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ABSTRACT
BACKGROUND: Posttraumatic stress disorder (PTSD) is a well-characterized psychiatric disorder that features
changes in mood and arousal following traumatic events. Previous animal and human studies of social support
during the peritraumatic window have demonstrated a buffering effect with regard to acute biological and
psychological stress symptoms. Fewer studies have explored the magnitude of and mechanism through which
early posttrauma social support can reduce longitudinal PTSD severity.
METHODS: In this study, we investigated the beneficial impact of social support on longitudinal PTSD symptoms and
probed brain regions sensitive to this buffering phenomenon, such as the amygdala and ventromedial prefrontal cortex.
In the multisite AURORA study, 315 participants reported PTSD symptoms (PTSD Checklist for DSM-5) and perceived
emotional support (Patient-Reported Outcomes Measurement Information System) at 2 weeks, 8 weeks, 3 months, and
6 months post emergency department visit. Additionally, neuroimaging data were collected at 2 weeks posttrauma.
RESULTS: We hypothesized that early posttrauma social support would be linked with greater fractional anisotropic
values in white matter tracts that have known connectivity between the amygdala and prefrontal cortex and would
predict reduced neural reactivity to social threat cues in the amygdala. Interestingly, while we observed greater
fractional anisotropy in the bilateral cingulum and bilateral uncinate fasciculus as a function of early posttrauma
emotional support, we also identified greater threat reactivity in the precuneus/posterior cingulate, a component of
the default mode network.
CONCLUSIONS: Our findings suggest that the neurocircuitry underlying the response to social threat cues is facil-
itated through broader pathways that involve the posterior hub of the default mode network.

https://doi.org/10.1016/j.bpsc.2024.11.011
Posttraumatic stress disorder (PTSD) affects approximately 8%
of the general population in the United States (1,2). Various
models suggest both biological and psychological vulnerability
components to risk for PTSD (1,3). However, meta-analyses
have found that a lack of social support is at the top of the
list of predictive risk factors for PTSD, accounting for 16% of the
variance (3–5). Universal to all traumas, social isolation exacer-
bates PTSD symptom severity (6–8). In the current study, we
investigated neural mechanisms by which early posttrauma
social support may reduce longitudinal posttraumatic stress
symptoms, thereby promoting resilience and better recovery.

Social buffering is a well-documented phenomenon in which
the magnitude of an individual’s stress response is reduced by
the presence of an affiliative organism during stress exposure
Published by Elsevier Inc on behalf of Society o
CC BY-NC-

N: 2451-9022 Biological Psychiatry: Cognitive Neuroscienc
(9). This broadly applies to groups of mammals who have
evolved to develop cooperative relationships regardless of ge-
netic or familial bonds (9–11). In one study, triads of adult guinea
pigs were housed together for long enough to develop affiliative
bonds. When exposed to unfamiliar environments, participants
in the original triad had reduced cortisol relative to isolated
controls (12). Similarly, partnered rats displayed a reduction in
stress-induced hyperthermia (13), and infants paired with
mothers showed an abated response to threatening odors (14).
Across species, social buffering is crucial for environmental
learning and contextualization. Various studies have consis-
tently replicated the buffering effect in healthy human partici-
pants (15,16) across a variety of different trauma types (17).
Regardless of trauma, social support predicts a reduction in fear
f Biological Psychiatry. This is an open access article under the
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Demographic and Clinical Features of the Sample,
n = 315

Variable n (%) or Mean (SD)

Sex/Gender

Female 200 (63%)

Male 115 (37%)

Age, Years 33.63 (12.44)

Race/Ethnicity

Black American 143 (46%)

Hispanic/Latin American 54 (17%)

Other American 13 (4%)

White American 104 (33%)

Employment

Employed 199 (63%)

Retired 6 (2%)

Homemaker 10 (3%)

Student 10 (3%)

Unemployed, disabled, or other 52 (17%)

No response 38 (12%)

Total Family Income

#$19,000 73 (23%)

$19,001–$35,000 91 (29%)

$35,001–$50,000 43 (14%)

$50,001–$75,000 27 (9%)

$75,001–$100,000 19 (6%)

.$100,000 22 (7%)

No response 40 (12%)

Trauma Type

Motor vehicle collision 226 (72%)

Physical assault 35 (11%)

Sexual assault 3 (0.9%)

Fall 19 (6%)

Mass trauma incident 1 (0.3%)

Nonmotorized collision 11 (3.5%)

Poisoning 0 (0%)

Burns 1 (0.3%)

Animal-related 9 (2.8%)

Other 10 (3.2%)
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expression (6,18,19). It has been suggested that over longer
time scales, social relationships adaptively reduce fear condi-
tioning and expression (20). However, there remains a need for
more longitudinal study of posttrauma social support (21).

