional
bias towards threat related stimuli [54,57], which is well established
underlying mechanism of anxiety. Further, trait anxiety is also consid-
ered to be a risk factor for depression [58]. Interestingly, in line with our
results, individuals co-morbid anxiety and depression show higher
threat bias than individuals with depression alone [59]. Other than the
dorsal attention areas having significance over other features within the
subcortical HAM-A model, no other regions appeared to differ in fre-
quency and makeup at a significant level for the HAM-D or HAM-A
features. These results demonstrate the significance of investigating
individualized neural systems holistically without the biases of linear
group-level influences which may lead to oversimplified conclusions by
not accounting for individual variability in neural functional organiza-
tion. This approach may allow for more likelihood of trial success as it
ensures that meaningful systems which may have non-linear relation-
ships to these systems are not overlooked in predicting treatment
outcomes.

Despite considerable strengths, we highlight several limitations.
While our study did include training and validation data, we did not
have a separate hold-out or testing dataset. This was due to a relatively
small sample size for such machine learning performance designs and
the fact that only one RCT has been conducted so far using a KOR
antagonist. We addressed this important limitation by assessing p-values
and FDR corrections to provide a benchmark of statistical strength.
Alternate methods of choosing ideal features in machine learning
models could have been explored, such as SelectKBest, however the
thresholding approach used in the present study was selected for its
ability to filter out arbitrary feature numbers at varying levels. Further,
use of LOOCV for cross validation allowed greater amounts of data
within the small sample size to be allocated to training rather than
testing, but is ultimately associated with high variance and weaker
generalization performance [60]. Finally, participant data indicated
mild to moderate levels of depression, anxiety, and anhedonia at base-
line, which may limit the generalizability of the findings to populations
with more severe psychopathology or to those without any psychiatric
symptoms.

Future research could include stringent testing-training splits instead
of LOOCV approaches to evaluate whether ensemble models may
accurately predict similar feature selection outputs. Additionally, while
our relatively smaller sample size was adequate for analyses based on
previous studies, future research would benefit from validating these
findings using a large sample. Future research would also benefit from
examining whether our findings replicate in samples with more severe
psychopathology. Expanding the range of symptoms severity will help
clarify the extent to which these findings generalize across more severe
psychopathology and could have meaningful treatment implications.
Overall, this study aimed to use individualized data in conjunction with
machine learning to further explore the effectiveness of a data-driven
approach to identify neural features of importance. The resultant
models ran successfully, and in the case of subcortical feature selection,
appeared to extract neural features related to affective processing in
prediction of drug, and notably not placebo responses in depressed and
anhedonic participants. The success of these models demonstrates the
value of machine learning-based methodologies in creating biomarker-
based tools for predictive treatment. Data-driven approaches such as
this allow for more multi-faceted and complex relationships between
individualized neural markers and treatment prediction may yield more
conservative, and notably more accurate treatment targets compared to
traditional group-aggregate linear correlational approaches.
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Supplementary Methods

Participants:

163 participants were screened for the original FAST-MAS trial. From the total screened, 94 were
eligible to participate in the study determined by qualifying scores (see next section, Measures). Five
participants dropped out of the trial before baseline measurements were acquired. As a result, 89
participants completed baseline measurements. Of this sample, participants were randomized to the KOR
(N=45) or the placebo (N=44) group. All participants had a SHAPS score = 20.

From the screened sample, a total of 67 participants completed the 8-week treatment trial and had
fMRI data that could be used in the current analyses. This resulted in roughly equivalent group sizes for
drug (n=33) and placebo (n=34) groups [1].

MRI Acquisition and Preprocessing

fMRI data were collected during resting-state and the Monetary Incentive Delay (MID) task. Resting-
state and contrasts of interest used for the MID task in the original study were all aggregated to produce
continuous runs to be analyzed, aligning with previous work using individualized systems approaches [2—
5].

fMRI data were collected with Gradient-echo echo-planer axial scans using the following parameters:
TR/TE: 2000/30ms, flip angle: 70 deg, FOV: 25.6 cm, matrix: 64x64, 32 axial slices, acceleration factor=2,
voxel size: 4x4x4 mm.

fMRI data processing was completed using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of
FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). Registration to high resolution structural and
standard space images was conducted with FLIRT [6, 7] with registration from high resolution structural to
standard space with FNIRT nonlinear registration [8].

Further preprocessing included motion correction using MCFLIRT [6, 7], slice-timing correction using
Fourier-space time-series phase-shifting, non-brain removal using BET spatial smoothing with a FWHM
5mm Gaussian kernel, grand-mean intensity normalization of the entire 4D dataset by a single
multiplicative factor, and high pass temporal filtering (Gaussian-weighted least-squares straight line fitting,
with sigma=45.0s) [7, 9].

