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Brain dynamics reflecting an intra-network 
brain state are associated with increased 
post-traumatic stress symptoms in the early 
aftermath of trauma
 

Post-traumatic stress (PTS) encompasses a range of psychological responses 
following trauma, which may lead to more severe outcomes such as 
post-traumatic-stress disorder (PTSD). Identifying early neuroimaging 
biomarkers that link brain function to PTS outcomes is critical for 
understanding PTSD risk. This longitudinal study examines the association 
between brain dynamic functional network connectivity and current/ 
future PTS symptom severity, and the impact of sex on this relationship.  
By analyzing 275 participants’ dynamic functional network connectivity 
data obtained ~2 weeks after trauma exposure, we noted that brain dynamics 
of an inter-network brain state link negatively with current (r = −0.197, 
Pcorrected = 0.0079) and future (r = –0.176, Pcorrected = 0.0176) PTS symptom 
severity. In addition, dynamics of an intra-network brain state correlated 
with future symptom intensity (r = 0.205, Pcorrected = 0.0079). We additionally 
observed that the association between the network dynamics of the inter-
network and intra-network brain state with symptom severity is more 
pronounced in the female group. Our findings highlight a potential link 
between brain network dynamics in the aftermath of trauma with current 
and future PTSD outcomes, with a stronger effect in the female group, 
underscoring the importance of sex differences.

Post-traumatic-stress disorder (PTSD) may develop in individu-
als who have experienced or witnessed a traumatic event, such as 
military warfare, sexual or physical assault, accidents or natural 
disasters1. Symptoms of PTSD include distressing thoughts, flash-
backs, avoidance of reminders, changes in mood and cognition, and 
increased arousal, which can impact an individual’s life2. Biologi-
cal markers, or biomarkers, may be able to identify those who are 
more likely to develop PTSD following a traumatic incident3,4. Early 
identification of such individuals might allow for prompt treatment 
and preventive measures, potentially minimizing the severity and 
duration of PTSD symptoms. Furthermore, these markers may help 
in the development of tailored treatment methods, the optimization 

of therapeutic treatments and the long-term monitoring of therapy 
response5. .

In recent years, there has been a significant increase in the explora-
tion and advancement of neuroimaging-based markers for identifying 
vulnerability to PTSD6,7. This emerging field shows great potential in the 
rapid development of tools for early identification and intervention8. 
Studies utilizing neuroimaging techniques have uncovered notable 
alterations in brain function among individuals with PTSD. These 
alterations are marked by atypical functional network connectivity 
(FNC) patterns, as observed in resting-state functional magnetic reso-
nance imaging (fMRI) studies9–11. Specifically, these patterns are seen 
in various brain regions, including the hippocampus12, amygdala13,  
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evaluate their predictive capability for the severity of PTSD symptoms 
at a later stage.

Results
Participants
Data for the current analyses were collected as part of the multisite 
emergency department (ED) AURORA study. The AURORA study rep-
resents a significant research effort aimed at enhancing our under-
standing, prevention and recovery strategies for individuals who have 
undergone a traumatic event. In the AURORA study, trauma-exposed 
civilians brought to one of 29 participating EDs across the United States 
were recruited for this large, longitudinal study (details in ref. 38). This 
study involved around 3,000 participants from the AURORA project, 
who provided clinical data at various intervals following the trauma: 
2 weeks (WK2), 4 weeks (WK4), 3 months (M3), 6 months (M6) and 
12 months (M12) as illustrated in Fig. 1a. In addition, neuroimaging 
data from ~400 participants were collected at WK2 from five differ-
ent scanning locations: Atlanta (Georgia), Belmont (Massachusetts), 
Philadelphia (Pennsylvania), St Louis (Missouri) and Detroit (Michigan). 
The recruitment for this study took place between September 2017 
and June 2021 (Final freeze 4 Psychometric release at 22 September 
2021). We excluded those with low-quality resting-state fMRI and miss-
ing clinical information at the imaging acquisition date. This process 
resulted in 275 participants (181 female participants) being included in 
this analysis. Table 1 presents the demographic characteristics of the 
participants included in this study. In addition, Supplementary Fig. 1 
illustrates the distribution of the PTSD Checklist for the Diagnostic and 
Statistical Manual of Mental Disorders 5th Edition (PCL-5)39 scores at 
various time points for the participants.

Three distinct dFNC states were identified
After calculating the dFNC of each participant, we grouped their dFNC 
into three different dynamic network connectivity states (Fig. 1c).  
Figure 2 presents an overview of the identified states. Each state 
represents 1,378 connectivity measures among 7 networks across 
the entire brain (Fig. 1b): the subcortical network (SCN), auditory 
network (ADN), sensorimotor network (SMN), visual network (VSN), 
cognitive control network (CCN), default-mode network (DMN) and 
cerebellar network (CBN). The top panel highlights three distinct 
dFNC states, while the bottom panel shows the data with connec-
tivities between –0.3 and 0.3 removed for clarity. State 2 and state 
3 exhibit a stronger positive connectivity among sensory networks, 
including visual, auditory and sensorimotor networks. Conversely, 
in state 1, we observed more disconnections among these networks. 
We observed an increase in within-CCN connectivity and enhanced 
connectivity between the DMN and sensory networks in state 3. In 
addition, we noted a greater connectivity between the CBN and SCN 
in state 3 compared with the other two states. Overall, our analysis 
suggests that state 2 and state 3 exhibit characteristics of inter-
network states, evidenced by the increased connectivity across the 
seven networks. By contrast, state 1 is indicative of an intra-network 
state as it demonstrates predominantly within-network connectivity 

visual network14 and prefrontal cortex13 in individuals with PTSD. This 
underscores the extensive influence of trauma on brain networks. Fur-
thermore, several studies have successfully utilized resting-state fMRI 
functional connectivity to predict the severity of PTSD symptoms15–18. 
In addition, two recent studies revealed the ability to predict future 
symptom severity in participants with PTSD by analyzing resting-state 
fMRI data obtained after the trauma had occurred19,20.

