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Abstract: Perseverative cognition (PC) is a transdiagnostic risk factor that characterizes both hypo-
motivational (e.g., depression) and hyper-motivational (e.g., addiction) disorders; however, it has
been almost exclusively studied within the context of the negative valence systems. The present study
aimed to fill this gap by combining laboratory-based, computational and ecological assessments.
Healthy individuals performed the Probabilistic Reward Task (PRT) before and after the induction
of PC or a waiting period. Computational modeling was applied to dissociate the effects of PC on
reward sensitivity and learning rate. Afterwards, participants underwent a one-week ecological
momentary assessment of daily PC occurrence, as well as anticipatory and consummatory reward-
related behavior. Induction of PC led to increased response bias on the PRT compared to waiting,
likely due to an increase in learning rate but not in reward sensitivity, as suggested by computational
modeling. In daily-life, PC increased the discrepancy between expected and obtained rewards (i.e.,
prediction error). Current converging experimental and ecological evidence suggests that PC is
associated with abnormalities in the functionality of positive valence systems. Given the role of PC
in the prediction, maintenance, and recurrence of psychopathology, it would be clinically valuable to
extend research on this topic beyond the negative valence systems.

Keywords: perseverative cognition; positive valence systems; RDoC; probabilistic reward task;
ecological momentary assessment; reward prediction error, transdiagnostic psychiatry

1. Introduction

A transdiagnostic approach in psychiatry promises to overcome the limits of cate-
gorial diagnostic classification systems of mental illness and to improve clinical care and
treatment [1]. Perseverative cognition (PC [2]) is a form of cognition characterized by
repetitive, intrusive and generally negative (e.g., worrisome and ruminative) thoughts, and
it is now recognized as a transdiagnostic factor for the onset, maintenance and recurrence
of psychiatric disorders [3]. Different forms of PC are common across distinct neuropsy-
chiatric disorders, including depression and anxiety disorders [4], post-traumatic stress
disorder [5], eating disorders [6], and substance abuse disorders [7].

Despite significant efforts to understand PC both at a psychological and biological
level in individuals with and without a psychiatric condition, the mechanisms by which
PC contributes to the onset and maintenance of psychopathology remain unclear. A partial
explanation stems from the fact that the pathophysiology of PC has been investigated using
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a specific-disorder approach (e.g., PC in depression [8]), instead of approaching it as a
dimensional and transdiagnostic construct.

The Research Domain Criteria (RDoC), a National Institute of Mental Health proposal
linking genetic, neuroscience and behavioral science constructs relevant to psychopathol-
ogy [9], is a useful tool to create a cohesive mechanistic understanding of PC. In terms of
RDoC, worry and rumination are referred to in the functionality of the negative valence sys-
tems domain. Endorsing, recent physiological, neuroimaging, behavioral and clinical data
have supported an overlap between PC and several measures of the loss construct [10–13].
However, as previously noted, PC is also present in disorders such as substance use or
in the manic phase of bipolar disorder [14,15], pointing to a potential gap in understand-
ing the effect of PC on the positive valence systems domain. Indeed, endorsing a recent
proposal for innovation within RDoC to include “cross-construct patterns of dimensional
measurements both across and within different RDoC domains to specify agnostic and
possibly transdiagnostic subtypes of psychiatric illnesses” (page 308, [16]), it would be
important to assess PC-inducing effects on the positive valence systems. In general, the
positive valence systems domain involves the regulation of behaviors that result in reward
achievement, such as reward responsiveness and learning.

A well-validated task to measure reward responsiveness and reward learning included
in the RDoC matrix is the Probabilistic Reward Task [17], which provides an objective
assessment of the ability to modulate behavior as a function of prior reinforcement. The
PRT has been used across laboratories to provide evidence for acute stress-related blunting
of reward responsiveness and reward learning. For example, in early studies, threat
of shock—but not negative performance feedback—was found to reduce the ability to
modulate behavior as a function of past reward in non-pathological individuals [18,19].
Given that PC has been conceptualized as a prolonged cognitive and physiological stress
response (see [20] for a meta-analysis), one would expect to observe impaired (i.e., blunted)
reward responsiveness and reward learning during episodes of PC.

Existing studies on this issue are sparse and limited by the focus on PC as a trait,
assessed by retrospective self-report questionnaires. Keeping in mind these limitations, it
is noteworthy that such studies all present a somewhat opposite picture. For example, in
a study examining the dispositional tendency to ruminate, positive associations between
scores on the Rumination Response Scale [21] and the following were reported: (i) activation
of the ventral striatum in response to rewards; and (ii) a ruminative-dependent resting
state increased functional connectivity in the cortico-striatal circuits [22]. In an earlier
study, the induction of rumination—as opposed to distraction—similarly led to greater
sensitivity to reward probabilities, assessed with the Probabilistic Selection Task [23], in
a a group of individuals with depression and controls [24]. It should be noted, however,
that, in the study by Erdman et al. [22], rumination was not experimentally manipulated,
thus precluding any causal inference on the effects of PC on the neural responses to
rewards. Similarly, in the study by Whitmer et al. [24], the induction exclusively focused on
depressive rumination, rather than on the transdiagnostic construct of PC, and the between-
subjects study design did not allow any inferences about the pre- to post-manipulation
changes to be made.

The current study sought to investigate the effects of PC on positive valence systems
functionality, overcoming the two aforementioned limitations of previous studies. Toward
this aim, an experimental study was conducted to investigate the effects of a PC manipu-
lation on behavioral markers of reward responsiveness and reward learning in a sample
of psychiatrically healthy individuals. Given the limited generalizability of experimental
settings when studying motivational processes and spontaneous phenomenon such as PC,
our second goal was to investigate the ability to respond to and learn from rewards during
episodes of daily-life PC.