Feature Selection Comparison

As a final analysis with pt-value threshold feature selection coupled with the ensemble model
feature weight abstraction, a model was generated with the top 25 Spearman-correlated neural features.
This was done to determine whether the method of feature selection used, where various steps of
correlational significance was used as a filter, would perform better than just using the flat number of
significant features, as other papers have used (J. Liu et al. 2021). Twenty-five was chosen as the
number of features used to mirror the number of features analyzed during feature interpretation. The
models created using the top 25 Spearman-correlated features used LOOCYV to create a comparable
validation score as the previous feature selection method. The validation scores were compared to the
models that performed most highly during feature selection, similar to the metrics that were used to
determine what models were analyzed during feature interpretation. This comparison would then have a
Fishers R-to-Z test applied to assess if there was a significantly better Spearman correlation determined
based on the method of feature selection.

Justification for LOOCV threshold

This threshold was selected for high qualitative occurrence, such that lower presence typically
suggested a steep drop among remaining features (Supplemental Fig. 1). All features meeting this
threshold were analyzed in an ensemble model in order to abstract the feature weights determined during
training. These two steps allowed the extraction of information related to the strengths of the linear and
nonlinear relationships of the features and outcomes, assessing how important they are to outcome
prediction and model performance.



Supplementary Results

Feature Selection Comparison

Since the best performing models during feature selection were the p<0.45 HAM-D model and the
pt<0.65 HAM-A model, these two were used to determine significance of using this method of feature
selection. This resulted in two new models generated using subcortical HAM-D and HAM-A data; only
using the top 25 correlational features to the respective change scores in the model.

For the new HAM-D model, the Spearman correlation determined by LOOCV was r=0.355 (p=0.042).
When compared to the subcortical p<0.45 HAM-D model, a Fishers r-to-z test was not significant
(p=0.070). For the new HAM-A model, the Spearman correlation determined by LOOCV was r=0.366
(p=0.036). When compared to the subcortical p+<0.65 HAM-A model, a Fishers R-to-Z test was not
significant (p=0.164).

Cortical Drug Ensemble Accuracy

Spearman correlations for cortical data were r=—0.009, =-0.522, r=0.213 for HAM-D, SHAPS, and
HAM-A, respectively (Fig. 2). Cortical data did now show any positive significant Spearman correlation
(corrected and uncorrected: p>0.05) (Fig. 3). There were no values in which HAM-D, HAM-A, or SHAPS
KOR predictive performance was significantly better than placebo predictive performance using Fisher R-
to-Z significance test (Supplemental Tables 5-7, Fig. 3).

Combined Subcortical and Cortical Drug Ensemble Accuracy

Without feature selection, combined subcortical and cortical individualized systems data Spearman
correlations were r=0.156, =—0.093, r=0.310 for HAM-D, SHAPS, and HAM-A, respectively (Fig. 2). The
combined data were also not significant. Combined data showed significant positive Spearman
correlation in HAM-D predictions against true scores for p: -values 0.15, 0.30, and 0.70 post FDR
correction (p<0.050) (Supplemental Table 8, Fig. 3). None of these were Fisher R-to-Z significant. No
SHAPS or HAM-A scores were significant post FDR correction, but HAM-A was significantly better than
placebo scores at the p=0.20 threshold (p=0.040) (Supplemental Table 9, Supplemental Table 10, Fig.
3).

Subcortical Feature Abstraction

Of the top 25 neural features abstracted from these thresholds (see Supplemental Table 11 and 12),
five were shared between the HAM-D and HAM-A abstracted features. These features were the
relationships between the (i) right hippocampus and dorsal attention regions, (ii) left nucleus accumbens
and dorsal attention regions, (iii) right putamen and dorsal attention regions, (iv) left amygdala and
temporal parietal, and (v) right amygdala and limbic regions.

Of the HAM-D selected features, there was a slightly higher percentage of right hemisphere features
chosen; this contrasted with HAM-A selected features, which showed a moderately higher percentage of
left hemisphere features. HAM-D selected features showed a strong number of putamen, global pallidus,
amygdala, and hippocampus regions, while the nucleus accumbens, thalamus, and caudate nucleus
regions were less represented (Supplemental Fig. 2). HAM-A selected features appeared qualitatively
evenly distributed among the regions, although the putamen and nucleus accumbens regions were more
highly represented. These qualitative trends towards differential representation of regions did not appear
to be significantly different however, when statistically probed with a one-way ANOVA test for both HAM-
D and HAM-A abstracted features (p=0.318, p=0.456). Tests for multiple comparisons did not appear to
statistically differentiate the frequencies for region representation either.