The neural mechanisms of the social buffering phenomenon
are seemingly driven by the amygdala, which allows an indi-
vidual to identify threats and respond appropriately (22–24). In
young pups, maternal presence predicted dampened amyg-
dala activity and increased avoidance of aversive stimuli (25).
Several neuroimaging studies have investigated these effects
in humans using social support cues (such as images of
caregivers, romantic partners) in the context of threat tasks.
These have implicated the ventromedial prefrontal cortex
(vmPFC) and its connectivity with the amygdala in the
observed buffering effects (26–29). We seek to extend this
work to the context of threat processing following real-world
traumatic events. Importantly, these could uncover brain re-
gions or pathways that are involved in PTSD pathophysiology
but also sensitive to psychosocial effects.

We investigated the neural correlates of social support and
its relationship with later symptom trajectories in the AURORA
(Advancing Understanding of Recovery After Trauma) study, a
longitudinal, multisite study that encompasses the behavioral,
cognitive, and affective facets of the posttraumatic experience
(30). We explored longitudinal changes in PTSD symptoms as
a function of individual differences in early posttrauma social
support. We hypothesized a relationship between early post-
trauma social support and decreased amygdala reactivity and
increased vmPFC responsivity to social threat cues, a pattern
that is typically seen in resilient individuals who experience
trauma but do not have high PTSD symptoms (31–33). More-
over, we hypothesized greater white matter microstructural
integrity in connections between the amygdala and vmPFC,
such as the uncinate fasciculus (UF) and cingulum bundle, in
participants who reported higher social support. Similar find-
ings have been observed in trauma-exposed participants who
did not develop PTSD (34–38).

METHODS AND MATERIALS

Participants

Participants were recruited at various emergency departments
in the United States as part of the AURORA study (30). Inclu-
sion criteria included traumatic events such as physical as-
sault, sexual assault, falls .10 feet, and motor vehicle collision
(MVC) (Table 1). Alternatively, traumatic events were qualifying
if 1) individuals reported direct exposure or being witness to
traumatic events that involved serious injury, violence, or death
and 2) exposure was validated by research assistants. Exclu-
sion criteria included administration of general anesthesia, long
bone fractures, hemorrhagic injury, solid organ injury, not alert
or oriented during enrollment, poor fluency in written or spoken
English, visual and/or auditory impairment, self-inflicted or
occupational injury, imprisonment, pregnancy, active breast-
feeding, individuals confirming ongoing domestic violence, or
active opioid use (i.e., morphine .20 mg or equivalent per
day).

Overall, data were collected from 2626 individuals from the
beginning of the study through July 2020 and released to in-
vestigators in the AURORA Freeze 3 data release. Individuals
532 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
who resided near an AURORA deep phenotyping site were
asked to participate in additional testing. A total of 436 in-
dividuals participated in focused neuroimaging assessments
during deep phenotyping 2 weeks posttrauma. Of these, 369
completed functional magnetic resonance imaging (fMRI) and
were considered for analysis in the current study. After quality
control (detailed in the Supplement), data were excluded for
head motion (n = 24), anatomical abnormalities (n = 7), technical
reasons (n = 11), and lost stimulus timing data (n = 12 fMRI).
This resulted in a final sample of 315 for analysis. Demographic
characteristics of the final sample are reported in Table 1.

Of this final sample, 23 participants were excluded from
diffusion MRI analysis due to head motion (n = 6), anatomical
abnormalities (n = 11), and for technical reasons (n = 8). Two-
week Patient-Reported Outcomes Measurement Information
System (PROMIS) emotional support data were missing for 37,
and 6-month PTSD Checklist for DSM-5 (PCL-5) data were
missing for 88 individuals.
ay 2025; 10:531–541 www.sobp.org/BPCNNI
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Assessments

Survey-based assessments were collected at week 2, week 8,
month 3, and month 6 time points posttrauma. Symptoms
were evaluated using the PCL-5, a 20-item self-report ques-
tionnaire rating the severity of posttrauma stress symptoms
from 0 (not at all) to 4 (extremely) (39). PTSD symptom severity
at the 6-month posttrauma time point was the primary
outcome variable because reduced improvement of symptom
severity within 3 to 6 months posttrauma confers a poorer
long-term prognosis (40).

To quantify social support, participants completed an abbre-
viated version of the PROMIS Emotional Support Short Form 4a
(41). The National Institute of Health’s PROMIS measures contain
a wide variety of self-reported outcome measures, and the
emotional support questions show excellent reliability (Cron-
bach’s a = 0.97) (42). The AURORA study included 3 questions
from the original 4-item scale. Participants reported how often in
the past 30 days (or 2 weeks for the 2-week posttrauma time
point) that people in their personal life listened to them when they
needed to talk, made them feel appreciated, or talked with them
on a bad day. Answers ranged from 1 (never) to 5 (very often). The
3 items were summed to form an emotional support score with a
range of 3 to 15. This modified version has also shown robust
internal reliability (Cronbach’s 2-week a = 0.88, Cronbach’s 6-
month a = 0.92). Additional information on participant de-
mographics (such as sex/gender assigned at birth, ethnicity/racial
identity, and traumatic event type and severity) were collected
(outlined in Table 1). Trauma severity was assessed by partici-
pants’ self-reported subjective perception of fatality regarding
their traumatic event. This was scaled from 1 to 10, with 0 corre-
sponding with “life was not threatened at all” and 10 with “came
close to being killed or easily could have been killed.”

