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A B S T R A C T

The Connectomes Related to Human Diseases (CRHD) initiative was developed with the Human Connectome
Project (HCP) to provide high-resolution, open-access, multi-modal MRI data to better understand the neural
correlates of human disease. Here, we present an introduction to a CRHD project, the Boston Adolescent
Neuroimaging of Depression and Anxiety (BANDA) study, which is collecting multimodal neuroimaging, clinical,
and neuropsychological data from 225 adolescents (ages 14–17), 150 of whom are expected to have a diagnosis
of depression and/or anxiety. Our transdiagnostic recruitment approach samples the full spectrum of depressed/
anxious symptoms and their comorbidity, consistent with NIMH Research Domain Criteria (RDoC). We focused
on an age range that is critical for brain development and for the onset of mental illness. This project sought to
harmonize imaging sequences, hardware, and functional tasks with other HCP studies, although some changes
were made to canonical HCP methods to accommodate our study population and questions. We present a
thorough overview of our imaging sequences, hardware, and scanning protocol. We detail similarities and dif-
ferences between this study and other HCP studies. We evaluate structural-, diffusion-, and functional-image-
quality measures that may be influenced by clinical factors (e.g., disorder, symptomatology). Signal-to-noise and
motion estimates from the first 140 adolescents suggest minimal influence of clinical factors on image quality.
We anticipate enrollment of an additional 85 participants, most of whom are expected to have a diagnosis of
anxiety and/or depression. Clinical and neuropsychological data from the first 140 participants are currently
freely available through the National Institute of Mental Health Data Archive (NDA).

1. Introduction

Depression and anxiety are two of the most prevalent psychiatric
conditions. Adolescents with these disorders are more likely to have
negative outcomes later in life, including academic and social

difficulties and suicide (Woodward et al., 2001; Fergusson et al., 2002).
Evidence from neuroimaging suggests altered brain features in these
adolescents compared to controls. Structural magnetic resonance ima-
ging (MRI) has detected alterations to cortical thickness and subcortical
volumes (MacMaster and Kusumakar, 2004; Ducharme et al., 2014;
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Marrus et al., 2015; Schmaal et al., 2016). Functional MRI (fMRI) has
shown altered activation in brain regions associated with cognitive,
reward, and other systems (Thomas et al., 2001; Monk et al., 2006;
McClure et al., 2007; Kerestes et al., 2013). Diffusion MRI (dMRI) has
detected white matter microstructural abnormalities in prefrontal,
limbic, and other pathways (Cullen et al., 2010; Henderson et al., 2013;
LeWinn et al., 2014; Liao et al., 2014; Bracht et al., 2015).

Much of our knowledge regarding anxious or depressed adolescent
brain changes has been derived from small brain imaging studies, each
with a unique set of acquisition parameters and patient characteristics
(Kerestes et al., 2013; Bracht et al., 2015). Many of these studies have
provided critical and lasting insights contributing to our understanding
of the neurodevelopment of these disorders. However, smaller and
heterogeneous datasets limit statistical power and may be particularly
problematic for the generalization of brain imaging findings in psy-
chiatric populations, which are invariably characterized by sympto-
matic heterogeneity. Individual studies yield inconsistent findings, and
few of them are confirmed by meta-analyses (Murphy et al., 2011;
Chen et al., 2016). For instance, a recent meta-analysis spanning 99
individual functional imaging experiments that compared brain acti-
vations between depressed (N = 1058 patients) and control groups
failed to yield a single reliable voxel-wise group effect (Müller et al.,
2017). Large open-access studies are advantageous in providing a high
degree of statistical power and enabling the broader scientific com-
munity to test a wide array of desired hypotheses. Additionally, stan-
dardized data acquisition, processing, and sharing allow for a higher
degree of experimental control compared to non-standardized ap-
proaches, which is beneficial for the purposes of replication
(Peng, 2011; Nichols et al., 2017).