The most prominent cortical networks of the HAM-D selected features were dorsal attention areas,
limbic regions, and temporal parietal regions. Of the HAM-A selected features, the dorsal attention areas,
limbic regions, and temporal parietal were most prominent. Almost all cortical networks were present in
both HAM-D and HAM-A change-scores, but the salience/ventral attention A network was not present
among either group of selected features, nor was the default network among HAM-D selected features
(Supplemental Fig. 2).



While trends may have suggested dissimilar region frequency occurrences, there were low numbers
of significant differences in feature occurrence. One exception was within the subcortical HAM-A feature
set: the dorsal attention area was significantly greater in occurrence than default, salience ventral
attention, and control regions, which were not present in subcortical HAM-A selected features (p=0.027).
No other differences in frequency were significantly different for HAM-D comparisons.

Supplementary Discussion

Feature Selection Comparison

Further tests were used to assess whether using the top 25 correlating features were significant
in @ model predicting clinical change scores. While the algorithmic feature selection performed better than
just taking the top 25 correlative features, this was not significant. This lack of significance of subcortical
regions/ cortical networks towards the model reflects the inherent nuanced complexity of neural systems
involved in the mechanisms underlying psychopathology and indicates the need for further individualized
neural approaches to psychopathology. Prediction of treatment response via machine learning models
have been performed across a number of studies [10, 11], but this study is the first-to-date, as far as we
are aware, of features derived from individual neural network maps rather than collective group-averaged
neural datasets.

Cortical and Combined Subcortical and Cortical Drug Ensemble Accuracy

The null findings for improved predictions of clinical symptom change from the cortical and
combined data may suggest, that unique information derived from subcortical features within the
ensemble models may be relatively more relevant to symptom response across time with respect to KOR
antagonists as this dataset was found to be significant both with and without feature selection. Given the
high performance at threshold levels of p=0.45 and p=0.65, subcortical features were further assessed at
these two levels which suggested regions encompassing the hippocampus, left nucleus accumbens, right
putamen, right and left amygdala, temporal parietal regions, limbic regions, and dorsal attention regions.
These regions may provide predictive capacities of drug response in line with hypotheses on likely
relationships within affective systems. Further research could help solidify regions such as these as
adequate biomarkers towards treatment tools when treating depressive and anxiety symptoms.



Supplementary Tables and Figures

Total Drug Placebo
Count 67 33 34
Mean age in years (SD) 39.8 40.3 39.6

(13.4) (13.6) (13.4)
Gender, % female 58.2 60.6 55.9
Race %
Caucasian 65.7 69.7 61.8
African American 22.3 24.2 20.6
Asian 2.9 0 5.8
American Indian/Alaskan Native | O 0 0
More than one race 7.4 6 8.8
Ethnicity, % Hispanic or Latino | 10.5 9.1 11.8
Mean baseline HAM-D (SD) 14.8 (5.3) | 14.5(4.7) | 15.0 (5.9)
Mean baseline SHAPS (SD) 34.3 (6.8) | 35.1(8.1) | 33.6 (5.2)
Mean baseline HAM-A (SD) 14.8 (6.3) | 14.1(5.2) | 15.6 (7.1)
Mean post HAM-D (SD) 9.8 (6.6) | 10.9 (7.3)
Mean post SHAPS (SD) 30.9(7.8) | 31.4 (6.8)
Mean post HAM-A (SD) 9.7 (7.4)|10.8(7.4)

Supplemental Table 1. Study Participant Demographic and Baseline Data. Summary of participant
demographic features and Hamilton Depression Rating Scale (HAM-D), Snaith—Hamilton Pleasure Scale
(SHAPS) and Hamilton Anxiety Rating Scale (HAM-A) data by mean and standard deviation (SD at
baseline and an 8-week follow up.