Neuroimaging Acquisition

Images were collected at 5 sites, each of which used a 3T
Siemens scanner. Acquisition parameters are listed by site in
Table 2. fMRI was completed using blood oxygen level–
dependent during cognitive tasks (task-based fMRI). Identical
blood oxygen level–dependent fMRI scan parameters were
used for acquisition of both resting-state and task data,
although the time for each scan varied (see Table 1). Stimuli
were presented using E-Prime 2.0 software (Psychology
Software Tools). The neural processing of social threat cues
was assessed using a fearful faces task. This task has been
used in several studies of PTSD and has consistently
demonstrated greater activation of the amygdala to fearful than
to neutral faces (32,43–45). Blocks of fearful and neutral stimuli
were sequentially presented, with the order of fearful and
neutral blocks being counterbalanced across participants (15
blocks each). In each block, 8 faces (4 male, 4 female) were
presented for 500 ms each, with a 500-ms fixation cross pre-
sented after each face. Every 10th block, participants received
a 10,000-ms fixation cross as a “rest period” and were
instructed to “relax and look at the screen.” Diffusion-weighted
imaging was completed to assess microstructural properties of
brain white matter, which has previously been associated with
several posttraumatic outcomes. For each participant, a 64-
direction diffusion-weighted imaging sequence was used
with a 2-mm isotropic resolution (but see Table 2 to note one
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging May 2025; 10:531–541 www.sobp.org/BPCNNI 533
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Figure 1. Scatterplot demonstrating negative correlation between early
emotional support and 6-month posttraumatic stress disorder symptoms.
PCL-5, PTSD Checklist for DSM-5.
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site with nonisotropic dimensions), and diffusion-weighted
images were collected at b = 1000. In addition, 7 non-
weighted diffusion images were collected.

Neuroimaging Data Analysis

Quality control and preprocessing steps are elaborated on in the
Supplement. We conducted a first-level general linear model
analysis fitted for individual participants’ neuroimaging data. The
fearful faces task was modeled as an 8-second block of either
fearful or neutral stimuli, convolved with the canonical hemody-
namic response curve. Mean contrast values were extracted for
the comparison of fearful versus neutral conditions from regions
of interest (ROIs) reflecting anatomical boundaries of regions
previously implicated in emotional arousal and PTSD
(31,33,46–49). These included the left and right amygdala (CIT168
atlas), left and right hippocampus (Hammers atlas), left and right
insula (Harvard/Oxford cortical atlas), and bilateral Brodmann
areas 32 (dorsal anterior cingulate cortex [ACC]) and 25 (sub-
genual ACC) (WFU PickAtlas) (50–53). To explore regions outside
of the a priori ROIs, we employed a voxelwise, whole-brain,
random-effects analysis with a term for 2-week emotional sup-
port, as well as covarying for site of neuroimaging data collection.
A second whole-brain model assessed the association with 6-
month PTSD symptom scores while covarying for site of neuro-
imaging data collection. Whole-brain statistical thresholds were
established using the built-in SPM cluster correction feature to
account for multiple comparisons (54), following random field
theory (55,56). A cluster size threshold of 346 voxels was needed
to reach a familywise error–corrected p , .05 under an initial
cluster-forming threshold of p , .005. Mean contrast estimates
for threat reactivity (fearful . neutral) within significant clusters
were extracted using the REX (ROI extraction) toolbox (57) for
visualization and follow-up testing.

Diffusion-weighted imaging data were processed similarly to
previous methods to remove artifacts and maintain data quality.
A substantial body of evidence has shown over-reactivity of the
amygdala in PTSD and other comorbid disorders (58), directing
our focus to tracts with relevant ties to this region. We used
tract-based spatial statistics to extract the mean fractional
anisotropy (FA) value for the bilateral (mean of left and right)
cingulate part of the cingulum bundle (CGC), bilateral hippo-
campal part of the cingulum bundle, and bilateral UF (59,60).

Statistical Analyses

Statistical analyses were run on R version 4.2.0 and RStudio
software platforms. All primary hypothesis-testing models
controlled for participant sex/gender (designated on birth
certificate) and self-reported ethnic/racial identity, age, and
trauma severity. A strong body of evidence demonstrates that
sex/gender and racial/ethnic identity are contributing factors to
worse PTSD outcomes (61–64). All models were then repeated
without these covariates to provide a reference comparison
and minimize potential confounding effects of these variables.
Neuroimaging models also included a covariate for the site of
data collection.

To investigate the relationship between social buffering and
PTSD symptoms, we used a linear regression model assessing
the effect of 2-week PROMIS emotional support scores on
PCL-5 scores at the 6-month time point. Follow-up testing
534 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
assessed whether there was also an effect of 2-week
emotional support on concurrent PTSD symptoms. Subgroup
analyses stratifying MVC and non-MVC trauma types were
conducted to provide additional context (Table S1A, B).