Recent initiatives aimed at generating large, open-access brain
imaging datasets have gained considerable popularity in healthy
adults (Schumann et al., 2010; Van Essen et al., 2012), diseased po-
pulations (Weiner, 2010; di Martino et al., 2014), and aging
(Bookheimer et al., 2019). Moreover, recent efforts have targeted un-
derstanding typical childhood and adolescent brain development
through the lens of large and open-access neuroimaging initiatives such
as the Adolescent Brain Cognitive Development study (ABCD)
(Volkow et al., 2018), IMAGEN (Schumann et al., 2010), Philadelphia
Neurodevelopmental Cohort (Satterthwaite et al., 2016), and the HCP
lifespan development study (HCP-D) (Somerville et al., 2018). The HCP
has provided the neuroimaging community with high-resolution MRI
acquisition protocols, image pre-processing methods, and a large da-
tabase managed by the Connectome Coordination Facility to facilitate
the collection and dissemination of standardized and open-access brain
imaging data. The HCP Young Adult (HCP-YA; Van Essen et al., 2012)
study to date has produced meaningful and reliable findings on typical
brain organization and has led to the development of useful brain
imaging tools (see Glasser et al., 2016). The success of this initial HCP
study has prompted other HCP-based initiatives aimed at examining
brain changes associated with typical development and healthy aging
(Somerville et al., 2018; Bookheimer et al., 2019), as well as brain
changes associated with human diseases or predisposition for disease.
This latter group of studies, termed Connectomes Related to Human
Disease (CRHD; see https://www.humanconnectome.org/disease-
studies), takes advantage of the HCP protocols and the potential for
comparison to a large, normative data set (HCP-YA) to investigate the
neural correlates of human disease.

Here, we describe the Boston Adolescent Neuroimaging of
Depression and Anxiety project (BANDA), a CRHD study aimed at
better understanding, predicting, and diagnosing adolescent depression
and anxiety disorders. This project will collect multimodal neuroima-
ging, clinical, and neuropsychological data from 225 adolescents be-
ginning at ages 14 to 17. From these adolescents, 180 will have a
current diagnosis of anxiety and/or depression according to Diagnostic
and Statistical Manual of Mental Disorders (DSM-5) definitions
(APA, 2013). Participants will undergo follow-up clinical assessments at

six months and one year post-imaging to allow for inquiries into the
longitudinal prediction of symptom changes. Although anxiety and
depression are often treated as separate disorders in brain imaging
studies, pure cases of these disorders are not largely represented in the
adolescent population (Clark et al., 1995; Krueger, 1999) and co-
morbidity may serve as a useful indicator of illness severity (Lang et al.,
2016). Our recruitment requires positive classification of anxiety and/
or depression based on DSM-5 (APA, 2013). However, the breadth of
continuous measures collected by the BANDA project will also afford
researchers opportunities to investigate the neural correlates of the full
spectrum of depressed/anxious symptomatology. This approach is
consistent with NIMH research domain criteria (RDoC; see www.nimh.
nih.gov/research/research-funded-by-nimh/rdoc/).

This is the first HCP study on adolescent psychiatric populations. It
will allow for larger-scale verification of previous brain imaging find-
ings, as well as standardized comparisons to other HCP data. We have
worked to harmonize imaging protocols with the HCP-D study, which is
collecting imaging and behavioral data from 1300+ healthy children,
adolescents, and young adults (Somerville et al., 2018). We have also
coordinated efforts with three other CRHD projects that are examining
aspects of adult anxiety and depression. In total, BANDA and these
partner CRHD projects aim to collect data from over 900 participants,
most of whom will have primary symptoms of depression or anxiety
disorders.

The present manuscript details the imaging acquisition protocol and
provides image quality assessments from the BANDA project. Detailed
information on the clinical and neuropsychological measures, sample
characteristics, and preliminary task fMRI findings may be found in our
companion paper (see Hubbard et al., 2020). These articles are timed
with the initial public release of data from the first 140 participants;
thus, they serve as introductions to the project, as well as methodolo-
gical references for those seeking to use these data, either in isolation or
combined with other HCP datasets.