To this end, using a mixed design, we first used a well-replicated induction of PC (for
a review, see [25]), which was administered between two PRT assessments in a sample of
healthy individuals. Participants were selected to be normally distributed on their levels
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of dispositional tendency to engage in PC, based on the Perseverative Thinking Question-
naire (PTQ [26]), which provides a measure of transdiagnostic and content-independent
processes underpinning PC. To parse the contribution of learning rate (operationalized
as participants’ ability to accumulate rewards over time and learn from the reward) and
reward sensitivity (operationalized as consummatory pleasure or the immediate behavioral
impact of rewards) on PRT performance, a computational model of trial-level performance
was also implemented. Then, we adapted a recently developed ecological momentary as-
sessment (EMA [27]), specifically hypothesized to capture a daily-life motivational system
functionality [28], to study the association between PC and reward processing in everyday
life in the same group of participants over a week.

Based on the previously reported effects of stress induction on reward-related behavior,
we hypothesized that state PC would impair reward responsiveness, as manifested in both
the experimental (i.e., impaired performance on the PRT) and the ecological (i.e., reduced
momentary reward anticipation and pleasantness) paradigms.

2. Materials and Methods
2.1. Participants

Participants were recruited at undergraduate psychology degree courses, and through
word of mouth. They were invited to participate in a study on “attentional processes, mood
and response to rewards”, and were told that they could win up to 30 euros during the
experiment. Participants were enrolled after providing a written informed consent to a
protocol approved by the Institutional Review board of the Department of Psychology
(Ref. N. 740/2020). Exclusionary criteria were history or presence of serious medical or
psychiatric conditions and use of drugs/medications.

An a priori power analysis was performed with G Power 3 [29] based on the effect size
found in previous studies for one of the variables of interest (∆Response Bias). With power
of 1 − β > 0.90 and a significance value of p < 0.05, the power analysis revealed that, in a
mixed-design with the between-subject factor Group and the within-subject factor Time, an
adequate number of participants would be n = 29 per group. In total, 55 healthy participants
met eligibility criteria during recruitment. Among them, six participants were excluded
from PRT analyses because they did not complete the task post- manipulation. Among the
remaining 49, three participants did not pass the quality control check on PRT performance,
which was performed blind to group assignment using predefined cut-off scores (see
Supplementary Materials). Thus, for the experimental component of the study, data from
46 participants were available for the analysis (35 women, 11 men; 22.96 ± 5.33 years). With
regards to the Ecological Momentary Assessment (EMA) component of the study, exclusion
criteria were defined as follows: participants should have provided valid observations:
(1) for more than a day; and (2) higher than the 20% of the total e-mailed “beeps”. Three
participants were dropped from these analyses because they did not fulfill both inclusion
criteria. Accordingly, the final sample for the EMA study comprised 52 participants
(39 women and 13 men).

2.2. Procedure

The study was entirely implemented online, due to the SARS-CoV-2 pandemic. First,
participants received the written informed consent, and, once signed, a series of dispo-
sitional questionnaires via the survey software Qualtrics (https://www.qualtrics.com
accessed on 29 April 2021). Participants were semi-randomly assigned to the experimental
or control groups based on their scores on the PTQ: specifically, PTQ scores were balanced
both within and across groups with the same number of participants belonging to each
tertile in each group. After filling out the questionnaires, participants were invited to per-
form an online attention task and an appointment was scheduled. The Millisecond version
of the PRT was adapted following the authors’ guidelines and administered via Inquisit
Web (https://www.millisecond.com/products/inquisit6/weboverview.aspx accessed on
29 April 2021), a tool to collect behavioral data remotely (see Supplementary Materials).

https://www.qualtrics.com
https://www.millisecond.com/products/inquisit6/weboverview.aspx
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An Inquisit script was programmed to start with the assessment of mood and baseline
levels of PC, by the use of Visual-Analog Scales (VASs). Then, all participants underwent
two sessions of the PRT (mouth and nose version), before and after a 2-min induction of
PC (experimental group) or a 2-min wait (control group). Assessment of mood and PC
were repeated after the experimental manipulation, and again at the end of the second PRT.
This session was followed by a 7-day ecological momentary assessment. After one week,
participants were fully debriefed and compensated for participation with the money that
they won during the task.

2.3. Questionnaires

All participants completed a set of questions assessing sociodemographic and lifestyle
or medical information (i.e., nicotine, alcohol and caffeine consumption and medication
intake). To obtain a measure of dispositional tendency to engage in some forms of PC,
participants were administered the PTQ [26], a 15-item questionnaire developed to capture
the processes typical of repetitive thinking instead of the specific content of thoughts,
namely repetitiveness (e.g., “The same thoughts keep going through my mind again and
again”), intrusiveness (e.g., “Thoughts come to my mind without me wanting them to”),
difficulties in disengaging (e.g., “I can’t stop dwelling on them”), unproductiveness (e.g., “I
keep asking myself questions without finding an answer”), and mental capacity absorbing
(e.g., “My thought prevent me from focusing on other things”).