It has been assumed that brain FNC remains quasi-static or invari-
ant over long periods, leading many previous studies to focus solely 
on static FNC (sFNC) while ignoring the brain dynamics during rest. 
However, challenging this assumption, a relatively new concept called 
dynamic FNC (dFNC) has emerged21–25. A dynamic approach recognizes 
that FNC during the relatively short length of resting-state fMRI scans 
can exhibit temporal variations, thereby highlighting the importance 
of studying the dynamic aspects of FNC26. Unlike sFNC, dFNC offers 
greater sensitivity in capturing the spontaneous adaptations that 
occur in response to various cognitive and mental conditions27. By 
considering the spontaneously fluctuating nature of neural signals 
across different temporal scales, dFNC allows for a more sophisticated 
evaluation of brain activity 28.

Considering the dynamic nature of FNC in resting-state fMRI, 
several studies have explored dFNC in the context of PTSD in recent 
years29–32. However, none of these studies has examined the capability 
of dFNC to link with the future PTSD symptom severity. In addition, 
previous research indicates that women are two to three times more 
likely than men to develop PTSD33. Despite this, there has been a nota-
ble absence of studies that examine the potential effects of sex on the 
relationship between dFNC variables and the severity of current or 
future PTSD symptoms.

In the present study, we aim to build on previous research on dFNC 
in the context of PTSD. Specifically, we investigated the link between 
dFNC variables and future PTSD symptom severity. In addition, we 
explored the potential effects of sex on the association between dFNC 
variables and both current and future symptom severity. As past studies 
have demonstrated, biological sex is not the primary determinant of 
the various neurophenotypes associated with adverse post-traumatic 
outcomes. Instead, a range of other factors such as low socioeconomic 
status, including income34,35, housing quality36 and broader socio-
economic conditions, area deprivation index (ADI)37, also significantly 
influence the risk and severity of PTSD. To address the contribution 
of these factors, we also included them as covariates in our analysis. 
Finally, our study aimed to identify specific brain states that underlie 
risk and protective mechanisms related to PTSD.

To accomplish these goals, we utilized the dataset from the 
Advancing Understanding of Recovery after Trauma (AURORA) pro-
ject38. In the AURORA study, understanding whether dFNC variables 
derived from resting-state fMRI early after a trauma can link with future 
PTSD symptom severity is crucial. This is especially true since neuro-
imaging was conducted approximately 2 weeks after the traumatic 
event, at a time when acute stress disorder may be assessed but before 
the diagnosis of PTSD can be made. This timing allows us to investi-
gate the potential of dFNC variables as early biomarkers for PTSD and 

Fig. 1 | Data collection procedure and analytic pipeline. a, The PCL-5 was utilized 
to evaluate PTSD symptoms at various time points, encompassing pre-trauma 
(PRE), WK2, WK8, (M3, M6 and M12. During the study visit at WK2, a subgroup of 
participants underwent MRI scans, in either the morning or the afternoon. b, We 
utilized the NeuroMark pipeline to extract robust intrinsic connectivity networks 
(ICNs), totaling 53 components, which demonstrate consistent replication across 
independent datasets. These 53 distinct components were initially identified 
through group independent component analysis using the NeuroMark template. 
In this figure, X, Y and Z represent the Montreal Neurological Institute (MNI) 
coordinates. These components were subsequently categorized into seven 
distinct networks: the SCN, ADN, VSN, SMN, CCN, DMN and CBN. c, The dFNC 
analytic pipeline. Step 1: initially, the time-course signal of 53 ICNs was identified 

through group independent component analysis in the Neuromark template. 
Subsequently, the identified 53 ICNs were subjected to a taper sliding window 
segmentation to calculate FNC. Each participant yielded 210 FNCs, each with a size 
of 53 × 53. Step 2: to cluster the FNCs into three distinct groups, the FNC matrices 
were vectorized and concatenated, followed by the utilization of k-means 
clustering with correlation as the distance metric. Step 3: from the state vector, 
OCR was computed for each participant, resulting in a total of three OCR variables 
for each participant. To investigate the relationship between OCRs with the PTSD 
clinical measure (PCL-5), we used GLM to compute the associations, taking into 
account factors such as age, sex, years of education, scanning site, income, marital 
status, employment status, type of trauma and percentile ADI. The resulting  
t statistics from this analysis were then converted to correlation (r) values.
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patterns. Supplementary Fig. 2 provides further insights into the 
differences in FNC between states.

Dynamic FNC occupancy rates link with PCL-5 scores
By utilizing the three identified brain states for the entire group and 
the state vector, estimated for each individual, which represents the 
state of the brain network at any given time point, we calculated three 
occupancy rates (OCRs) for each participant. The OCR of each state 
represents the proportion of time each participant spends in that state 
(Methods and Supplementary Fig. 3). Figure 3 shows the correlation 

between OCRs and PCL-5 scores at various time points. The associa-
tions were computed using general linear model (GLM) accounting 
for age, sex, years of education, scanning site, income, marital sta-
tus, employment status, type of trauma, and percentile ADI, and the 
resulting t statistics were transformed to correlation (r). As shown in 
Fig. 3a, a positive significant association was found between the OCR 
of state 1 and the PCL-5 scores at M3 (r = 0.205, β = 0.0042, standard 
error (SE) = 0.0012, 95% confidence interval (CI): ~0.0018–0.0066, 
Pcorrected = 0.0079, N = 226 after excluding sample with missing scores; 
Table 1). These results indicate that the participants with higher PTSD 
symptom severity spend more time in state 1, which is indicative of an 
intra-network brain state.