HAM-D

Feature Correlation Correlation Corrected Placebo Fisher r-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 0.1243 0.4908 0.4908 0.1722 0.4241 0.4556
0.1 0.3731 0.0325 0.0433 0.1734 0.1985 0.2647
0.15 0.3565 0.0417 0.0521 0.2277 0.2908 0.3635
0.2 0.3052 0.0841 0.0990 0.2654 0.4328 0.4556
0.25 0.1872 0.2970 0.3126 0.2714 0.3641 0.4284
0.3 0.2450 0.1694 0.1882 0.2258 0.4684 0.4684
0.35 0.4969 0.0033 0.0073 0.2182 0.1033 0.2512
0.4 0.6171 0.0001 0.0009 0.2224 0.0268 0.2512
0.45 0.6341 0.0001 0.0009 0.2938 0.0410 0.2512
0.5 0.6187 0.0001 0.0009 0.2690 0.0404 0.2512
0.55 0.5866 0.0003 0.0017 0.2604 0.0565 0.2512
0.6 0.5470 0.0010 0.0039 0.2562 0.0846 0.2512
0.65 0.5246 0.0017 0.0049 0.2538 0.1035 0.2512
0.7 0.5033 0.0028 0.0071 0.2554 0.1267 0.2512
0.75 0.5377 0.0013 0.0042 0.2624 0.0973 0.2512
0.8 0.4890 0.0039 0.0078 0.2600 0.1471 0.2512
0.85 0.4622 0.0068 0.0097 0.2605 0.1810 0.2586
0.9 0.4662 0.0062 0.0096 0.2586 0.1738 0.2586
0.95 0.4838 0.0043 0.0078 0.2473 0.1411 0.2512

1 0.4803 0.0047 0.0078 0.2531 0.1507 0.2512

Supplemental Table 2: Hamilton Depression Rating Scale (HAM-D) Change Score determined by
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical
data model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation

scores and significance scores are determined by Spearman correlation of veridical data against

predicted data determined by the determined ensemble model.




SHAPS

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 0.0186 0.9182 0.9182 -0.1011 0.3196 0.3196
0.1 0.1470 0.4145 0.5113 -0.0884 0.1778 0.2092
0.15 0.2371 0.1840 0.4089 -0.1173 0.0802 0.1782
0.2 0.1629 0.3651 0.5113 -0.0917 0.1585 0.2050
0.25 0.1706 0.3426 0.5113 -0.1126 0.1326 0.1983
0.3 0.1610 0.3707 0.5113 -0.1151 0.1388 0.1983
0.35 0.1408 0.4346 0.5113 -0.1084 0.1640 0.2050
0.4 0.2736 0.1234 0.3545 -0.1082 0.0642 0.1645
0.45 0.3224 0.0673 0.3545 -0.1145 0.0397 0.1624
0.5 0.3768 0.0306 0.3545 -0.1339 0.0191 0.1624
0.55 0.2731 0.1241 0.3545 -0.1259 0.0561 0.1645
0.6 0.2411 0.1765 0.4089 -0.1393 0.0658 0.1645
0.65 0.3541 0.0432 0.3545 -0.1306 0.0251 0.1624
0.7 0.3107 0.0785 0.3545 -0.1373 0.0364 0.1624
0.75 0.2971 0.0932 0.3545 -0.1393 0.0406 0.1624
0.8 0.1540 0.3922 0.5113 -0.1290 0.1329 0.1983
0.85 0.0736 0.6841 0.7201 -0.1357 0.2059 0.2167
0.9 0.1431 0.4269 0.5113 -0.1405 0.1324 0.1983
0.95 0.0801 0.6577 0.7201 -0.1400 0.1939 0.2154

1 0.1677 0.3508 0.5113 -0.1444 0.1096 0.1983

Supplemental Table 3: Snaith—-Hamilton Pleasure Scale (SHAPS) Change Score determined by
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical
data model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation

scores and significance scores are determined by Spearman correlation of veridical data against

predicted data determined by the determined ensemble model.




HAM-A

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 0.3352 0.0565 0.0598 0.0065 0.0908 0.1225
0.1 0.4615 0.0069 0.0220 0.0226 0.0314 0.0966
0.15 0.3746 0.0317 0.0453 0.0265 0.0758 0.1222
0.2 0.3349 0.0568 0.0598 0.0484 0.1209 0.1273
0.25 0.2442 0.1707 0.1707 0.0671 0.2386 0.2386
0.3 0.3628 0.0380 0.0478 0.0578 0.1041 0.1225
0.35 0.4200 0.0150 0.0327 0.0539 0.0621 0.1222
0.4 0.4206 0.0148 0.0327 0.0397 0.0553 0.1222
0.45 0.4799 0.0047 0.0188 0.0498 0.0324 0.0966
0.5 0.5339 0.0014 0.0085 0.0379 0.0147 0.0845
0.55 0.4557 0.0077 0.0220 0.0237 0.0338 0.0966
0.6 0.5252 0.0017 0.0085 0.0398 0.0169 0.0845
0.65 0.5624 0.0007 0.0066 0.0336 0.0093 0.0845
0.7 0.5620 0.0007 0.0066 0.0538 0.0115 0.0845
0.75 0.3754 0.0313 0.0453 0.0660 0.0997 0.1225
0.8 0.3878 0.0258 0.0429 0.0482 0.0794 0.1222
0.85 0.3623 0.0382 0.0478 0.0510 0.0998 0.1225
0.9 0.3573 0.0412 0.0485 0.0651 0.1141 0.1268
0.95 0.4025 0.0202 0.0367 0.0649 0.0789 0.1222

1 0.4149 0.0163 0.0327 0.0727 0.0750 0.1222

Supplemental Table 4: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by
Subcortical Data Ensemble Model Results by Threshold. Summary of results based on the subcortical
data model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation

scores and significance scores are determined by Spearman correlation of veridical data against

predicted data determined by the determined ensemble model.