Additional dispositional traits were assessed to control for potential between-groups base-
line differences: (a) Behavioral inhibition and behavioral activation Scale (BIS/BAS [30]), Cron-
bach’s alpha in the present sample = 0.73; (b) Barratt Impulsiveness Scale (BIS-11 [31]), Cron-
bach’s alpha in the present sample = 0.83; (c) Snaith–Hamilton pleasure scale (SHAPS [32]),
Cronbach’s alpha in the present sample = 0.84; (d) State-Trait Anxiety Inventory (STAI; [33]),
Cronbach’s alpha in the present sample = 0.93; (e) Center for Epidemiologic Studies Depres-
sion Scale (CES-D [34]), Cronbach’s alpha in the present sample = 0.72; (f) Optimism scale [35];
and (g) Sensation Seeking Scale V [36], Cronbach’s alpha in the present sample = 0.91.

2.4. Perseverative Cognition Induction

A well-replicated verbal induction procedure designed to induce PC was used (see [25]
for a systematic review). Specifically, participants were asked to tell the experimenter (for
2 min) about a negative personal episode that happened within the past year that made
them feel sad, anxious, or stressed and—when thinking about it—still made them sad,
anxious, or stressed or something that may happen in the future that worried them (see
Supplementary Materials). Participants in the control group were asked to wait until the
next instructions (2 min).

2.5. Visual-Analog Scales

Visual-Analog Scales (VAS) were administered at the beginning of the protocol (VAS 1),
after performance on the first PRT (VAS 2), after the induction (VAS 3), and after perfor-
mance on the second PRT (VAS 4) to assess manipulation effects on self-reported momen-
tary mood and levels of state PC. Momentary mood was assessed by the questions “In this
moment how much do you feel: happy/anxious/satisfied/sad/energetic”. To assess levels
of state PC before and after the induction or control condition, participants were asked “In
this moment how much do you feel” (1) “distracted by thoughts/past memories/future
worries/personal problems”; and (2) “stuck on these thoughts/past memories/future
worries/personal problems without being able to think about anything else?”

2.6. Probabilistic Reward Task

The PRT is a task designed to yield an objective measure of participants’ ability to
modify their behavior as a function of a reward and provides objective measure of reward
responsiveness and reward learning [17]. On each trial, participants were asked to decide
whether a long or short stimulus (mouth or nose) was presented (for 100 ms) on a cartoon
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face by pressing one of two fixed buttons on the keyboard (“E” and “I”). Importantly, and
in line with previous studies in healthy participants (e.g., [18]), the difference between
the two stimuli was very subtle (10–11 mm for the mouth version and 5–5.31 mm for the
nose version). Of note, and unbeknownst to the participants, one stimulus (called “rich
stimulus”) was rewarded more frequently compared to the other (called “lean stimulus”),
according to a 3-to-1 asymmetrical reinforcement ratio in favor of the rich stimulus (see
Supplementary Materials for more detailed information). Thus, reward learning is implicit
and based on the reinforcement history rather than on the perceptual differences between
the two stimuli. Each participant completed the task twice: before and after a PC induction
or waiting. To reduce carry-over effects between conditions (pre-post), the mouth and
nose versions of the PRT were utilized, before and after the experimental manipulation,
respectively (i.e., not counterbalanced across subjects). The target of the asymmetrical
reinforcement ratio and the button on keyboard to press for long or short stimulus were
counterbalanced within and between participants for a total of four different combinations.

2.7. Data Reduction

According to signal detection theory, the main variables of interest were: (1) response
bias, an empirically derived measure of systematic preference to choose the most frequently
rewarded stimulus; and (2) discriminability, which provides a control measure of partici-
pants’ ability to discriminate between the two stimuli and reflects task difficulty. According
to an established procedure [17,18,37], response bias (log b) and discriminability (log d)
were calculated, respectively, as:

logb =
1
2

log
[
(RICHcorrect + 0.5) × (LEANincorrect + 0.5)
(RICHincorrect + 0.5)× (LEANcorrect + 0.5)

]
, (1)

logd =
1
2

log
[

(RICHcorrect + 0.5)× (LEANcorrect + 0.5)
(RICHincorrect + 0.5)× (LEANincorrect + 0.5)

]
, (2)

where RICHcorrect and RICHincorrect are the number of the correct and incorrect responses
to the rich stimulus, respectively, and LEANcorrect and LEANincorrect are those to the lean
stimulus. As evidenced in Equation (1), a higher response bias results from a larger numer-
ator (i.e., larger number of rich correct and lean incorrect) or from a smaller denominator
(i.e., smaller number of rich correct and lean correct). As done in previous studies using
this task [38,39], 0.5 was added to each variable to make the calculation of the response
bias and discriminability possible in cases in which one of the raw cells was equal to 0.

To further evaluate behavioral responses, the percentage of correct responses (i.e.,
accuracy) for each stimulus (rich or lean) type was calculated.

2.8. Computation Modeling of PRT

A series of reinforcement learning models were fitted to participants’ trial-by-trial
data according to previously established procedures (see [40] for details). The ‘Stimulus-
Action’ model treated both stimuli as being completely distinct and associated rewards
with stimulus-action pairs. In the ‘Action’ model, subjects were assumed to neglect the
stimuli and only learned action values when forming expectations. Another model, ‘Belief’,
proposed that rewards were associated with a mixture of two stimulus-action associations
weighted by an uncertainty factor. Lastly, a ‘Punishment’ model evaluated whether zero
rewards were regarded as aversive losses. Expectation-maximization [41] was utilized to
derive group priors in these models and individual Laplace approximation of posterior
distributions was used to estimate parameters for every subject (see Supplementary Meth-
ods). Model comparisons were conducted via integrated group-level Bayesian Information
Criterion factors. The most parsimonious account of the data was provided by the ‘Action’
model, with a group-level log Bayes factor compared to second-best ‘Belief’ model of 68
(which represents very strong evidence). This approach allowed two main parameters
to be derived: reward sensitivity, which assessed the immediate behavioral impact of
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rewards (mean = 0.887, SD = 0.349), and learning rate (mean = −5.17, SD = 1.52), which
measured ability to learn from rewards accumulated over time. Note that parameters were
computed in the transformed space in order to prevent issues with non-Gaussianity. Hence,
learning rate is no longer constrained to the range of 0–1 and reward sensitivity no longer
constrained to range of 0 to +inf. Instead, both parameters are unconstrained from –inf to
+inf, but larger values still indicate greater learning rate and reward sensitivity. Two other
parameters that are not the focus of this study were also obtained: instruction sensitivity
(mean = 0.167, SD = 0.778) and initial bias (mean = −0.018, SD = 0.209).