We observed significant negative association between the OCR of 
state 3 and the PCL-5 scores at WK2 (r = −0.197, β = -0.0033, SE = 0.0009, 
95% CI: ~–0.0052 to –0.0013, Pcorrected = 0.0079, N = 275). We also found a 
negative correlation between state 3 OCR and PCL-5 of M3 (r = −0.176, 
β = –0.0032, SE = 0.0011, 95% CI: ~–0.0054 to –0.0011, Pcorrected = 0.0176, 
N = 226). This indicates that individuals with higher PCL-5 scores spent 
less time in state 3, which is indicative of an inter-network brain state. 
Overall, our findings highlight the relationships between the OCR 
and PCL-5 scores, suggesting potential connections between dFNC 
variables and symptoms of PTSD at different time points after trauma.

Sex modulates OCRs and PCL-5 scores relationship
To examine the influence of sex on the relationship between OCRs and 
PCL-5 scores, we conducted GLM analyses for male (N = 94) and female 
(N = 181) participants separately. In these analyses, we included age, 
years of education, scanning site, income, marital status, employment 
status, type of trauma and percentile ADI as covariates. The correlation 
results between OCRs and PCL-5 scores for female and male groups are 
presented in Fig. 3b and Fig. 3c, respectively. While no significant asso-
ciation was found between OCRs and PCL-5 scores in the male group, 
we did observe significant associations between the OCRs of state 1  
and state 3 with PCL-5 scores at WK2 and M3 in the female group. We 
observed a positive association between the OCR of state 1 and PCL-5 
scores at WK2 (r = 0.187, β = 0.0034, SE = 0.0014, 95% CI: ~0.0001–
0.0045, Pcorrected = 0.044, N = 181) and M3 (r = 0.224, β = 0.0044, 
SE = 0.0014, 95% CI: ~0.0018–0.0066, Pcorrected = 0.019, N = 154). We also 
identified a negative correlation between the OCR of state 3 and PCL-5 
scores at WK2 (r = –0.269, β = -0.0043, SE= 0.0011, 95% CI: ~–0.0052 
to –0.0013, Pcorrected = 0.004, N = 181) and M3 (r = –0.208, β = -0.0036, 
SE= 0.0013, 95% CI: ~–0.0055 to –0.0011, Pcorrected = 0.014, N = 154).  
In addition, the OCR of state 3 showed a negative link with M12 PCL-5 
(r = –0.154, β = –0.0031, SE = 0.0015, 95% CI: ~–0.0054–0.0003,  
Puncorrected = 0.039, N = 117). However, this link was not significant after 
false discovery rate (FDR) correction. To confirm that the stronger 
correlation observed in the female group is not due merely to their 
larger sample size compared with the male group, we compared the 
correlations between OCR of state 1 and state 3 with PCL-5 scores at 
WK2 and M3 for both groups. We employed Fisher’s z transforma-
tion to compare the correlations, calculating the standard errors to 
ensure precision. Our results indicated a significant difference between 
female and male groups for the correlation with state 1 OCR (|Z-test  
statistic| = 2.1262, P = 0.033), and similarly for state 3 OCR (|Z-test  
statistic| = 2.1029, P = 0.035). This suggests that the relationships 
between OCR of state 1 and state 3 with PCL-5 scores at WK2 are sig-
nificantly different between the sexes.

PTS and non-PTS groups generate similar dFNC states
We categorized participants into post-traumatic stress (PTS; N = 124) 
and non-PTS (N = 151) groups on the basis of their WK2 PCL-5 scores, 
with a cut-off point of 31. Those scoring above 31 were classified as PTS, 
while those below were considered non-PTS39. We used the term PTS 
instead of PTSD because the classification was based on PCL-5 scores 
at the time of imaging (WK2), before an official PTSD diagnosis at WK8. 

Table 1 | Participant demographics and clinical information

Characteristic Mean (s.d.) or N (%)

Demographic characteristic

 Age 34.55 (12.78)

 Sex assigned at birth, male/female 94 (34.18%)/181 (65.82%)

 Race/ethnicitya

 Hispanic 42 (15.27%)

 White 85 (30.91%)

 Black 131 (47.64%)

 Others 15 (5.45%)

 Missing 2 (0.73%)

 Years of education 15.16 (2.31)

 Income level

 <$19,000 74 (26.91%)

 $19,001–$35,000 85 (30.91%)

 $35,001–$50,000 40 (14.55%)

 $50,001–$75,000 30 (10.91%)

 $75,001–$100,000 17 (6.18%)

 >$100,000 20 (7.27%)

 Missing 9 (3.27%)

 Trauma type

 Motor vehicle collision 197 (71.64%)

 Physical assault 29 (10.55%)

 Fall of <10 feet or from unknown height 14 (5.09%)

 Non-motorized collision 11 (4%)

 Animal-related 7 (2.55%)

 Fall of ≥10 feet 4 (1.45%)

 Sexual assault 2 (0.73%)

 Burns 1 (0.36%)

 Incident causing traumatic
 stress exposure to many people

1 (0.36%)

 Poisoningb 0 (0%)

 Other 9 (3.27%)

Clinical characteristic

 PCL-5 score

 WK2 (N = 275) 30.12 (17.58)

 WK8 (N = 243) 26.60 (17.30)

 M3 (N = 226) 23.53 (17.40)

 M6 (N = 208) 21.00 (17.33)