Then, we investigated areas of the brain that may be pref-
erentially engaged in processing social threat cues and are
also receptive to emotional support. We hypothesized that
participants who reported higher levels of early posttrauma
emotional support would demonstrate reduced activation of
brain regions that support emotional arousal responses. To
test this, we conducted regression models assessing the ef-
fects of 2-week emotional support on reactivity to fearful faces
within the amygdala, hippocampus, insula, dorsal ACC, and
subgenual ACC ROIs, with correction for multiple comparisons
using the Benjamini-Hochberg false discovery rate (FDR). For
brain regions that exhibited a significant association with early
emotional support, we conducted planned follow-up analyses
to explore their relationship with 6-month PTSD symptoms.

Then, we tested the hypothesis that early emotional support
would be positively related to FA of the UF, CGC, and bilateral
hippocampal part of the cingulum bundle. Linear regression
models evaluated the relationship between 2-week emotional
support and FA values in tracts of interest. Additional analyses
were then used to examine the impact of 6-month PTSD
symptom severity on tracts that exhibited a significant asso-
ciation with early emotional support. Multiple comparisons
were corrected using the Benjamini-Hochberg FDR.

Finally, mediation analyses were used to characterize
whether brain ROIs/tracts of interest mediated the effects of 2-
week social support on 6-month PTSD symptoms.

RESULTS

Greater early posttrauma emotional support predicted lower
PTSD symptoms at the 6-month time point (Figure 1 and
Table 3). The effect size was similar but not significant in a
model without covariates (b208 = 20.120, p = .061). Emotional
ay 2025; 10:531–541 www.sobp.org/BPCNNI
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Table 3. Effect of 2-Week Emotional Support on 6-Month
Posttraumatic Stress Disorder Symptom Severity

b SE t p

2-Week PROMIS Scores 20.129 0.063 22.040 .042

Sex/Gender 0.137 0.066 2.079 .039

Ethnic/Racial Identity 20.047 0.070 20.673 .502

Trauma Severity 0.050 0.065 0.769 .443

Age 0.123 0.064 1.922 .056

PROMIS, Patient-Reported Outcomes Measurement Information System.
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support scores also demonstrated a negative association with
2-week PTSD symptoms (b261 = 20.155, p = .008). Analyses
stratified by trauma type showed the buffering effect for MVCs
(n = 197), but not for the other trauma types (n = 80)
(Table S1A, B).

Effect of Emotional Support on fMRI Reactivity to
Social Threat Cues

Then, we evaluated the association between early posttrauma
emotional support and neural responses to social threat cues.
In the total sample, the task engaged significant bilateral
amygdala responses to fearful . neutral faces (familywise
error–corrected p , .05) (Figure S1). However, there were no
significant associations between emotional support and acti-
vation in any of the ROIs, pFDR . .05, in models conducted
with or without covariates (Table S2A, B). Whole-brain ana-
lyses showed a positive correlation between early posttrauma
emotional support and the response to fearful . neutral face
stimuli in a large cluster within the bilateral posterior cingulate
cortex (PCC) (x, y, z = 24, 232, 34, Z = 3.88, k = 346)
(Figure 2). Then, we extracted the fearful . neutral contrast
estimate from this cluster to test whether PCC activation was
also related to risk for later PTSD symptoms. However, PCC
activation was not associated with 6-month PCL-5 scores
(b208 = 1.465, p = .743).
Figure 2. (A) Midsagittal brain reconstruction showing bilateral activation of p
support (highlighted and gradated with heat map overlay). (B) Correlation plot be
emotional support scores. The trend line demonstrates a positive association b
mation System (PROMIS) scores.

Biological Psychiatry: Cognitive Neuroscience and N
Effect of Emotional Support on White Matter
Microstructural Integrity in Threat-Relevant Tracts

Effects of 2-week emotional support on diffusion MRI tracts of
interest are reported in Table 4 (with covariates) and Table S3
(without covariates). Emotional support was positively corre-
lated with FA of the CGC (Figure 3) and UF, but not the bilateral
hippocampal part of the cingulum bundle. CGC FA was also
negatively associated with later PTSD symptom severity at 6
months posttrauma (b207 = 20.149, p = .027), whereas UF FA
was not (b207 =20.038, p = .587). Mediation analysis with CGC
FA showed a reduction in the effect of early posttrauma
emotional support on later PTSD symptom severity (Figure 4),
but the magnitude of the mediation effect was not statistically
significant (Sobel Z = 21.452, p = .146).
DISCUSSION