2.9. EMA

To measure reward responsiveness during daily life events of PC, an ecological mo-
mentary assessment with a time-contingent design [42] was implemented in Qualtrics. An
array of emails was scheduled to arrive at unpredictable moments about every 120 min,
between 10:00 a.m. and 10:30 p.m. for a period of 7 days (i.e., 7 e-mails per day). Each
e-mail had a link to an electronic diary which took about 2–3 min to be filled in. The diary
was available for a maximum of 20 min from the initial notification, but participants were
asked to fill out the questions as soon as possible to reduce recall bias.

EMA Measures

The items were created to measure the processes underlying PC (intensity, intru-
siveness, repetitiveness and stuck), rather than the specific content of the perseverative
thoughts [43]. Participants had to rate on a 7-point Likert scale (from Not at all to Very
much): (1) “Right now, how much were you distracted by your thoughts (i.e., past mem-
ories, future worries, personal problems)?”; (2) “How much were these thoughts going
through your mind again and again?”; (3) “How much were these thoughts coming to
your mind without you wanting them to?”; and (4) “How much were you stuck on certain
issues and could not move on?”. Due to the high correlation between Items 2 and 3, Item
3 was dropped and the final PC composited was obtained by summing the three scores
(Items 1, 2, and 4) per participant and time point of assessment.

According to one of the few previous studies on reward-related behavior in daily
life [28], probabilistic reward-related behavior was measured on a 7-point Likert scale
(from Not at all to Very much) by questions assessing: (1) Reward anticipation, “Think
about what you consider to be the most rewarding situation in the next hour. . . How much
are you looking forward to it?”; (2) Effort, “How much effort are you willing to exert to
make it happen?”; and (3) Activity pleasantness, “Think about what you were doing right
before receiving the email. . . How much did you feel actively engaged in such activity?”
“How much were you enjoying it?”. As above for PC, composite for Activity Pleasantness
was created by summing the scores of their relative items per participants and time point
of assessment.

2.10. Data Analysis
2.10.1. Experimental Session

Preliminary evaluations were conducted to ensure no violation of the assumptions of
normality, linearity, homogeneity of variances, and sphericity. Series of independent sample
t and χ2 tests were performed to exclude the presence of pre-existing socio-demographic
(age, sex, medication use, and smoking), dispositional (scores on the questionnaires), and
affective state (scores on the VAS at baseline) differences between the two groups.

To evaluate the efficacy of the induction procedure in eliciting PC, change scores
were computed using scores on the VAS post-manipulation (VAS 3) minus scores pre-
manipulation (VAS 2) and performing a series of independent sample t-tests. Then, to
test whether the effects of the induction continued throughout performance on the second
PRT, change scores were computed using scores on the VAS at the end of the protocol
(VAS 4) minus post-manipulation scores (VAS 3) and a series of independent sample t-tests
were performed.
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Two General Linear Models (GLMs), with Block (Block 1, Block 2, Block 3) and Time
(pre, post) as within-subject variables and Group (experimental, control) as a between-
subject variable, were computed separately on response bias and discriminability. For
accuracy, the GLM also included the within-subjects Stimulus Type (lean, rich). Then, to
assess the magnitude of change in reinforcement learning before and after the experimental
manipulation, a GLM with Time (pre, post) and Group (experimental, control) was run
on ∆Response Bias, computed as Response Bias during Block 3 minus Response Bias
during Block 1, as in previous studies (see, e.g., [38]). Lastly, two separate GLMs with
Time and Group were performed on computational parameters of reward sensitivity and
learning rate.

2.10.2. Ecological Momentary Assessment (EMA)

First, we evaluated empirically the missing data mechanisms underlying the final
dataset. For this purpose, we performed the classical Missing Completely at Random
(MCAR) test [44] at different levels of analysis: within subjects, between subjects, within
days and between days. The MCAR test evaluate the null hypothesis that data are missing
completely at random. In line with [45], we set a p-value < 0.05 for rejecting the MCAR
basic assumption. If this assumption can be retained for all levels of analysis, substantive
models can be reasonably analyzed by handling missing data with the Full Information
Maximum Likelihood approach (FIML [46]).

Consistent with our theory, we tested an ESM (multilevel) path analytic model. This
model was tested with Mplus 8.5 [47]. At the within (daily fluctuations) level, the time-lagged
PC (PCt−1) was specified as associated with Reward Anticipationt−1 and both variables,
in turn, predicting the unlagged version of Activity Pleasantness (Activity Pleasentnesst).
Moreover, Activity Pleasantnesst was controlled for previous levels of the same variable
(Activity Pleasantnesst−1), but also for minutes to midnight associated with each time
point of assessment as an additional time-varying covariate. Moreover, the interaction
between PCt−1 and Reward Anticipationt−1 and PCt−1 and Activity Pleasantnesst−1 in
explaining Activity Pleasantnesst. All independent variables and Activity Pleasantnesst−1
were previously centered around the participant mean (see [48]), and the scores of the last
time point of daily assessment of the lagged variables were not allowed to predict the
first score in Activity Pleasantnesst of the subsequent day (see [28]). At the between level
(subjects), intercepts of dependent variables and slopes were treated as random, and the
between-level covariance matrix was set to unstructured.