 M12 (N = 176) 20.33 (17.93)
aSelf-reported. bNone of the participants involved in this study experienced poisoning trauma, 
although poisoning has been reported as a type of trauma in the broader AURORA group, 
accounting for around 2% of cases.
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We then examined state pattern differences between the two groups by 
performing separate k-means clustering analyses on their dFNC data. 
Figure 4 demonstrates a notable similarity in brain states between the 
PTS and non-PTS groups, as anticipated. We quantified the similarity by 
calculating the Pearson correlation coefficient between correspond-
ing states’ FNC. The correlations between state 1 of the non-PTS group 
and state 1 of the PTS group, state 2 of the non-PTS group and state 2 
of the PTS group, and state 3 of the non-PTS group and state 3 of the 
PTS group were 0.9632 (N = 1,378, where N is number of connections, 
P ≈ 0), 0.9880 (N = 1,378, P ≈ 0) and 0.8938 (N = 1378, P ≈ 0), respectively 
(see Fig. 4a,b). The P value, displayed as zero in MATLAB, indicates a 
very small value, suggesting strong statistical significance and rein-
forcing the robustness of our findings. Comparing the OCR of states 
in the non-PTS and PTS groups, we found a consistent pattern: state 1 
consistently showed the highest OCR, while state 2 exhibited the lowest 
OCR in both groups (Fig. 4c,d). These results suggest a consistent OCR 
pattern across states in both groups, indicating a high degree of simi-
larity in identified brain states between the non-PTS and PTS groups. 
In addition, our findings that individuals with PTS tend to spend more 
time in state 1 compared with those without PTS corroborate our main 
finding that has established a connection between the heightened 
OCR of this state and PCL-5, hinting at the potential clinical relevance 
of this brain state in PTS.

Discussion
This research aimed to investigate the significance of temporal changes 
in brain connectivity, measured by dFNC, in indicating the presence and 
severity of PTSD symptoms. In addition, we examined the influence of 
sex-specific differences on the predictive ability of these connectivity 
measures. Our results indicate that the amount of time spent in an 
inter-network brain state serves as a protective factor against PTSD, 
whereas time spent in an intra-network brain state is linked to a higher 
PTSD symptom severity. Furthermore, we observed that the associa-
tion between the duration spent in the indentified states and PCL-5 is 
more pronounced in the female group.

Dynamic FNC offers an enhanced predictive power compared 
with sFNC, supplying an additional layer of information about the 
severity of symptoms in brain disorders over time, a level of detail not 
attainable by its static counterparts40–42. For example, a recent study 
demonstrated that a classification model relying on dFNC variables 
surpassed the performance of other classification models in patients 
diagnosed with multiple sclerosis42. In another study involving par-
ticipants with PTSD, the temporal variability, as captured by dFNC, 
demonstrated a higher classification accuracy than the model obtained 
only by sFNC variables41. Our findings extend beyond previous dFNC 
research in PTSD29–32 by demonstrating that brain network states can 
not only correlate with current symptom severity but also link with 
future PTSD symptoms. This ability to predict future symptom severity 
is particularly beneficial as it may enable earlier intervention strategies 
and tailored treatment plans and potentially prevent the progression 
of the disorder43,44. Moreover, the significant sex-specific differences in 
connectivity patterns we observed have not been detailed to this extent 
in earlier dFNC studies, providing new insights into how sex may influ-
ence the link between dFNC variables and the pathophysiology of PTSD.

In our study sample, comprising participants exposed to traumatic 
events, we analyzed dFNC and differentiated three distinct brain net-
work states. Two of the three states (states 2 and 3) exhibited a higher 
degree of integration in the sensory network, while state 1 demon-
strated a more disconnected sensory network. State 3 manifested the 
strongest connectivity within the CCN, within the CBN and between the 
CBN and the SCN. Moreover, we found that state 1 was characterized 
by intra-network connectivity, while the other two states exhibited 
inter-network connections with both strong negative and positive 
connectivity among brain networks. These observations collectively 
highlight that brain networks display substantial dynamism, a char-
acteristic they maintain even without the presence of external stimuli 
as has been observed in other brain disorders21–25,29,40. In addition, we 
investigated whether the dynamics of brain networks in participants 
with PTS differed from those in the non-PTS group. Upon separately 
analyzing data from both groups of participants, we observed that each 
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Fig. 2 | Three dFNC states identified in AURORA dataset. a, Three dFNC states 
identified using k-means clustering method for N = 275, including both PTS 
and non-PTS individuals. b, To enhance clarity, the dFNC states are displayed 
after removing connectivities with values between −0.3 and 0.3. States 2 and 3 
exhibit stronger positive connectivity among sensory networks (visual, auditory 
and sensorimotor). State 1, by contrast, shows more disconnections within 
these networks. State 3 demonstrates increased within-CCN connectivity and 

enhanced connectivity between the DMN and sensory networks compared with 
state 1 and state 2. State 3 also exhibits greater connectivity between the CBN and 
SCN compared with the other two states. Overall, our analysis identifies states  
2 and 3 as inter-network brain states while state 1 appears to be an intra-network 
brain state according to connectivity patterns. The color bar indicates the 
strength of the connectivity.
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group generated similar dFNC states, as expected and observed in other 
disorders45. This suggests that the dynamic nature of brain networks 
persists irrespective of PTS, highlighting the potential complexities 
and resilience of the brain’s network dynamics in the face of trauma 
and related disorders.

A previous study, employing the same population as the current 
research, demonstrated that the static functional connectivity between 
the left dorsolateral prefrontal cortex and the arousal network, as well 
as between the right inferior temporal gyrus and the DMN, could pre-
dict both WK2 and M3 PCL-5 scores20. In the current study, we found that 
the whole-brain OCRs estimated from dFNC link with the PCL-5 at the 
time of neuroimaging data collection (WK2), as well as the PCL-5 scores 
10 weeks post-data collection (M3). Our new analyses contribute to a 
deeper understanding of the neurobiological mechanisms underlying 
PTSD by looking at brain network dynamics.