2. Participating sites

This project is a collaboration between five sites. Recruitment, data
sharing, and study management are handled by the McGovern Institute
for Brain Research at the Massachusetts Institute of Technology (MIT).
Clinical assessment and administration of neuropsychological mea-
surements occurs at: 1) the Center for Anxiety and Related Disorders at
Boston University (BU), 2) the Center for Depression, Anxiety, and
Stress Research at McLean Hospital at Harvard Medical School
(McLean) and 3) the Child Cognitive Behavioral Therapy Program at
Massachusetts General Hospital and Harvard Medical School (MGH).
Finally, MRI scanning and administration of cognitive measurements
involving eye tracking are performed at the Athinoula A. Martinos
Center for Biomedical Imaging at Massachusetts General Hospital and
Harvard Medical School (Martinos Center).

For the cross-sectional component of the study, adolescents parti-
cipate in two sessions: 1) clinical assessment and administration of the
neuropsychological measurements and 2) MRI scanning. Fig. 1 shows
the data acquisition pipeline. For the longitudinal component of the
study, clinical data are collected at six months and one year after the
scan.

3. Imaging session considerations and challenges

A key consideration in designing the present study was ensuring the
comfort of our participants during scanning. Many of our adolescent
participants are anxious or have attention-deficit/hyperactivity dis-
order. Thus, we assumed that many participants would have reserva-
tions about entering the magnet or difficulties remaining still for the
duration of scanning. At the outset of this study, we implemented
several strategies to maximize participant comfort during MRI acqui-
sition and thus decrease the probability of attrition or motion-corrupted
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data.
One way in which we tried to maximize participant comfort is by

using a 64-channel coil (head: 7.75 × 9 × 9–10.5 in, eyes:
2.25 × 2.25–2.75 in), which is larger than the 32-channel coil (head:
7.75 × 9 × 9 in, eyes: 2.25 × 2 in) available for the scanner used in
this study. The 64-channel coil has an ergonomic design and its position
is fixed by connecting its posterior components directly to the gurney of
the scanner, whereas the 32-channel coil connects through cables.
Another strategy for maximizing participant comfort and compliance is
by familiarizing participants with the scanning procedure during a
mock-scanning session. This was done either at a mock scanner or an
actual MR environment. In this session, participants received detailed
explanations on what is expected from them during the scan and were
instructed on the use of the button box and the emergency squeeze ball.
We allowed participants to sleep or view nature videos during struc-
tural and dMRI scans.

We did not require any form of a medication “washout” period
before scanning, with participant comfort and safety in mind.
Information regarding medication usage was collected and will be made
publicly available. Briefly, 51.7% of patients were taking some form of
psychiatric medication (depressed 41.7%, anxious 63.4%). Records of
medication types and status of all participants were collected and may
be used as covariates in analyses. This is detailed in our companion
manuscript, along with illicit and legal substance use in these partici-
pants (Hubbard et al., 2020).

A final way in which we attempted to maximize participant comfort
is by minimizing scanning burden. Choices were made to reduce the
number of fMRI tasks and only include those highly relevant to these
disorders (see Hubbard et al., 2020). This meant omitting tasks col-
lected by the HCP-YA study that probe constructs that may be relevant
to general adolescent development (e.g., working memory or language
tasks), but that might not be the most relevant for understanding
adolescent depression and anxiety. Moreover, the functional tasks were
parsed into short (3–6 min) runs to create multiple opportunities for
rest breaks and “check-ins” from MRI operators. Resting state fMRI
(rfMRI) scans, where participants had to fixate on a cross-hair, were
alternated with dMRI scans, in which participants could watch nature
videos, because during our piloting stage, even adult participants re-
ported difficulty staying awake or fixating on the cross-hairs at the
center of the screen for long periods of time.