3. Results
3.1. Descriptives

As shown in Table 1, the two groups did not differ for any of the examined baseline
sociodemographic, dispositional and state variables.
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Table 1. Mean and standard deviations for state, trait and sociodemographic variables at baseline.
PTQ, Perseverative Thinking Questionnaire; SHAPS, Snaith–Hamilton Pleasure Scale; STAI, State-
Trait Anxiety Inventory; CESD, Center for Epidemiological Studies Depression Scale; OS, Optimism
Scale; BIS_NP, Non Planning subscale of the Barratt Impulsiveness Scale; BIS_Motor, Motor subscale
of the BIS; BIS_Cognitive, Cognitive subscale of the BIS; BAS_drive, Drive subscale of the Behav-
ioral Activation System; BAS_FunSeek, Fun Seeking subscale of the Behavioral Activation System;
BAS_RewResp, Reward Responsivity subscale of the Behavioral Activation System; BIS, Behavioral
Inhibition System. VAS 1, Visual-Analog Scale administered at baseline, PC, Perseverative Cognition.
* value output of Mann–Whitney test for non-parametric distributions.

Variables Controls Experimental Group t/U * p
n = 24 n = 22

Age 21.9 (2) 24 (7.5) 244 * 0.66
PTQ 29.4 (11.1) 28.3 (11) 0.24 0.74
SHAPS 15 (7.7) 13 (1.5) 1.36 0.23
STAI-T 42.5 (13.4) 43.4 (12.2) 0.26 0.86
CESD 20.9 (8.2) 20.3 (6.2) 0.28 0.77
OS 31 (4.9) 30.9 (6) 0.13 0.95
BIS_NP 2.2 (0.4) 2.1 (0.3) 0.81 0.40
BIS_Motor 1.7 (0.3) 1.7 (0.3) 0.44 0.53
BIS_Cognitive 1.9 (0.4) 2.0 (0.4) 0.80 0.52
BAS_Drive 12.5 (1.3) 12.6 (1.3) 0.44 0.81
BAS_FunSeek 12 (1.6) 12.5 (1.3) 1.20 0.30
BAS_RewResp 15 (1.7) 15 (2) 0.77 1
BIS 20.1 (2.1) 20 (2.1) 0.39 0.89
Boredom 3.4 (1.3) 3.3 (1.8) 0.14 0.83
Disinhibition 4.2 (2.3) 4.5 (2.1) 0.41 0.76
Thrill Adv. Seeking 6.6 (2.5) 6.9 (2.8) 0.34 0.72
Experience Seeking 6.5 (1.9) 6.7 (1.3) 0.47 0.71
VAS 1
PC 3.2 (1.5) 3.5 (1.3) 0.66 0.49
Stuck 2.6 (1.2) 2.9 (1.2) 0.85 0.37
Happy 4.4 (1) 4.9 (1) 1.79 0.08
Anxious 3.4 (1.6) 3.7 (1.6) 0.57 0.51
Satisfied 4.7 (0.9) 4.5 (1.1) 0.49 0.41
Sad 2.3 (1.1) 2.3 (1.2) 0.36 0.85
Enthusiastic 3.7 (1.4) 4.3 (1.3) 1.90 0.13
Energetic 3.9 (1.1) 4.4 (1.4) 1.68 0.19

χ2

Sex 19F, 5M 16F, 6M 0.26 0.60

3.2. Efficacy of the Experimental Manipulation

The independent sample t-tests revealed significant group differences for state levels
of: (1) PC (t(41) = 2.79, p = 0.008, d = 0.87); (2) being stuck (t(41) = 3.07, p = 0.004, d = 0.96);
and (3) being sad (t(41) = 2.62, p = 0.012, d = 0.82). There was a stronger increase from pre-
to post-manipulation in all these variables in the experimental compared to the control
group (see Figure 1). When we evaluated whether these effects were prolonged until the
end of the second PRT, no significant group differences emerged, indicating no changes in
any of the examined variables from post-manipulation to the end of the protocol.
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Figure 1. Effects of perseverative cognition induction on momentary mood and levels of state
perseverative cognition (PC) as assessed by visual-analog scales (VAS) in the experimental (n = 22)
and control groups (n = 24). VAS 2, pre induction; VAS 3, post induction. Error bars indicate mean
standard errors.

3.3. Performance on the PRT

Huynh–Feldt correction was applied due to violation of sphericity assumption. The
GLM with Response Bias as the dependent variable revealed a main effect of Block
(F(1.61, 70.7) = 33.33, p < 0.0001, ηp

2 = 0.043) and a significant Time X Group X Block in-
teraction (F(1.77, 77.8) = 3.78, p = 0.031, ηp

2 = 0.079). For the main effect of Block, Bonferroni-
corrected post-hoc analysis showed a progressive increase in response bias from the first
block to the third block, where Block 1 was characterized by a significantly lower response
bias compared to Block 2 (d = 0.46, CI = −0.16, −0.03, p = 0.007) and Block 3 (d = 1.19,
CI = −0.34, −0.15, p < 0.0001), with Block 2 being characterized by a lower bias than Block 3
(d = 0.73, CI = −0.23, −0.08, p < 0.0001). For the three-way interaction, Bonferroni-corrected
post-hoc analysis of simple effects showed that the experimental group had a significantly
higher post-manipulation response bias in Block 3 (d = 0.84, CI = 0.23, 1.44, p = 0.007) and
a marginally significantly higher post-manipulation response bias in Block 2 (d = 0.52,
CI = −0.01, 0.1, p = 0.080) relative to the control group (see Figure 2A).
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Figure 2. Effects of perseverative cognition induction. Pre-to-post induction changes in Response
Bias (A) and ∆Response Bias (B) in the experimental (n = 22) and control groups (n = 24). Error bars
indicate mean standard errors. *** p < 0.0001, * p < 0.05, # p < 0.06.