Specifically, we found that participants with higher PCL-5 scores 
tend to spend more time in an intra-network brain state, referred to as 
state 1. Importantly, the amount of time spent in this state was found 
to link with future symptom severity at M3 (Fig. 3a). Supplementary 
Fig. 4 provides additional insights into the relationship between the 
OCR of state 1 and PTSD symptom severity. State 1 is characterized by 
reduced connectivity among sensory networks, including visual, audi-
tory and sensory motor networks. Furthermore, our results confirmed 
that spending more time in an inter-network brain state (state 3) is 
negatively correlated with PCL-5 scores at WK2 and M3 (Fig. 3a). State 3  
is characterized by increased connectivity among sensory networks, 
suggesting enhanced information exchange and integration between 
these networks. Previous studies have consistently reported altera-
tions in visual processing, as well as auditory processing, in individu-
als with PTSD46,47. Multiple neuroimaging studies have demonstrated 
alterations in the functioning of the visual, auditory and motor cortices 
among participants with PTSD47–49. Notably, abnormal activation in 
the visual cortex during picture-viewing tasks has been observed in 
these individuals47. Furthermore, significant alterations in visual pro-
cessing have been identified within the ventral visual stream, which 
is responsible for processing object properties47. This suggests that 
PTSD may affect the specific components of the visual system involved 
in object recognition and perception, as previous findings, including 
those from the AURORA study, highlight a role for structural integrity 
of the ventral visual stream in the development of PTSD50,51. Our cur-
rent findings, in conjunction with previous reports of subtle deficits 
in sensory networks, particularly the visual sensory system in PTSD, 
provide compelling evidence that disruptions in information integra-
tion among sensory networks are closely linked to the severity of PTSD 
symptoms50–53. Enhancing the connectivity and integration within these 
networks could potentially serve as a therapeutic target for mitigating 
symptom severity and improving outcomes in individuals with PTSD54.

In addition to the sensory networks, our findings reveal that state 1  
is characterized by relatively lower within-CBN connectivity and 
between-CBN-and-SCN connectivity (that is, CBN/SCN) compared with 
the other two states. This observation aligns with previous structural 
neuroimaging studies that have reported reduced cerebellar volumes 
in individuals with PTSD55,56. Furthermore, functional neuroimaging 
studies have provided corresponding evidence by demonstrating 
alterations in neural activity and functional connectivity of the cerebel-
lum in PTSD57. Our new finding, that participants with higher PCL-5 
scores spent more time in the state characterized by lower CBN con-
nectivity, adds another layer of information to the understanding of 
temporal network patterns associated with CBN in PTSD. This suggests 
that alterations in cerebellar connectivity patterns may play a role in 
modulating symptom severity and could serve as potential markers 
for the disorder.

In the subsequent analysis, we investigated the influence of sex 
on the relationship between brain network dynamics and symptom 
severity. We observed that the association between OCRs and PCL-5 

scores was more prominent in the female group. Specifically, the cor-
relation between state 1 OCR and WK2 PCL-5 as well as the correlation 
between state 3 OCR and WK2 PCL-5 was statistically significant within 
the female group, and the strength of this correlation was notably 
higher in the female group compared with the male group (Fig. 3b,c). 
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Fig. 3 | dFNC OCRs link with PCL-5. We employed a GLM to explore the 
association between OCRs and PCL-5 scores using data from all participants 
at WK2 (N = 275), WK8 (N = 243), M3 (N = 226), M6 (N = 208) and M12 (N = 176). 
We included age, sex at birth, years of education, income, employment status, 
marital status, scanning site, type of trauma and percentile ADI as covariates. In 
the sex-stratified analysis, sex was excluded as a covariate. With 3 predictors and 
5 time points, we have 15 tests. These data were analyzed using a two-sided test to 
assess the significance of associations in both directions. In each panel, all 15  
P values have been adjusted for multiple comparisons using FDR correction.  
a, We found a positive association between the OCR of state 1 and PCL-5 scores at 
M3 (r = 0.205, β = 0.0042, SE = 0.0012, 95% CI: 0.0018–0.0066, Pcorrected = 0.0079, 
N = 226). We also found a significant negative association between the OCR of 
state 3 and PCL-5 scores of WK2 (r = -0.197, β = -0.0033, SE = 0.0009, 95%  
CI: ~–0.0052 to –0.0013, Pcorrected = 0.0079, N = 275) and between state 3 OCR and  
PCL-5 scores at M3 (r = -0.176, β = -0.0032, SE = 0.0011, 95% CI: ~–0.0054  
to –0.0011, Pcorrected = 0.0176, N = 226). b, A positive association is observed 
between the OCR of state 1 and PCL-5 scores both WK2 (r = 0.187, β = 0.0034,  
SE = 0.0014, 95% CI: ~0.0001–0.0045, Pcorrected = 0.044, N = 181) and M3 (r = 0.224, 
β = 0.0044, SE = 0.0014, 95% CI: 0.00180–0.0066, Pcorrected = 0.019, N = 154). 
Conversely, a negative correlation is seen between the OCR of state 3 and PCL-5 
scores at both WK2 (r = -0.269, β = -0.0043, SE = 0.0011, 95% CI: ~−0.0052 to 
–0.0013, Pcorrected = 0.004, N = 181) and M3 (r = -0.208, β = –0.0036, SE = 0.0013, 
95% CI: ~–0.0055 to −0.0011, Pcorrected = 0.014, N = 154). c, We did not find any 
significant result for the male group. The color bar represents correlation 
strength, with solid box outlines indicating significant results after FDR 
correction and dashed box outlines marking significant results that did not 
survive correction.
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Note that previous studies have extensively explored the role of sex 
in the development of PTSD, with emerging evidence suggesting dif-
ferences in symptomatology and underlying neurobiology between 
male and female groups33,58. In line with these findings, our results fur-
ther support the notion that the identified dFNC biomarkers, particu-
larly when correlating with symptom severity, are stronger in female 
participants; this could potentially reflect the higher prevalence of  
PTS/PTSD in this demographic.