The final imaging protocol is 1 h 36 min long, with a mean in-
scanner time of 2 h and a standard deviation of 17 min. Table 1 shows
the scans and their duration. This is longer than single sessions of other

large-scale imaging studies with adolescent participants (Casey et al.,
2018; Harms et al., 2018). Despite higher putative participant burden
for a single session, about 80% of our participants reported feeling
“good” or “very good” after scanning (6.58 mean and 1.93 standard
deviation, with a score of 0 reflecting feeling “very bad” and a score of
10 reflecting feeling “very good”; see Fig. 2). This is also evidenced by
the low attrition rate. Only one out of 140 participants requested to
drop out of the study in the middle of the scanning session (0.71%),
while 3 participants dropped out before entering the MRI (2.14%), and
2 dropped out after their initial clinical appointment (1.43%). The re-
maining participants completed the full scan session.

The steps that are taken to enhance participant comfort are pre-
sumed to also reduce motion-related confounds. However, other stra-
tegies are also employed to help reduce motion artifacts in these data.
For T1- and T2-weighted scans, we use sequences with volumetric na-
vigators and reacquisition for online monitoring and reduction of mo-
tion artifacts (Tisdall et al., 2012). During dMRI and fMRI acquisition,
MRI operators are instructed to evaluate potential motion artifacts vi-
sually after each scan and give feedback to the participant. Since the
onset of this project, advances have been made in monitoring head
motion during echo-planar imaging (EPI) scans in real-time
(Dosenbach et al., 2017). This method was adopted by the HCP-D study
(Harms et al., 2018; Somerville et al., 2018) after we had scanned a
considerable number of participants, thus we opted not to include it in
our protocol.

3.1. Between-study harmonization

One goal of the BANDA project was to harmonize MRI acquisition
with other HCP studies. Harmonization will facilitate cross-validation
of findings from our sample, as well as combined hypothesis testing (see
Harms et al., 2018). Our primary targets for harmonization were the
HCP-D study of healthy childhood and adolescent development (see
Harms et al., 2018; Somerville et al., 2018) and three CRHD studies: the
Dimensional Connectomics of Anxious Misery (CRHD-AA), which aims
to collect data from 200 adult participants with anxiety symptoms; the
Perturbation of the Treatment of Resistant Depression Connectome by
Fast-Acting Therapies (CRHD-DT), which aims to collect data from 200
adult participants with severe depression; and the Mapping Con-
nectomes for Disordered Mental States (CRHD-DMS), which aims to
collect data from 300 adult participants who are experiencing varying
degrees of psychopathology (see humanconnectome.org/disease-stu-
dies/).

Fig. 1. Overview of events in the BANDA study.
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For this purpose, we use the same sequences as the aforementioned
HCP studies. Table 2 lists similarities and differences between our
scanning protocol, the HCP-YA, and the HCP-D. Our protocol for dMRI
and fMRI is harmonized with the HCP-D. Different head coils are used
(64-channel vs. 32-channel). Our structural T1- and T2-weighted
images are harmonized with the HCP-YA, except for the incorporation
of volumetric navigators for prospective motion correction, and thus

differs from the HCP-D, which incorporated a multi-echo MPRAGE se-
quence (Harms et al., 2018). Scanners, duration of resting fMRI scans,
and the gradient directions and b-values of dMRI scans are harmonized
between our study and the CRHD-AA and CRHD-DT protocols. Each of
our sister CRHD projects has at least one functional task similar to ours
(see Table 3). The CRHD-DMS project acquires data using a scanner of a
different manufacturer (GE). Acquisition parameters are very similar

Table 1
BANDA acquisition protocol. Duration for T1w and T2w reflects the total time with the maximum allowed k-space re-acquisition. AP = anterior to posterior phase
encoding (PE) direction; PA = posterior to anterior PE direction.