In the current study, we examined relationships between social
support and longitudinal posttraumatic stress. Our findings are
consistent with those of previous studies that demonstrated
that early posttrauma support significantly mitigated long-term
PTSD severity. When we stratified our models by trauma type,
we found that this effect was present only in our MVC trauma
group, which comprises much of our study population. This
was not observed in the non-MVC group, suggesting that
additional studies of social support focusing on other trauma
types are necessary to improve the generalizability of this ef-
fect. The neuroimaging findings did not fully support the hy-
pothesis that social support would influence the amygdala,
vmPFC, and white matter pathways between these regions.
Instead, early posttrauma social support was linked to a
greater PCC response to social threat cues and greater FA
(associated with white matter microstructural integrity) in both
the UF and CGC, with the latter showing effects on later PTSD
symptom severity. Together, the findings suggest that mech-
anisms of social buffering effects on PTSD symptoms may be
more complex than was previously understood.
osterior cingulate cortex (PCC) in conjunction with early 2-week emotional
tween average contrast values for the PCC cluster as a function of 2-week
etween PCC and 2-week Patient-Reported Outcomes Measurement Infor-
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Table 4. Effect of 2-Week Emotional Support on A Priori
White Matter Tractsa

b SE t p pFDR
Bilateral Cingulum—Cingulate
Gyrus

0.156 0.060 2.587 .010 .010

Bilateral Cingulum—Hippocampus 20.014 0.062 20.231 .817 .817

Bilateral Uncinate Fasciculus 0.159 0.061 2.601 .010 .010

FDR, false discovery rate.
aCovariates included sex/gender, ethnic/racial identity, trauma severity, age,

and neuroimaging site.
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Early and sustained support is critical throughout the
duration of trauma recovery, with some studies showing po-
tential positive physiological impacts in patients who are
recovering from chronic disease and major trauma (65–68).
Many studies of social buffering have focused on the reduction
of activity within the hypothalamic-pituitary-adrenal axis and
have specifically shown lower glucocorticoid levels in
response to a variety of stressors (15,69,70). Conversely, the
absence of psychosocial support has been shown to indicate
abnormal emotion regulation, thereby increasing risk for worse
mental health outcomes (18,71–73).

The interplay between fear regulation, memory, and emotion
processing is key to understanding trauma resilience (74,75).
Threat processing clearly depends on synaptic connections
between the PFC and amygdala (23,24). Seemingly, the
ventromedial portion targets the central nucleus of the amyg-
dala to inhibit fear, and the dorsomedial region synapses on
the basolateral amygdala to promote fear. Thus, prefrontal
inputs to the amygdala theoretically allow for sensitivity to
emotional support and the social buffering phenomenon
(76,77). However, in our analyses, we did not find any changes
in activity within the amygdala or evidence suggesting that
social support improved engagement of prefrontal regions.
However, this is not entirely unexpected. The experimental
paradigm of social buffering in previous literature reflects an
extremely controlled application of stress to a participant in the
presence of a conspecific. It may be that different brain regions
mediate the social buffering effect in humans versus rodents or
Figure 3. (A) Visual schematic highlighting the bilateral cingulum (regions hig
Genetics through Meta Analysis] diffusion tensor imaging skeleton in green). (B) P
early emotional support scores. CGC, cingulate part of the cingulum bundle; FA
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alternatively that there are different regions involved for
controlled laboratory stressors versus real-world traumatic
events. Human studies have shown that having a conspecific
present while being presented with threat cues and imaged in a
controlled environment was associated with dampened activity
in the amygdala, along with various other cortical regions
(77–79). With our study, we aimed to expand on this literature
by analyzing real-world traumatic events rather than laboratory
stress or threat paradigms and observing the dynamics of
stress on a longer longitudinal scale than earlier models. The
fact that we did not observe effects on amygdala reactivity to
threat suggests that canonical threat regulation circuitry may
be impacted most strongly by direct social influences such as
the presence of a close other during a laboratory stress task
and may be less relevant to the persistent effects of social
support in the context of real-world traumatic stress. More
exploration is needed to understand the time frame with which
social support may influence threat processing and amygdala
reactivity.

We did find a positive association between early posttrauma
social support and FA in the UF at 2 weeks posttrauma, and
this association remained significant after FDR correction. This
tract ipsilaterally bridges the orbitofrontal cortex and vmPFC
with the anterior temporal lobes and amygdala (80). Degrada-
tion of this tract has been implicated in abnormal emotion
regulation (81), which when combined with deficiencies in
episodic memory contextualization (82,83), may lead to
improper behavioral responses to benign environmental stim-
uli. Although we did not find an association between the UF
and later PTSD symptom severity, dysfunctional connectivity
within the UF has been shown to predict reduced regulation of
amygdala reactivity by the vmPFC and higher risk for chronic
PTSD (34,36,84,85). Whether the robust social support pro-
vided before trauma as opposed to early after trauma affected
UF integrity remains to be seen, because the current study did
not include the pretrauma neuroimaging that would be
necessary to distinguish between these two possibilities.
However, given that FA is likely to be relatively stable across
the short time frame of 2 weeks between trauma exposure and
our neuroimaging observations, we speculate that the FA
hlighted in red and blue, overlaid on ENIGMA [Enhancing Neuro Imaging
lot showing positive correlation between diffusion tensor imaging values and
, fractional anisotropy.
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Figure 4. Statistical summary of effect of bilateral
cingulum on longitudinal posttraumatic stress dis-
order (PTSD) scores as a function of early 2-week
emotional support.
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findings likely reflect pretrauma protective effects of high social
support and corresponding high FA of the UF.