Recent large-scale genomic studies show that women of European 
and African ancestry may have higher heritability for PTSD than men, 
suggesting that genetic factors may also play a significant role in the 
disorder’s development, particularly in interaction with sex differ-
ences59,60. However, it is important to note that biological sex is not the 
primary determinant of the various neurophenotypes associated with 
adverse post-traumatic outcomes; other factors such as low socioeco-
nomic status also play a significant role34,35. To avoid a narrow focus 
on sex alone, our analysis considered all available socioeconomic and 
demographic factors from the dataset. This approach allowed us to 
conduct a comprehensive analysis of the connection between OCRs 
and PTSD symptom severity, specifically considering the sex effect. In 
addition, women’s risk for PTSD is partially determined by the fact that 
they experience sexual traumas more frequently. For example, a study 
shows that women exhibit almost twice the PTSD symptoms in sexual 
assault survivors61. However, in the AURORA dataset, the type of trauma 
does not play a major role in driving sex differences. The traumas are 
primarily motor vehicle collisions for both women and men, yet sex 
differences in dFNC link with PTSD symptom severity are still observed.

Our findings highlight the potential of inter-network connectivity 
as a protective mechanism against PTSD. Specifically, our results sug-
gest that transitioning the brain from a risk state (state 1) to a protec-
tive state (state 3) could be therapeutically beneficial. This insight is 
particularly applicable to closed-loop therapies such as closed-loop 
neuromodulation62 and neurofeedback63,64, which can be tailored to 
induce such state transitions. State-dependent brain stimulation, 
which adjusts its parameters on the basis of the current brain state, 
offers a promising approach to dynamically target and ameliorate 

high-risk states effectively65–67. Administering neuromodulation when 
the brain is in a high-risk state and transitioning it to a more protective 
state could enhance therapeutic outcomes by leveraging the brain’s 
natural functional network dynamics68. While the implementation of 
real-time, state-specific interventions presents technical challenges, 
including the real-time analysis of brain states and concurrent neuro-
modulation69, the potential to mitigate PTSD symptoms preemptively 
could transform early intervention strategies.

Several limitations should be acknowledged while interpreting the 
present findings. The overall sample size was relatively modest, and the 
sample sizes among the comparison groups (male group versus female 
group) were not the same. Furthermore, participants who completed all 
scans and had more complete datasets may differ from those who did 
not complete all scans, making it unclear whether the results apply to 
dropouts who may be at higher risk for PTSD after trauma. In this study, 
we examined dFNC in individuals with PTS and a non-PTS group, both of 
whom were exposed to trauma. To gain a comprehensive understand-
ing, further research is required to directly compare the dFNC variables 
among the PTSD group, a group of healthy individuals exposed to a trau-
matic event and a group of healthy individuals who have not undergone 
any traumatic experiences. However, we assume that healthy individuals 
exposed to trauma could serve as a more suitable control group for those 
with PTSD, facilitating our understanding of the underlying neural pro-
cesses of PTSD. Due to the data-driven approach employed in our study, 
which utilizes group independent component analysis70 to identify inde-
pendent components, we do not have direct measurements of amygdala 
dynamics. However, we have identified one of the 53 components as a 
proxy for amygdala activity. Supplementary Fig. 5 provides more details 
about the dynamics of the amygdala in our study population, as analyzed 
in our pipeline. In addition, in this study, we investigated the relationship 
between dFNC variables and the severity of PTSD symptoms at various 
time points. However, to enhance our understanding, future research 
should compare dFNC variables among groups exhibiting different PTSD 
trajectories during a one-year assessment. In our study, we utilized the 
initial neuroimaging data available from the AURORA study, which was 
collected 2 weeks post-trauma, before any PTSD diagnosis at week 8.  
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Given that the AURORA study also gathered neuroimaging data at 
6 months post-trauma, future research would benefit from examin-
ing the dFNC patterns using the resting-state fMRI data from this later 
time point. Such analysis could yield more profound insights into the 
evolving brain dynamics associated with PTSD. Finally, we observed 
low correlation values between dFNC variables and PTSD symptom 
severity, ranging from –0.269 to +0.224. This modest correlation may 
be influenced by several factors: the limited informativeness of the dFNC 
variables compared with other brain variables such as structural—a 
finding similarly reported in the previous AURORA study, albeit with 
different brain variables58,71. In addition, the relatively small sample size 
in our study might contribute to the low correlation values. However, 
previous PTSD studies with larger sample sizes have also reported low 
correlations between brain variables and symptom severity72. Minimal 
variance in brain variables among trauma-exposed individuals may 
further contribute to these results.

Conclusions
In summary, our investigation into the dFNC of civilians recently 
exposed to trauma revealed distinct patterns in brain network dynam-
ics. Our findings indicate that the duration participants spent in certain 
brain network states can link with both their current and subsequent 
PCL-5 scores. Specifically, we identified that spending time in an intra-
network brain state is associated with higher PCL-5 scores, while engage-
ment in an inter-network brain state correlates with lower PCL-5 scores. 
Furthermore, our analysis highlighted the role of multiple brain net-
works encompassing the visual, auditory, sensory motor and cerebellar 
networks in PTSD. We also observed a stronger association between 
brain dynamics and PCL-5 scores in the female group compared with 
the male group. By incorporating sex-specific disparities, tailoring 
interventions and treatment strategies accordingly, we can potentially 
develop more effective and personalized approaches for PTSD.

Methods
Inclusion and ethics statement
The study was conducted in accordance with ethical guidelines and 
received approval from the institutional review board (IRB) at the 
University of North Carolina (IRB no. 1707-03) on 12 May 2017, cover-
ing multiple sites. Additional sites either entered into reliance agree-
ments or conducted parallel IRB reviews. Participants provided written 
informed consent before participation. An independent medical moni-
tor evaluated and approved the procedures for handling any cases of 
clinical deterioration reported by participants or identified by study 
staff. This monitor also reviewed detailed reports of participant inter-
actions prepared by experienced clinicians.

Study population
Participants were recruited as part of the multisite ED AURORA study38. 
The study targeted individuals who had experienced a traumatic event 
necessitating an ED evaluation, with recruitment occurring within 
72 h of the event38. This cohort of early post-trauma participants was 
selected to explore pivotal changes in neurobiology and brain function 
that could heighten the risk for trauma-related psychopathology in the 
subsequent weeks or months. The study aimed to enroll a demographi-
cally representative sample of the US population without restrictions 
on demographic variables such as sex, gender, race or ethnicity.