Modality PE Resolution (mm) Volumes Duration Stimulus

1 Localizer .5×.5 × 7 – 0:12 Movie
2 AAHeadScout 1.6×1.6×1.6 – 0:14 Movie
3 T1w vNav setter 8 × 8 × 8 – 0:02 Movie
4 T2w vNav setter 8 × 8 × 8 – 0:02 Movie
5 T1w .8×.8×.8 1 7:50 Movie
6 dMRI AP 1.5 × 1.5 × 1.5 98 5:37 Movie
7 PA 1.5 × 1.5 × 1.5 98 5:37 Movie
8 Spin Echo AP 2 × 2 × 2 3 0:32 Green screen
9 PA 2 × 2 × 2 3 0:32 Green screen
10 Resting-state fMRI AP 2 × 2 × 2 420 5:46 Fixation
11 PA 2 × 2 × 2 420 5:46 Fixation
12 dMRI AP 1.5 × 1.5 × 1.5 99 5:41 Movie
13 PA 1.5 × 1.5 × 1.5 99 5:41 Movie
14 Spin Echo AP 2 × 2 × 2 3 0:32 Green screen
15 PA 2 × 2 × 2 3 0:32 Green screen
16 Resting-state fMRI AP 2 × 2 × 2 420 5:46 Fixation
17 PA 2 × 2 × 2 420 5:46 Fixation
18 IPT fMRI AP 2 × 2 × 2 215 3:02 IPT
19 PA 2 × 2 × 2 215 3:02 IPT
20 Spin Echo AP 2 × 2 × 2 3 0:32 Green screen
21 PA 2 × 2 × 2 3 0:32 Green screen
22 EPT fMRI AP 2 × 2 × 2 405 5:34 EPT
23 PA 2 × 2 × 2 405 5:34 EPT
24 EIT fMRI AP 2 × 2 × 2 280 3:54 EIT
25 PA 2 × 2 × 2 280 3:54 EIT
26 AP 2 × 2 × 2 280 3:54 EIT
27 PA 2 × 2 × 2 280 3:54 EIT
28 T2w .8×.8×.8 1 6:58 Movie

Fig. 2. Answers to selected questions from the pre- and post-scan questionnaires. Colors represent possible answers in order.
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and post-processing strategies could be applied to mitigate any poten-
tial differences prior to joint analyses. In the discussion, we elaborate
on such strategies.

3.2. Within-study consistency

We ensured that participants received identical oral and written

instructions1 during the mock scanning and MRI scanning sessions (see
Supplementary Data). For mock scanning, the first 41 participants were
taken to a mock-scanner room. Due to infrastructure changes at the
imaging site, the rest of the participants were instead trained in an active
MRI environment with a 1.5T or 3T magnet, depending on availability.

Table 2
Hardware and acquisition parameters for HCP-YA, HCP-D, BANDA and relevant CHRD projects.

HCP-YA HCP-D BANDA CRHD-AA CRHD-DT CRHD-DMS

Number of MRI acquisition sites 1 4 1 1 1 1
Scanner Siemens Connectom 3T Siemens Prisma 3T Siemens Prisma 3T Siemens Prisma 3T Siemens Prisma 3T GE Discovery MR750 3T
Head coil elements 32 32 64 (52 used) 64 (52 used) 32 32
Max. gradient strength (mT/m) 100 80 80 80 80 50

Structural images

Resolution(mm) .7×.7×.7 .8×.8×.8 .8×.8×.8 .8×.8×.8 .8×.8×.8 .8×.8×.8
FoV (mm) 244 × 244 × 180 256 × 240 × 167 256 × 240 × 167 256 × 240 × 167 256 × 240 × 167 256 × 256 × 184

T1w

TE (ms) 2.14 1.81/3.6/5.39/7.18 2.18 2.22 1.81/3.6/5.39/7.18 3.548
TR (ms) 2400 2500 2400 2400 2500 2840
TI (ms) 1000 1000 1040 1000 1000 1060
Partial Fourier 6/8 slice 6/8
Slice oversampling (%) 0 7.7 23.1 23.1 7.7 0
Max. vNav reacquisition – 30 24 – 30 PROMO
Bandwidth (Hz/px) 210 740 220 220 740 122
Parallel imaging 2 2 2 2 2 2 × 1.25
Flip angle 8 8 8 8 8 8
Fat suppr. water excitation water excitation water excitation water excitation water excitation –