In whole-brain fMRI analyses, we recorded significant
positive correlations between early posttrauma social support
and engagement of the PCC to threat cues. Our findings
suggest a complex relationship between threat processing and
the default mode network (DMN) (86). The PCC serves as the
posterior hub of the DMN, which is responsible for internal and
self-referential cognition (87,88) and modulating behavioral
responses to various stressful situations (89). Numerous im-
aging studies with patients with PTSD have shown disrupted
connectivity of the PCC with the frontal gyrus, subgenual ACC,
and thalamus, among others (90–93). The DMN generally
shows reduced connectivity in PTSD but has spared connec-
tions in posterior regions of the network (91,94,95). While some
neuroimaging PTSD studies have highlighted a reduction in
activity within the posteromedial area of the parietal lobe (96),
Sippel et al. (97) recently observed hyperactivity in this region
in individuals with PTSD who had poor social networks. Pos-
terior DMN connectivity may contribute to altered social
cognition in individuals at risk for PTSD. Several recent studies
of social buffering effects in healthy adults point to an
extended network of regions whose functioning mediates
buffering effects, with notable buffering effects on the
response to threat cues in the PCC and precuneus (98–100).
This raises the possibility that the PCC, and the posterior DMN
more broadly, may be critical facilitators of social buffering
effects. This may be most apparent either in the context of
trauma recovery or potentially in adults given that much of the
social buffering literature points to primary effects within the
amygdala during childhood. For example, buffering effects of
parental cues on the amygdala response are most pronounced
before age 10 and are less apparent by the transition to
adolescence (100). It may be that adults with more robust
social support can engage regions of the DMN to better
contextualize social threat cues and provide an adequately
measured stress response.

While we did not observe a significant mediating effect of the
CGC on PTSD symptoms, this tract was positively correlated
with early emotional support. The CGC connects the posterior
(PCC/precuneus) and anterior (medial prefrontal) components
of the DMN (101–104). Patients with PTSD demonstrate
reduced FA of the cingulum bundle with greater PTSD symptom
severity (38,102,105–107). Perhaps individuals with high social
support engage the PCC in response to threat cues, and signals
are conducted through white matter tract connections in the
cingulum bundle. This may lead to altered communication with
the anterior prefrontal DMN and additional downstream re-
gions, which remains to be explored in the future.
Biological Psychiatry: Cognitive Neuroscience and N
Following Hornstein and Eisenberger’s theoretical model of
social cues as “prepared safety stimuli” (27), we conjecture
that social support cues actively inhibit conditioned fear,
including learned responses to trauma reminders in the case of
real-world traumatic stress. One potential neurobiological
mechanism may be through a release of oxytocin stimulated
by social support cues, which contribute to a reduction of
anxiety in stressful situations (15). Preliminary studies have
demonstrated the role of oxytocin in modulating social net-
works including the dorsal DMN and inhibiting stress re-
sponses in the amygdala and ACC (108). Alternatively, social
buffering has been shown to dampen hypothalamic-pituitary-
adrenal axis activity with a direct reduction of cortisol release
and correlation with lower levels of proinflammatory cytokines
(11,15,109,110).

Limitations

Key aspects of this study put limits on its interpretation and
generalizability. Notably, the measure of social support was
limited by the brief self-report measures used in the AURORA
study. The complexity of social networks and varied forms of
social support were not fully quantified here. To maximize the
generalizability of future studies, qualitative measures should
account for aspects of support that may vary based on so-
cioeconomic, cultural, physical, and other needs. Furthermore,
it is important to consider how different phenotypes of PTSD
respond to social support–focused interventions. Perhaps
PTSD with primary disruptions in social cognition (criteria D) or
arousal (criteria E) will prove to be more sensitive to social
buffering.

Conclusions and Future Directions

Importantly, our results suggest that early posttrauma social
support has benefits for the longitudinal reduction of self-
reported PTSD symptoms. However, the consistency of
emotional support throughout recovery may prove more
important for patient outcomes than the magnitude of support
at the time of trauma. Additionally, future work should consider
a more reciprocal relationship in which the evolution of PTSD
symptoms may increase social isolation or encourage
strengthened supportive networks.

Future neuroimaging research in this field should probe
working mechanisms on higher-resolution, temporal changes
posttrauma, from cortical activity to white matter tract micro-
structure. It would also be interesting to observe outcomes in
randomized trials where positive social behaviors are recom-
mended in a managed plan for posttrauma recovery, including
the PCC as a hypothesized target and mediator of treatment
effects. This would augment the functional characterization of
euroimaging May 2025; 10:531–541 www.sobp.org/BPCNNI 537
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these regions, but more importantly, it would provide the field
with a novel foundation to refine the definition of posttraumatic
stress as being dependent on the social context.
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Supplemental Materials 

Methods 

T1-weighted anatomical imaging 

High resolution anatomical imaging data was collected from T1-weighted structural scans 

to assess morphology of brain regions that may be predictive of posttraumatic outcomes and 

allow longitudinal assessment of brain structure over time. Anatomical images were collected 

using a multi-echo magnetization prepared rapid acquisition gradient echo (ME-MPRAGE). ME-

MPRAGE images were collected with consistent parameters across imaging sites at a 1mm 

isotropic resolution. However, one imaging site was not able to use the SIEMENS ME-MPRAGE 

sequence and conducted a standard 1mm isotropic MPRAGE sequence instead.  