In this study, the participants who experienced incidents such as a 
car accident, a high fall (>10 feet), a physical assault, sexual violence or 
mass casualty incident were considered to have experienced trauma. 
The inclusion criteria included (1) aged between 18 and 75 years, (2) 
being alert and oriented at the ED, (3) having the ability to speak and 
write English fluently, (4) having no cognitive impairment and (5) 
having the ability to use the smartphone for >1 year post-enrollment. 
Exclusion criteria included solid organ damage, severe bleeding,  
a requirement for a chest tube and the likelihood of being admitted for 

longer than 72 h. The study eventually included 2,943 AURORA partici-
pants with clinical item-level data, recruited between September 2017 
and June 2021, marking the final data freeze for psychometric release 
(Freeze 4.0 dataset at 22 September 2021). Participants recruited at 
one of the ED locations for the AURORA study, which directed partici-
pants to one of five ‘deep phenotyping’ sites, were invited to undergo 
MRI scans. These scans were conducted either in the morning or in 
the afternoon, approximately 2 weeks following the traumatic event 
(WK2). After thorough preprocessing and quality checks, data from 
275 participants were included in our study (Supplementary Fig. 6).

Race and ethnicity
The race/ethnicity parameter reflects the participant’s background 
based on self-reported data collected during the initial ED baseline 
survey. This variable is an integer ranging from 1 to 4, categorizing 
ethnic backgrounds as 1 for Hispanic, 2 for non-Hispanic white, 3 for 
non-Hispanic Black and 4 for non-Hispanic other. Classification is deter-
mined from responses to two survey questions—one about Hispanic, 
Latino or Spanish origin and another concerning race. An algorithm 
uses these self-reported responses to assign participants to one of 
these groups, or marks the data as missing if responses are incomplete.

Clinical measures
The PCL-5 was administered to assess PTSD symptoms at multiple time 
points, including WK2, WK8, M3, M6 and M12, as depicted in Fig. 1a. It 
is important to emphasize that different time frames were considered 
for each of the time points: the WK2 assessment reflected symptoms 
experienced over the past two weeks, while assessments from WK8 
onward considered symptoms over the past 30 days. This longitu-
dinal assessment allows for a comprehensive understanding of the 
participants’ PTSD symptomatology throughout the study duration. 
Table 1 summarizes the demographic and clinical characteristics of the 
participants included in this study. In addition, to distinguish individu-
als with PTS from those without PTS in WK2 of the study, we employ 
a threshold for the PCL-5 at 31. Participants with a PCL-5 score greater 
than 31 are classified as having PTS, while those with a score less than 
31 are considered non-PTS39. It is important to note that we refer to this 
group as having PTS and not PTSD, as the PTSD diagnosis was made in 
W8, while we used the WK2 PCL-5 scores to identify these two groups. 
Supplementary Fig. 1 illustrates the distribution of PCL-5 scores for 
individuals included in this study at various time points. In addition, a 
detailed comparison of clinical and psychological metrics across sex 
in the non-PTS and PTS groups is presented in Supplementary Table 1.  
Supplementary Fig. 7 displays the number of PTSD and non-PTSD 
participants diagnosed with PTSD during subsequent assessments at 
WK8 and at M3, M6 and M12 after the traumatic event.

Types of traumatic events in the AURORA study
The AURORA study meticulously classifies traumatic events into specific 
categories to facilitate detailed analysis and understanding. Motor vehicle 
collisions may involve participants inside, on top of or struck by various 
motorized vehicles such motorcycles and ATVs. Non-motorized collisions 
include incidents involving bicycles and skateboards. Physical assault 
encompasses intentional injuries inflicted by another person, while sexual 
assault covers any sexual contact, ranging from groping to rape. Falls are 
categorized by height, with distinctions made between falls from above 
and below 10 feet, noting that a fall from 10 feet is typically equivalent 
to falling from a one-story building. Incidents causing traumatic-stress 
exposure to many people refer to large-scale disasters that affect the 
participant along with others, such as plane crashes or natural disasters. 
Poisoning includes the ingestion or inhalation of toxic substances; burns 
cover injuries from thermal, electrical, chemical sources, radiation or 
friction; and animal-related traumas involve reactions to stings or bites. 
This structured classification aids in the tailored analysis and support  
for those affected by various types of traumatic experiences.
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Imaging acquisition protocol
Participants underwent a thorough screening process before under-
going scanning, which involved checking for any contraindications 
to MRI or other exclusion criteria. For female participants and those 
who could potentially be pregnant, a pregnancy test was administered 
before entering the MRI environment. MRI scans were conducted using 
3T Siemens scanners at each site. While the scan sequences remained 
largely consistent across imaging sites, some variations in sequence 
parameters were present due to differences in hardware. The imag-
ing protocol for each site is outlined in Supplementary Table 2. The 
resting-state imaging procedure lasted approximately 9 min, during 
which participants were instructed to keep their eyes open. They were 
asked to focus on the white cross displayed at the center of the screen 
and maintain a state of stillness throughout the imaging session20.

Preprocessing
We corrected the differences in image acquisition times between slices 
using the statistical parametric mapping73 default slice timing routines. 
The slice acquired in the middle of the sequence was chosen as the 
reference slice. The participant’s head movement was then corrected 
using a rigid body, and three-dimensional brain translations and three-
dimensional rotations were estimated. Next, the imaging data were 
resampled to 3 × 3 × 3 mm3 and spatially normalized to the Montreal 
Neurological Institute space using the echo-planar imaging template 
and the group ICA in the Neuromark template toolbox’s default bound-
ing box. The fMRI images were then smoothed using a Gaussian kernel 
with a full width at half maximum of 6 mm. We emphasize that while 
participants in this study have also been featured in other AURORA 
analyses and resting-state studies20,74, the current analyses are distinct. 
In addition, the preprocessing approach diverges from the standard 
protocols commonly employed in AURORA research to align with meth-
odologies used in our other work. A similar preprocessing approach 
has been employed in several of our previous studies23–25,45,75.