HAM-D

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 -0.0486 0.7881 0.8887 0.0371 0.3689 -0.0486
0.1 -0.2474 0.1652 0.8166 -0.1388 0.3297 -0.2474
0.15 -0.2269 0.2041 0.8166 -0.1654 0.4014 -0.2269
0.2 -0.0356 0.8443 0.8887 -0.1166 0.3751 -0.0356
0.25 -0.2987 0.0913 0.8166 -0.0371 0.1450 -0.2987
0.3 -0.2301 0.1977 0.8166 -0.0222 0.2038 -0.2301
0.35 -0.2500 0.1605 0.8166 -0.0001 0.1594 -0.2500
0.4 -0.1209 0.5027 0.8378 -0.0189 0.3444 -0.1209
0.45 -0.1462 0.4168 0.8378 -0.0084 0.2938 -0.1462
0.5 -0.0434 0.8103 0.8887 -0.0151 0.4559 -0.0434
0.55 0.0486 0.7881 0.8887 -0.0172 0.3986 0.0486
0.6 0.0942 0.6019 0.8887 -0.0327 0.3096 0.0942
0.65 0.0766 0.6716 0.8887 -0.0311 0.3368 0.0766
0.7 0.1425 0.4287 0.8378 -0.0354 0.2423 0.1425
0.75 0.1758 0.3279 0.8378 -0.0290 0.2099 0.1758
0.8 0.0537 0.7668 0.8887 -0.0415 0.3550 0.0537
0.85 0.1223 0.4979 0.8378 -0.0424 0.2594 0.1223
0.9 0.1407 0.4348 0.8378 -0.0422 0.2365 0.1407
0.95 0.1524 0.3970 0.8378 -0.0555 0.2070 0.1524

1 -0.0091 0.9601 0.9601 -0.0679 0.4089 -0.0091

Supplemental Table 5: Hamilton Depression Rating Scale (HAM-D) Change Score determined by
Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data
model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation scores
and significance scores are determined by Spearman correlation of veridical data against predicted data

determined by the determined ensemble model.
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SHAPS

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 -0.5901 0.0003 0.0041 -0.2590 0.0535 -0.5901
0.1 -0.3527 0.0441 0.0735 -0.1003 0.1478 -0.3527
0.15 -0.2317 0.1944 0.2046 -0.2096 0.4638 -0.2317
0.2 -0.4288 0.0128 0.0256 -0.1999 0.1590 -0.4288
0.25 -0.2621 0.1407 0.1563 -0.1800 0.3680 -0.2621
0.3 -0.1997 0.2651 0.2651 -0.1714 0.4544 -0.1997
0.35 -0.3205 0.0690 0.0862 -0.1286 0.2140 -0.3205
0.4 -0.4460 0.0093 0.0232 -0.1214 0.0812 -0.4460
0.45 -0.2787 0.1163 0.1369 -0.1250 0.2654 -0.2787
0.5 -0.3742 0.0319 0.0581 -0.1055 0.1309 -0.3742
0.55 -0.3425 0.0510 0.0785 -0.0990 0.1572 -0.3425
0.6 -0.3286 0.0619 0.0858 -0.0955 0.1689 -0.3286
0.65 -0.3257 0.0643 0.0858 -0.0997 0.1764 -0.3257
0.7 -0.4306 0.0124 0.0256 -0.0549 0.0566 -0.4306
0.75 -0.4606 0.0070 0.0200 -0.0381 0.0362 -0.4606
0.8 -0.5049 0.0027 0.0091 -0.0598 0.0264 -0.5049
0.85 -0.5541 0.0008 0.0041 -0.0564 0.0133 -0.5541
0.9 -0.5697 0.0005 0.0041 -0.0680 0.0119 -0.5697
0.95 -0.5581 0.0007 0.0041 -0.0776 0.0155 -0.5581

1 -0.5220 0.0018 0.0073 -0.0948 0.0294 -0.5220

Supplemental Table 6: Snaith—-Hamilton Pleasure Scale (SHAPS) Change Score determined by

Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data
model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation scores
and significance scores are determined by Spearman correlation of veridical data against predicted data

determined by the determined ensemble model.
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HAM-A

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 0.1702 0.3437 0.8592 -0.1288 0.1196 0.1702
0.1 -0.0209 0.9079 0.9270 -0.1376 0.3232 -0.0209
0.15 0.0905 0.6166 0.8680 -0.1799 0.1436 0.0905
0.2 0.0533 0.7684 0.8680 -0.1450 0.2181 0.0533
0.25 -0.2308 0.1962 0.6663 -0.1580 0.3837 -0.2308
0.3 -0.0817 0.6511 0.8680 -0.1320 0.4214 -0.0817
0.35 -0.1029 0.5690 0.8680 -0.1353 0.4489 -0.1029
0.4 -0.0709 0.6952 0.8680 -0.1454 0.3842 -0.0709
0.45 -0.2290 0.1999 0.6663 -0.1511 0.3761 -0.2290
0.5 -0.3069 0.0824 0.6663 -0.1421 0.2484 -0.3069
0.55 -0.2355 0.1870 0.6663 -0.1493 0.3632 -0.2355
0.6 -0.1215 0.5008 0.8680 -0.1251 0.4942 -0.1215
0.65 -0.2313 0.1952 0.6663 -0.1145 0.3189 -0.2313
0.7 -0.2352 0.1876 0.6663 -0.1291 0.3340 -0.2352
0.75 0.0503 0.7812 0.8680 -0.1146 0.2592 0.0503
0.8 0.0166 0.9270 0.9270 -0.1190 0.2975 0.0166
0.85 0.1142 0.5267 0.8680 -0.0964 0.2045 0.1142
0.9 0.0985 0.5855 0.8680 -0.0943 0.2250 0.0985
0.95 0.1451 0.4205 0.8680 -0.1051 0.1630 0.1451

1 0.2129 0.2342 0.6691 -0.1085 0.1021 0.2129

Supplemental Table 7: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by

Cortical Data Ensemble Model Results by Threshold. Summary of results based on the cortical data
model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation scores
and significance scores are determined by Spearman correlation of veridical data against predicted data

determined by the determined ensemble model.
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HAM-D
Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 0.1206 0.5039 0.5039 0.1094 0.4824 0.1206
0.1 0.4117 0.0173 0.0691 0.1617 0.1418 0.4117
0.15 0.5096 0.0024 0.0310 0.2029 0.0820 0.5096
0.2 0.3866 0.0263 0.0700 0.2142 0.2289 0.3866
0.25 0.4134 0.0168 0.0691 0.1884 0.1654 0.4134
0.3 0.4644 0.0065 0.0432 0.2263 0.1436 0.4644
0.35 0.2886 0.1033 0.1292 0.2419 0.4222 0.2886
0.4 0.3049 0.0845 0.1126 0.2543 0.4152 0.3049
0.45 0.3473 0.0477 0.0867 0.2697 0.3688 0.3473
0.5 0.3555 0.0423 0.0846 0.2722 0.3589 0.3555
0.55 0.3379 0.0544 0.0907 0.2593 0.3679 0.3379
0.6 0.3834 0.0276 0.0700 0.2503 0.2813 0.3834
0.65 0.3825 0.0280 0.0700 0.2478 0.2792 0.3825
0.7 0.4992 0.0031 0.0310 0.2474 0.1241 0.4992
0.75 0.3599 0.0397 0.0846 0.2493 0.3168 0.3599
0.8 0.3077 0.0815 0.1126 0.2475 0.3993 0.3077
0.85 0.3069 0.0824 0.1126 0.2391 0.3873 0.3069
0.9 0.2145 0.2307 0.2714 0.2383 0.4609 0.2145
0.95 0.1654 0.3578 0.3975 0.2361 0.3867 0.1654

1 0.1555 0.3877 0.4081 0.2369 0.3704 0.1555

Supplemental Table 8: Hamilton Depression Rating Scale (HAM-D) Change Score determined by
Combined Data Ensemble Model Results by Threshold. Summary of results based on the combined
data model on HAM-D change scores, with each Spearman correlation-based thresholds. Correlation

scores and significance scores are determined by Spearman correlation of veridical data against

predicted data determined by the determined ensemble model.