Image Visualization 

DICOM images were converted to NIFTI format with Brain Imaging Data Structure (BIDS) 

nomenclature using dcm2niix (1) and were visually inspected for conversion errors and data 

exclusion criteria (e.g., signal drop-out from Falx calcification, anatomical abnormalities). Further 

quality control was achieved by running the MRIQC pipeline (version 0.10.4 in a Docker container) 

(2) on the structural and functional images. 

Functional data preprocessing and statistical modeling 

Results included in this manuscript come from preprocessing performed using fMRIPrep 1.2.2 

((3); (4); RRID:SCR_016216), which is based on Nipype 1.1.5 ((5); (6); RRID:SCR_002502). To 

maintain consistency in preprocessing throughout the duration of data collection, FMRIPrep was 

run in a Docker container retaining the version that was newest at the initiation of the study. 

For each of the 4 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. The BOLD reference was then co-registered 

to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
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registration (7). Co-registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. Head-motion parameters with respect to the BOLD 

reference (transformation matrices, and six corresponding rotation and translation parameters) 

are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, (8)). BOLD runs were 

slice-time corrected using 3dTshift from AFNI 20160207 ((9), RRID:SCR_005927). The BOLD 

time-series (including slice-timing correction) were resampled onto their original, native space by 

applying a single, composite transform to correct for head-motion and susceptibility distortions. 

These resampled BOLD time-series will be referred to as ‘preprocessed BOLD in original space’, 

or just ‘preprocessed BOLD.’ First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Automatic removal of motion artifacts using 

independent component analysis (ICA-AROMA, (10)) was performed on the preprocessed BOLD 

on MNI space time-series after removal of non-steady state volumes and spatial smoothing with 

an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding "non-

aggressively" denoised runs were produced after such smoothing. To deal with cases in which 

motion was likely too high for effective ICA-based correction, we also implemented an overall 

motion threshold was set such that data from a particular task (Threat, Inhibition, Reward, Resting 

State) were excluded from analysis entirely for any participant with more than 15% of volumes 

exceeding 1mm FD.  

Additionally, the "aggressive" noise-regressors were collected and placed in the corresponding 

confounds file. Although not used in our current analyses, these regressors and corresponding 

non-denoised and unsmoothed images are available for alternative analyses in the future. These 

noise regressors were generated as follows: The BOLD time-series were resampled to 

MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Several confounding time-series were 
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calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS and three 

region-wise global signals. FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following definitions by Powers et al. 2012 (11)). The three global 

signals are extracted within the CSF, the WM, and the whole-brain masks. 

The BOLD time-series were resampled to surfaces on the following spaces: fsaverage5. All 

resamplings can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and template spaces). Gridded (volumetric) 

resampling was performed using antsApplyTransforms (ANTs), configured with Lanczos 

interpolation to minimize the smoothing effects of other kernels (12). Non-gridded (surface) 

resampling was performed using `mri_vol2surf`(FreeSurfer). Many internal operations of 

fMRIPrep use Nilearn 0.4.2 ((13), RRID:SCR_001362), mostly within the functional processing 

workflow. 

Through statistical parametric mapping software (SPM12), a first-level general linear model was 

fitted for individual subjects’ neuroimaging data.  

Diffusion-weighted imaging preprocessing and statistical modeling 

DWI data were processed similarly to prior published methods. The non-weighted DWI volumes 

were motion corrected and averaged to serve as a reference for further processing. Motion and 

eddy current effects in the DWI data were reduced using the ‘eddy’ subroutine in FSL (version 

6.0) to match the diffusion weighted volumes to the average non-weighted volume ((14); (15)). 

Susceptibility effects were corrected for using nonlinear warping of the DWI data to the 

participant’s T1-weighted anatomical scan (16). T1-weighted images were skull-stripped using 

the Robust Brain Extraction (ROBEX) tool (17) and were then contrast inverted to match the 

averaged non-weighted volume. Nonlinear warping was completed through the Symmetric 

Normalization (SyN) routine in the Advanced Normalization Tools (ANTs) suite (18). SyN was first 
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used to warp the averaged non-weighted volume to the anatomical image, and the resulting warp 

parameters were applied to the full DWI data. DWI data were then downsampled to a 2mm 

isotropic grid-spacing and fit with a tensor model (FMRIB Diffusion Toolbox). Tract-Based Spatial 

Statistics (TBSS) processing was used as implemented in the ENIGMA-DTI working group 

processing standards to extract FA values across white matter regions (19, 20). First, FA maps 

were non-linearly registered to the standard ENIGMA FA map in Montreal Neurological Institute 

(MNI) standard space (19). The ENIGMA FA skeleton map was then projected onto each subjects 

FA maps in standard space. Finally, regional FA values were extracted from the JHU White matter 

atlas and used in group level analyses (21-23). 