Extracting independent components using Neuromark
We applied a hybrid Neuromark framework to extract the meaningful 
networks for each participant. The Neuromark framework is based on 
the Neuromark template derived from two large datasets, including 
the human connectome project (823 participants after the participant 
selection) and genomics superstruct project (1,005 participants after 
the participant selection). This framework has been successfully imple-
mented in many studies with a wide range of brain imaging markers 
identified across different brain diseases23–25,45,75. Details of the construc-
tion of the templates can be found in our previous Neuromark paper76.

The Neuromark template consists of 53 independent compo-
nents (ICs), which were grouped into seven functional networks on 
the basis of anatomic and functional prior knowledge. These networks 
are subcortical network (SCN), auditory network (ADN), sensorimotor 
network (SMN), visual network (VSN), cognitive control network (CCN), 
default mode network (DMN) and cerebellar network (CBN) (Fig. 1b)45. 
All 53 ICs and their coordination are shown in Supplementary Table 3.  
We used these priors (the Neuromark_fMRI_1.0 template, available 
in GIFT (http://trendscenter.org/software/gift) and on the TReNDS 
website (http://trendscenter.org/data)) to run a fully automated inde-
pendent component analysis in GIFT v.4.0.5.14 (ref. 70). We further 
(1) detrended linear, quadratic and cubic trends; (2) conducted multi-
ple regression on the six realignment parameters and their temporal 
derivatives; (3) despiked detected outliers; and (4) applied a low-pass 
filter (cut-off frequency at 0.15 Hz) to remove noise and artifacts.

Dynamic FNC estimation
The dFNC of the whole brain was estimated via a sliding window 
approach, as shown in Fig. 2c (Step 1). We used a tapered window 
obtained by convolving a rectangle (window size = 20 TR = 47.2 s) with 
a Gaussian (σ = 3) to localize the dataset at each time point. Previous 

research revealed that a window size between 30 and 60 s is a suitable 
option for capturing dFNC variation77. Thus we assumed that a window 
size of 47.2 s is a reasonable choice. Next, within each window, we 
employed Pearson correlation to assess the FNC among all 53 ICs within 
each window. Given the 53 ICs, this resulted in a symmetric 53 × 53 
matrix. Furthermore, with these 53 ICs, we derived a total of (53

2
) = 1, 378 

connectivity variables for each window, encapsulating the compre-
hensive interconnections among the components. We then concate-
nated the dFNCs of each participant to form a (C × C × T) array (where 
C = 53 denotes the number of ICs and T = 210), which represents the 
changes in brain connectivity between ICs as a function of time45.

Dynamic FNC clustering
We next concatenated the dFNC of all participants and applied the 
k-means clustering algorithm to the dFNC windows to partition the 
data into sets of distinct clusters representing transient connectivity 
‘states’ (as shown in Step 2 of Fig. 1c)23–25,75. The optimal number of 
cluster order was estimated using the elbow criterion based on the 
ratio of within- to between-cluster distances. By sweeping the k value 
from 2 to 9, we found that the optimal number of clusters was three24. 
We used Euclidian distance as a distance metric in this k-means cluster-
ing algorithm with 1,000 iterations. The k-means clustering analysis 
yielded three distinct states across all 275 participants and a state vec-
tor for each individual. The state vector reflects the temporal changes 
in whole-brain FNC. Subsequently, we determined the OCR for each 
participant, which is the proportion of time spent in each state. To 
compute the OCR for state i for a participant, we counted the number 
of windows in state i attributed to that participant and divided this by 
210 (the total number of windows). Thus we obtained three OCR values 
for each individual, corresponding to the three states. (Step 3 in Fig. 1c). 
Two representative state vectors of PTS and non-PTS individuals and 
their associated OCR for each state are shown in Supplementary Fig. 3.

Statistical analysis
We employed a GLM to explore the association between OCRs and PCL-5 
scores using data from all participants (N = 275). Our analysis included 
covariates such as age, sex at birth, years of education, income, employ-
ment status, marital status, scanning site, type of trauma and percen-
tile ADI. We constructed individual models for each OCR and time 
point, resulting in a total of 15 models derived from the combination of  
3 predictors and 5 time points. In addition, we developed 15 models for 
the male group (N = 94) and the female group (N = 181). In the context 
of sex-stratified analyses, sex itself was excluded as a covariate, and 
the analysis was run separately for each sex group. Therefore, we had 
15 models for the whole-group analysis, 15 models for the female-
group analysis and 15 models for the male-group analysis. A Benjamini– 
Hochberg FDR correction was applied to account for the 15 significance 
tests corresponding to the correlations of each analysis78. In this study, 
all data analysis and statistical computations were conducted using 
MATLAB software (MathWorks) version R2022b.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data utilized in the preparation of this manuscript are publicly 
available in the National Institute of Mental Health (NIMH) Data Archive 
(NDA). The dataset identifier for this study is NIMH Data Archive Digital 
Object Identifier https://doi.org/10.15154/zwyn-rb26.

Code availability
The code used for preprocessing and dFNC calculation is available 
at https://trendscenter.org/software/. Statistical parametric map-
ping (SPM 12) is available at https://www.fil.ion.ucl.ac.uk/spm/.  
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The Neuromark framework and the Neuromark template (Neuromark_
fMRI_1.0) have been made available and incorporated into the Group 
ICA Toolbox (GIFT v.4.0.5.14: https://trendscenter.org/software/gift/). 
Users worldwide can now directly download and utilize these resources. 
The chord graphs are generated using the NiChord toolbox in Python 
(https://github.com/paulcbogdan/NiChord). The general linear model 
(GLM) code in MATLAB is available at https://www.mathworks.com/
help/stats/fitglm.html.
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