Moreover, the GLM having ∆Response Bias as the dependent variable, revealed Time
X Group interaction (F(1, 46) = 5.50, p = 0.024, ηp

2 = 0.11), where Bonferroni-corrected post-
hoc simple effects analysis showed higher ∆Response Bias from pre- to post-manipulation
in the experimental relative to the control group (d = 0.95, CI = −0.02, −0.31, p = 0.015) (see
Figure 2B).

Analyses on discriminability scores showed a main effect of Time (F(1, 44) = 20.64,
p < 0.0001, ηp

2 = 0.31), with reduced discriminability during performance on the second
compared to first PRT (d = 0.67, CI = 0.12, 0.34, p < 0.0001), suggesting that the second
PRT (nose version of the task) was more difficult for both groups, along with a main
effect of Block (F(2, 88) = 6.05, p = 0.003, ηp

2 = 0.12), showing increased discriminability in
Block 2 compared to Block 1 (d = 0.38, CI = 0.01, 0.12, p = 0.022) and in Block 3 compared
to Block 1 (d = 0.49, CI = 0.20, 0.14, p = 0.004). No significant Group X Time interac-
tion (F(2, 88) = 1.65, p = 0.21) or Time X Group X Block interaction emerged (F(2, 88) = 0.02,
p = 0.98) (see Figure S2A).

Total accuracy showed main effect of Time (F(1, 44) = 79.54, p < 0.0001, ηp
2 = 0.33),

with reduced overall accuracy during performance on the second PRT in both groups
(d = 1.31, CI = 0.12, 0.19, p < 0.0001) (see Figure S2B). No main effect of Group or significant
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interactions (F(1, 46) = 0.47, p = 0.50) emerged (see Supplementary Materials for further
control analyses).

3.4. Computational Modeling

The two-way GLM on learning rate yielded a significant main effect of Time (F(1, 44) =
21.76, p < 0.0001, ηp

2 = 0.33) and a marginally significant Time X Group interaction (F(1, 44)
= 3.58, p = 0.06, ηp

2 = 0.075). As depicted in Figure 3, post-hoc comparisons revealed
that learning rate increased in the second PRT only in the experimental group (d = 1.15,
CI = 0.54, 1.76, p < 0.0001). For reward sensitivity, a main effect of Time emerged (F(1, 44)
= 7.23, p = 0.010, ηp

2 = 0.14), with a significant decrease from the first to the second PRT
(d = −0.40, CI = −0.33, −0.48, p = 0.010) in both groups.

Figure 3. Changes in computational modeling parameters. Pre- to post-induction changes in Learning
rate (A) and Reward sensitivity (B) in the control and experimental groups. Error bars indicates
mean standard errors. *** p < 0.001. Note that parameters were computed in the transformed space
in order to prevent issues with non-Gaussianity. Hence, they are both unconstrained in range and
larger values indicate greater Learning rate and Reward sensitivity.

3.5. EMA

MCAR tests were not statistically significant for all levels of analysis, suggesting
that missing data were unrelated to the study variables, specific days and time points
of assessment for all participants. Thus, the following ESM path analytic model was
tested by handling missing data with the FIML approach and by using robust maximum
likelihood estimators (MLR; see [47]). Since after a first model run all random slopes
parameters were not statistically significant, they were all fixed to zero. Considering the
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high level of correlation between self-reported levels of Reward anticipation and Effort
(r = 0.944; p < 0.001), a composite score (from now on referred to as Reward Anticipation)
was created by summing the scores of their relative items per participants and time point
of assessment. Model fit with observed data was close to perfect: MLRχ2 = 1.890(df=4),
p = 0.756; Root Mean Square Error of Approximation (RMSEA) = 0: Comparative Fit Index
(CFI) = 1.00; Tucker–Lewis Index or Non-normed Fit Index (TLI or NNFI) = 1.00; within-level
Standardized Root Mean Square Residual (SRMR) = 0.022; between-level Standardized Root
Mean Square Residual (SRMR) = 0. Standardized results of the tested ESM path analytic
model are presented in Figure 4.

Figure 4. The Empirical ESM Path Analytic Model. (top) All parameters represent Beta coeffi-
cients expressed in a completely standardized metric. Dotted lines indicate non-significant effects.
*** p < 0.001, ** p < 0.01, * p < 0.05 (bottom) Plot of the Significant Interactions from the Empirical
ESM Path Analytic Model. The results are presented in a completely standardized metric. PLEASEt

= Activity Pleasantness; PCt−1 and ANTICIPt−1 = time-lagged version of Perseverative Cognition
and Reward Anticipation.