13




SHAPS

Feature Correlation Correlation Corrected Placebo Fisherr-z Corrected
Selection Score Significance | Correlation | Correlation | Significance | Fisherr-z
Threshold Significance Score

0.05 -0.0705 0.6965 0.8194 -0.1388 0.3937 -0.0705
0.1 0.0586 0.7458 0.8287 -0.1530 0.2028 0.0586
0.15 0.1185 0.5114 0.7636 -0.1511 0.1447 0.1185
0.2 0.0447 0.8047 0.8471 -0.1601 0.2104 0.0447
0.25 0.0000 1.0000 1.0000 -0.1518 0.2751 0.0000
0.3 -0.1418 0.4313 0.7636 -0.1304 0.4820 -0.1418
0.35 -0.1776 0.3227 0.7636 -0.1142 0.4001 -0.1776
0.4 -0.1567 0.3839 0.7636 -0.1105 0.4272 -0.1567
0.45 -0.3445 0.0496 0.7636 -0.0898 0.1467 -0.3445
0.5 -0.2743 0.1224 0.7636 -0.1109 0.2532 -0.2743
0.55 -0.2146 0.2303 0.7636 -0.1174 0.3480 -0.2146
0.6 -0.1699 0.3445 0.7636 -0.1078 0.4024 -0.1699
0.65 -0.1595 0.3752 0.7636 -0.0887 0.3893 -0.1595
0.7 -0.1523 0.3974 0.7636 -0.1065 0.4279 -0.1523
0.75 -0.1423 0.4297 0.7636 -0.0918 0.4208 -0.1423
0.8 -0.1317 0.4650 0.7636 -0.1025 0.4540 -0.1317
0.85 -0.1121 0.5345 0.7636 -0.0997 0.4804 -0.1121
0.9 -0.1252 0.4877 0.7636 -0.1020 0.4635 -0.1252
0.95 -0.0791 0.6617 0.8194 -0.1034 0.4619 -0.0791

1 -0.0928 0.6074 0.8098 -0.1130 0.4683 -0.0928

Supplemental Table 9: Snaith—-Hamilton Pleasure Scale (SHAPS) Change Score determined by
Combined Ensemble Model Results by Threshold. Summary of results based on the combined data
model on SHAPS change scores, with each Spearman correlation-based thresholds. Correlation scores
and significance scores are determined by Spearman correlation of veridical data against predicted data

determined by the determined ensemble model.
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HAM-A

Feature

Selection

Threshold
0.05

0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

Correlation
Score

0.2653
0.1356
0.2086
-0.0219
0.1257
0.2653
0.1356
0.2086
-0.0219
0.1257
0.2653
0.1356
0.2086
-0.0219
0.1257
0.2653
0.1356
0.2086
-0.0219
0.1257

Correlation
Significance

0.2933
0.0976
0.2086
-0.0147
0.1080
0.2933
0.0976
0.2086
-0.0147
0.1080
0.2933
0.0976
0.2086
-0.0147
0.1080
0.2933
0.0976
0.2086
-0.0147
0.1080

Corrected
Correlation
Significance

0.3551
0.0425
0.2086
-0.0315
0.0579
0.3551
0.0425
0.2086
-0.0315
0.0579
0.3551
0.0425
0.2086
-0.0315
0.0579
0.3551
0.0425
0.2086
-0.0315
0.0579

Placebo
Correlation
Score

0.4186
0.0153
0.2086
-0.0022
0.0400
0.4186
0.0153
0.2086
-0.0022
0.0400
0.4186
0.0153
0.2086
-0.0022
0.0400
0.4186
0.0153
0.2086
-0.0022
0.0400

Fisherr-z
Significance

0.2156
0.2282
0.3102
-0.0280
0.1674
0.2156
0.2282
0.3102
-0.0280
0.1674
0.2156
0.2282
0.3102
-0.0280
0.1674
0.2156
0.2282
0.3102
-0.0280
0.1674

Corrected
Fisher r-z

0.2828
0.1108
0.2086
-0.0407
0.0978
0.2828
0.1108
0.2086
-0.0407
0.0978
0.2828
0.1108
0.2086
-0.0407
0.0978
0.2828
0.1108
0.2086
-0.0407
0.0978

Supplemental Table 10: Hamilton Anxiety Rating Scale (HAM-A) Change Score determined by
Combined Data Ensemble Model Results by Threshold. Summary of results based on the combined
data model on HAM-A change scores, with each Spearman correlation-based thresholds. Correlation

scores and significance scores are determined by Spearman correlation of veridical data against

predicted data determined by the determined ensemble model.
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HAM-D
Feature % of Model | Importance
Occurrence