DWI data were subject to several levels of quality control. Raw DWI data were initially visually 

inspected for artefacts that diminish data quality (e.g., slice-wise signal loss, movement artefacts, 

ghosting, etc.). Further, image quality metrics are extracted for the raw data to provide a numeric 

metric of potential diminishments of data quality and to assess the potential impact of artefacts 

observed during visual inspection utilizing prior published methods and freely available scripts. 

Additional quality control metrics were extracted using the QUAD subroutine in FSL following 

motion and eddy current correction to derive metrics of participant motion, eddy current distortion, 

and other quality metrics. We further performed visual quality control of the processed DTI and 

TBSS data using the quality control procedures outlined by the ENIGMA-DTI working group. 

Visual inspection was performed following tensor fitting to confirm the FA and principal 

eigenvector maps were correctly aligned. Visual inspection was also performed to confirm proper 

alignment between ENIGMA white matter skeleton and individual participant FA maps with 

calculation of distance metrics of the projection to ensure goodness of fit.  
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Supplemental Tables and Figures  

 

Table S1a: Effect of 2-Week emotional support on 6-Month PTSD symptom 
severity (MVC only, n=197)* 

 Beta SE t p 

     
2 Week PROMIS Scores -0.162 0.077 -2.110 0.037 

Sex/Gender (assigned at birth) 0.204 0.079 2.577 0.011 

Ethnic/Racial Identity -0.040 0.081 -0.492 0.624 

Trauma Severity 0.041 0.081 0.513 0.609 

Neuroimaging Site 0.018 0.077 0.239 0.812 

Age 0.067 0.077 0.873 0.384 

*Covariates included sex, ethnic/racial identity, trauma severity, age and site  
 

 

Table S1b: Effect of 2-Week emotional support on 6-Month PTSD symptom 
severity (Non-MVC only, n=80) 

 Beta SE t p 

     
2 Week PROMIS Scores -0.051 0.116 -0.436 0.665 

Sex/Gender (assigned at birth) -0.056 0.124 -0.453 0.653 

Ethnic/Racial Identity 0.054 0.146 0.372 0.712 

Trauma Severity 0.041 0.119 0.346 0.731 

Neuroimaging Site -0.084 0.136 -0.618 0.539 

Age 0.277 0.123 2.248 0.029 

 

  



  
 

7 

Table S2a: Effects of 2-week emotional support on threat reactivity (Fearful>Neutral) in a 
priori ROIs*  
 Beta SE t p -

values 
  FDR 

corrected 
p-value 

 

Left Amygdala -0.009 0.059 -0.145 0.885   0.885  

Right Amygdala -0.021 0.058 -0.360 0.719   0.885  

Left Hippocampus 0.015 0.058 0.264 0.792   0.885  

Right Hippocampus 0.059 0.059 1.009 0.314   0.885  

Left Insula -0.010 0.059 -0.164 0.869   0.885  

Right Insula 0.022 0.059 0.368 0.713   0.885  

Brodmann's Area 32 0.029 0.060 0.490 0.624    0.885  

Brodmann's Area 25 0.097 0.060 1.631 0.104   0.832  

*Covariates included sex, ethnic/racial identity, trauma severity, age and site  
 
 
 
Table S2b: Effects of 2-week emotional support on threat reactivity (Fearful>Neutral) in a 
priori ROIs, without covariates* 
 Beta SE t p -

values 
  FDR 

corrected 
p-value 

 

Left Amygdala -1.64E-05 0.003 -0.005 0.996   0.996  

Right Amygdala -0.001 0.003 -0.337 0.736   0.993  

Left Hippocampus 0.001 0.003 0.326 0.745   0.993  

Right Hippocampus 0.003 0.003 1.031 0.303   0.993  

Left Insula 0.0002 0.003 0.051 0.959   0.996  

Right Insula 0.002 0.004 0.478 0.633   0.993  

Brodmann's Area 32 0.002 0.003 0.613 0.541    0.993  

Brodmann's Area 25 0.005 0.003 1.572 0.117   0.936  
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Table S3: Effect of 2-week emotional support on a priori white matter tracts, 
without covariates  

 

  Beta SE t p-values 
FDR 

correct
ed p-
value 

      

2-Week Emotional Support      

Bilateral Cingulum (Cingulate Gyrus) 0.148 0.063 2.356 0.019 0.019 

Bilateral Cingulum (Hippocampus) -0.022 0.062 -0.347 0.729 0.729 

Bilateral Uncinate Fasciculus 0.156 0.063 2.466 0.014 0.014 

 

 

 

Figure S1 – Brain regions engaged in response to social threat cues: Fearful > Neutral contrast 
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