Specifically, an increase in time-lagged PCt−1 was significantly and negatively associ-
ated with time-lagged Reward Anticipationt−1. Activity Pleasantnesst was significantly
and positively predicted by the time-lagged version of the same variable and Reward
Anticipationt−1, while it was significantly but negatively predicted by PCt−1. Moreover,
the stable (between-subjects) components of the time-lagged version of Reward Anticipa-
tion and Activity Pleasantness were significantly and positively correlated. Finally, the
interaction between time-lagged PC and Activity Pleasantness and PC and Reward Antici-
pation in predicting Activity Pleasantness were both significant and negative. Specifically,
low levels of PCt−1 produced an additional increase in Activity Pleasantnesst scores under
conditions of, respectively, high Reward Anticipationt−1 and Activity Pleasantnesst−1.

4. Discussion

To date, PC has been almost exclusively studied within the negative valence systems.
This is somehow surprising if we consider that PC is now recognized as a transdiagnostic
factor, which is present across psychiatric disorders, such as substance use disorder or in
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the manic phase of bipolar I disorder (e.g., [14,49]). To fill this gap, and in line with a recent
call to study transdiagnostic factors both across and within different RDoC domains [16],
the present study combined an experimental paradigm with experience sampling in daily
life with the goal of providing an ecologically valid view of the effects of PC on reward
learning. To do so, in the experimental session, we used a task designed to objectively
assess participants’ ability to modulate behavior as a function of reward [17] before and
after the induction of PC.

4.1. Perseverative Cognition, Stress Response and Reward Functionality

Contrary to our hypotheses, results point to a higher response bias toward the most fre-
quently rewarded stimulus in the experimental compared to the control group, suggesting
that PC enhanced reward responsiveness and the ability to shape future behavioral choices
based on prior reinforcement experiences. Considering that PC is usually associated with a
significant physiological stress-response (i.e., fight or flight) (see [20] for a meta-analysis),
the current finding is somehow inconsistent with previously reviewed results on the effects
of an acute stressor (e.g., threat of shocks) on reward responsiveness, where stress-related
blunted reward responsiveness and reward learning have been reported [18,19]. This
discrepancy might have occurred due to differences in stress paradigms such as type of
induction (e.g., threat-of-shock and PC induction) and in stress-to-task latency (e.g., during
the task and just before the task). For example, relative to the type of induction, Ottaviani
and colleagues [20] noted that the physiological correlates (e.g., systemic cortisol release)
of PC and acute stressor are different in terms of quantity and duration. Although the
magnitude of the effect of acute stress is greater in terms of physiological activation, PC
activates the body more frequently and for longer time, making the existence of different
pathways to alteration of reward processing functionality possible. Relative to stress-to-task
latency, different cellular and neuroendocrine dynamics occur on the ground of stressor
onset (e.g., [50]). Indeed, administering the reward learning task just before—instead of
during—the stress manipulation seems to be associated with an increase in reinforcement
learning [51,52]. Notably, in the current study, the PRT was administered immediately after
the induction and the subjective effects of PC induction are maintained until the end of the
task, as shown by the visual-analog scales.

It is also important to note that our finding of a potentiated effect of PC on reward func-
tionality is not without precedents. Whitmer and colleagues [24] found that a depressive
rumination induction just before the probabilistic reward selection task, a reinforcement
learning task similar to the PRT, led to a higher sensitivity to reward relative to a distraction
induction in both clinically depressed and healthy individuals. Moreover, the dispositional
tendency to ruminate was found to be positively associated with activation of the ventral
striatum regions and increased connectivity within cortico-striatal circuits in response to
rewards [22]. This finding is somewhat contrary to results of a recent meta-analysis of
positive valence system functionality in depressive patients, where the largest impairment
emerged precisely in the subconstruct of reward learning [53].

In an attempt to understand whether the greater reward bias triggered by PC was due
to the effect of learning rate (i.e., the ability to learn from reward feedback) or to reward
sensitivity (i.e., the hedonic immediate behavioral impact of rewards), a computational
modeling analysis was performed (e.g., [40,54]). The computational modeling highlighted a
marginally significant contribution of learning rate (of large effect size) and a non-significant
effect of reward sensitivity to the effects of PC on reward processing. Such parameters
were derived from the mathematical models of reinforcement learning [55,56]. Specifically,
learning rate quantifies the extent to which reward prediction errors (i.e., the difference
between the obtained and expected reward) affect learning, specifically the speed to which
reward affects behavior [40]. This implies that PC may increase the behavioral impact of
prior reward feedback on the current trial-by-trial decision and thus learning in function of
prior reinforcements without a concomitant increase of hedonic impact of rewards.
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In line with the current finding, evidence suggests that acute stress has dissociable
effects on the distinct components of reward processing, particularly potentiating mo-
tivation/‘wanting’ during the anticipatory phase of reward processing, while reducing
‘liking’ during the consummatory phase (reward receipt/delivery phase). For example,
an acute stress manipulation in the form of performance negative feedback (thought to
elicit PC), increased neural and behavioral activation in the anticipatory phase of reward
assessed by monetary incentive delay task, designed for the simultaneous measurement of
the anticipation and consumption phase of reward processing [57]. Consistently, the dispo-
sitional tendency to engage in rumination (i.e., trait rumination) positively correlated with
activation of the areas implicated in the salience network to reward—but not to loss—cues
in the anticipatory phase of reward processing, after controlling for age, sex, and depressed
mood [58].

In the context of more basic investigations, a multitude of animal studies [59–61]
and some human studies [62] suggest that acute stress manipulation, possible through an
increase of brain levels of glucocorticoids and catecholamines [63], quickly activates meso-
corticolimbic dopaminergic neurons [59,60,62,64] which in turn potentiates cue-triggering
wanting, attentional orienting toward salient events and learning from behavioral rein-
forcements [61,65].