Left Putamen — Dorsal Attention B 100 0.033957759
Left Hippocampus — Somatomotor B 100 0.019215166
Right Caudate Nucleus — Limbic A 87.88 0.010810147
Right Putamen — Default C 100 0.008783307
Right Hippocampus — Dorsal Attention B 100 0.006860286
Left Amygdala — Central Visual 81.82 0.004269485
Left Amygdala — Dorsal Attention B 100 0.003669994
Right Amygdala — Default A 100 0.001511568
Right Amygdala — Limbic B 84.85 0.001199421
Left Thalamus — Default A 100 0.001146271
Right Putamen — Temporal Parietal 100 0.000754547
Left Nucleus Accumbens — Dorsal Attention A 100 0.000538508
Right Thalamus — Dorsal Attention B 100 0.000507222
Right Putamen — Dorsal Attention A 100 0.000447356
Right Global Pallidus — Ventral Attention B 100 0.000284192
Left Global Pallidus — Control B 100 0.000232368
Left Hippocampus — Temporal Parietal 100 0.000208981
Right Global Pallidus — Somatomotor A 100 0.000195525
Left Global Pallidus — Default C 100 0.000127003
Left Caudate Nucleus — Dorsal Attention B 100 1.03E-04
Left Amygdala — Temporal Parietal 100 4.67E-05
Left Putamen — Dorsal Attention A 100 3.99E-05
Right Putamen — Control B 87.88 2.60E-05
Right Hippocampus — Dorsal Attention A 100 1.58E-05
Right Global Pallidus — Limbic B 96.97 1.55E-05

Supplemental Table 11: Hamilton Depression Rating Scale (HAM-D) 25 Key Abstracted Features.
List of the key features within the best performing HAM-D subcortical model. Key features were defined
as being in 70% of LOOCV models after feature selection and the top 25 ensemble weighting. Features
are described by their region-network named pair, percent of models appeared in, and ensemble model
determined importance. Features are ranked by ensemble importance.
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HAM - A
Features % of Model |Importance
Occurrence

Right Hippocampus — Dorsal Attention A 100 0.051589
Left Nucleus Accumbens — Dorsal Attention A 100 0.034451
Left Putamen — Peripheral Vision 100 0.015294
Left Nucleus Accumbens — Temporal Parietal 96.97 0.013756
Right Putamen — Dorsal Attention A 100 0.006324
Left Hippocampus — Somatomotor A 100 0.004929
Right Thalamus — Dorsal Attention A 96.97 0.002749
Right Nucleus Accumbens — Limbic A 96.97 0.001101
Left Nucleus Accumbens — Ventral Attention B 100 0.00095
Right Putamen — Limbic A 81.82 0.000948
Left Amygdala — Temporal Parietal 100 0.000476
Right Amygdala — Somatomotor A 100 0.000306
Left Thalamus — Temporal Parietal 100 0.000299
Left Nucleus Accumbens — Dorsal Attention B 87.88 0.000261
Right Global Pallidus — Default C 93.94 0.000183
Right Caudate Nucleus — Default C 90.91 0.000166
Right Caudate Nucleus — Control B 75.76 0.000129
Left Putamen — Dorsal Attention A 100 0.000125
Left Global Pallidus — Limbic B 100 0.000108
Left Putamen — Somatomotor B 100 7.93E-05
Left Putamen — Central Visual 96.97 6.41E-05
Right Amygdala — Limbic A 100 4.73E-05
Right Hippocampus — Default B 100 4.18E-05
Right Nucleus Accumbens — Dorsal Attention

A 100 2.96E-05
Left Caudate Nucleus — Control C 100 2.76E-05

Supplemental Table 12: Hamilton Anxiety Rating Scale (HAM-A) 25 Key Abstracted Features. List
of the key features within the best performing HAM-A subcortical model. Key features were defined as
being in 70% of LOOCV models after feature selection and the top 25 ensemble weighting. Features are
described by their region-network named pair, percent of models appeared in, and ensemble model
determined importance. Features are ranked by ensemble importance.
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Supplemental Figure 1: Feature Occurrence for KOR group during feature selection

From the peak performing HAM-D and HAM-A subcortical feature selected models (p < 0.45, p<0.65), the
occurrence of what percent of folds each feature was selected to be in during feature selection.
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Supplemental Figure 2. Feature Selection

From the peak performing Hamilton Depression Rating Scale (HAM-D) and Hamilton Anxiety Rating
Scale (HAM-A) subcortical feature selected models (p < 0.45, p<0.65), the top 25 features relevant to
each peak correlational threshold feature selected model were abstracted. Features were determined to
be most relevant by feature selection occurrence, how many folds did each feature appear in when the
correlational threshold was applied (n>70% of folds), and the abstracted feature importance generated by
the ensemble model. The cortical networks (top) represent the sum of all the subcortical voxels won by
that particular cortical network. The subcortical structures (bottom) represent the location of the voxel
regardless of their cortical network label. All plots illustrate frequency of occurrence, and are not
differentiated based on left or right hemisphere.
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