4.2. Perseverative Cognition and Daily-Life Motivational System Functionality

A more ecological assessment of behaviors and cognition outside the laboratory has
been called for to draw more valid conclusions on mental health functioning [42]. In line
with this, we combined an ecological assessment of daily-life occurrence of the cognitive
processes underling PC with the measurement of everyday reward-related behavior, to
enhance the validity and understanding of laboratory results.

Interestingly, the momentary occurrence of PC modulated the association between
the anticipation of a reward and the concurrent tendency to be actively engaged with
and satisfied by such reward. In other words, in moments when participants were stuck
in their thoughts, they appeared to be less sensitive to rewards value even when they
had been showing high levels of anticipation and motivation to pursue them. Such an
observed decoupling between the anticipation and the consummatory phase of reward
processing during episodes of PC generates a discrepancy between the expected and
obtained reward, that is a prediction error. Considering that learning rate, as assessed
by the applied computational modeling, particularly incorporates measures of prediction
error [40], it is plausible that the laboratory finding of an increased learning rate during
performance on the PRT following PC might derive from an increase in reward prediction
error. This interpretation would be consistent with the common idea that maladaptive
PC comes from a recurrent and unfruitful attempt to reduce the discrepancies between
actual and desired goals [13,66]. If PC exacerbates such discrepancy, as suggested by
both current laboratory and ecological results, this could be a mechanism through which
this maladaptive process is pathogenically maintained. In support of this speculative
hypothesis, Ditcher and colleagues [67] found greater reward network activation during
the anticipatory phase of reward processing paired with reward network hypoactivation
during reward outcomes in individuals with major depression; in interpreting such results,
the authors point to the role of rumination.

Besides potentiating reward-related prediction error, when the anticipatory and the
consummatory phases of reward were examined separately, daily occurrence of PC had
the effect to dampen each of these components. Notably, the occurrence of PC not only
reduced the hedonic value of a concomitant reward but also buffered the positive effect of
such reward on the subsequent one. This is well in line with the fact that depressed patients
who are characterized by higher levels of PC are more prone to relapse after psychological
or pharmacological treatment [68].
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5. Limitations and Conclusions

The current results should be interpreted with due consideration of the limitations of
the study. First, data were collected by setting up a remote experimental session due to
SARS-CoV-2 pandemic. Noteworthy, the required methodological rigor was maintained by
having the experimenter connected online throughout the experimental protocol. How-
ever, extra-experimental environmental variables, such as performing the task with one’s
personal computer, may have biased the results. In regard to this, we decided not to use
reaction times as a control variable of the behavioral output of the PRT. The analysis of
the reaction times could have informed us on the speed of choice of the stimulus that
guided the learning, therefore providing further indication on the development of bias
in the two groups. Despite this, the specificity of the measurement of the response bias
was supported by control analysis such as the analysis of discrimination and accuracy.
Second, it is possible that the historical period during which the study was performed
could have influenced some of the EMA variables, for example the assessment of reward-
related behavior during times of limited freedom. The COVID-19 pandemic has led to
widespread increases in mental health problems, including anxiety and depression, and
this might have intensified the daily occurrence and severity of PC episodes. Even though
we have no reasons to expect that the global health situation has specifically affected the
association between PC and reward-related behaviors, it would be important to replicate
the EMA results on different samples after the end of the pandemic. Third, the sample
size is limited, mostly composed of university students, and unbalanced with regards to
gender distribution. Given the well-known gender differences in the tendency to develop
hypo-motivational (e.g., depression) and hyper-motivational (e.g., addiction) disorders,
future studies should investigate the moderating role of gender on the association between
daily PC and reward-based learning.

To conclude, the experimental induction of PC in the laboratory potentiated reward-
based learning, and ecological data suggest that this may derive from potentiated reward
prediction error, due to a PC-induced decoupling between the anticipatory and consum-
matory phase of reward. Together with the negative consequences on the consummatory
phase of reward, likely leading to a long-lasting reduced hedonic impact of rewards value,
the hereby reported effects on prediction error may inform maintenance mechanisms. For
example, it has been shown that PC may render individuals more prone to engage in
unhealthy habitual behaviors, such as food or alcohol binge intake [69,70].

Present data advise not only toward treating PC as a dimensional and transdiagnostic
construct [71] but also toward the implementation of ad hoc interventions to normalize
positive valence systems (dis)functionality. To maximize the clinical application of current
findings and gather a more mechanistic understanding, it would be important to inves-
tigate neurobiological alterations underpinning reward processing dysfunctions during
PC. Alterations within mesocorticolimbic circuits, commonly thought to be implicated
in reward processes and in motivational deficits in psychiatric disorders, have not been
specifically associated with PC. However, emerging evidence exists, pointing to alterations
in corticostriatal functioning associated with both state and trait PC [22,58,72]. In line
with the proposal of Kalivas and Kalivas [73], further investigations of the corticostriatal
involvement in the maintenance of PC and its effects on reward-related behavior could
forecast therapeutic impact on many disorders, all afflicted by this maladaptive symptom.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-342
5/11/5/585/s1, Supplementary Methods: Procedure, Perseverative cognition induction, Probabilistic
Reward Task (PRT), Computation Modeling, Quality Control (QC) cutoffs for PRT data; Supple-
mentary Results: Accuracy analyses; Supplementary references; Supplementary figures: Figure S1:
Experimental timeline, Figure S2: Control analysis, S2A: Discriminability scores toward the blocks in
control and experimental group pre to post induction, S2B: Total accuracy in control and experimental
group pre to post induction, S2C: Rich Accuracy and S2D: Lean Accuracy in control and experimental
group pre to post induction.
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