T2w

TE (ms) 565 564 564 563 564 ~75 (subject-specific)
TR (ms) 3200 3200 3200 3200 3200 2500
Slice oversampling (%) 0 7.7 0 0 7.7 0
Max. vNav reacquisition – 25 18 25 PROMO
Bandwidth (Hz/Px) 744 744 744 744 744 488
Parallel imaging 2 2 2 2 2 1.9 × 1.9

EPI

PE direction LR/RL AP/PA AP/PA AP/PA AP/PA AP/PA

dMRI

b-values (s/mm2) 1000/2000/3000 1500/3000 1500/3000 1500/3000 1500/3000 1500/3000
Diffusion directions by shell 89/90/91 92/93 92/93 92/93 92/93 74/76
Multiband factor 3 4 4 4 4 4
TR (ms) 5520 3230 3230 3230 3230 3200
TE (ms) 89.5 89.2 89.2 89.2 89.2 80
Resolution (mm) 1.25 × 1.25 × 1.25 1.5 × 1.5 × 1.5 1.5 × 1.5 × 1.5 1.5 × 1.5 × 1 × 5 1.5 × 1.5 × 1.5 1.5 × 1.5 × 1.5

fMRI

TR (ms) 720 800 800 800 800 710
TE (ms) 33.1 37 37 37 37 30
Multiband factor 8 8 8 8 8 6
Resolution(mm) 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2.4 × 2.4 × 2.4

Table 3
Length of fMRI scans in HCP-YA, HCP-D, BANDA and relevant CRHDs projects. Each entry shows (number of frames per run) × (number of runs).

fMRI scan HCP-YA HCP-D BANDA CRHD-AA CRHD-DT CRHD-DMS
frames frames frames frames frames frames

Resting state 1200 × 4 488 × 4 420 × 4 420 × 4 488 × 2 440 × 4
IPT 253 × 2 280 × 2 215 × 2 228 × 2 – 316 × 1
EPT 176 × 2 178 × 1 405 × 2 340 × 2 338 × 2 204 × 1
EIT – – 280 × 4 290 × 4 – –

1 We thank Dr. Randy Buckner for providing us with the MRI instructions of
the pilot lifespan HCP study, which we adapted to our protocol.
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Resting-state and task fMRI practice sessions are performed on a
laptop. The participants go through the instructions and tasks using a
scanner button box or laptop keyboard. During practice, a researcher
monitors that participants are performing these tasks appropriately. For
each task, participants are instructed that the task is automated, and if
they miss a trial they should continue on to the next trial. Tasks are
administered in the following order: (1) incentive processing task (IPT),
(2) emotion processing task (EPT), (3) emotion interference task (EIT).
If a participant fails to respond accurately to at least 50% of the practice
trials, the practice task and its instructions are restarted. Otherwise, the
researcher verifies that the participant is comfortable with the task
instructions and then continues on with the next portion of the study.

During the mock scanning session and throughout the actual MRI
session, participants are reminded about the importance of remaining
still in the scanner. Before entering the bore of the magnet, participants
are shown an emergency “squeeze ball” and reminded that they may
use it to leave the scanner at any moment. They are informed about
scanner noises and the importance of ensuring earplugs are properly
secured. Participants are also shown the head coil and the 5-finger
button box that they use during the task fMRI scans. Head coil mirrors
are placed at the bottom of the participant's nose. The participant is
landmarked at the eyebrows and placed into the bore of the scanner.
While in the scanner, before each scan, participants are told if they need
to remain awake or if they may rest or watch a movie. The movie shows
animals in nature without violent scenes. Participants may opt out of
watching the movie, in which case a green screen is shown.

Although we attempt to keep data acquisition as consistent as pos-
sible across participants, changes in software and hardware occur
outside of our control. The scanner host computer's software was up-
dated from VE11B to VE11C after the first 15 participants were
scanned. As part of the CMRR-sequence license agreement (http://
license.umn.edu/technologies/cmrr), sequences needed to be updated
every 6 months during the project. After scanning the 178th partici-
pant, the gradient coil of the scanner was replaced due to water leaking.
We do not anticipate that these changes would have major effects on
these data, however, prospective users of these data should be aware
that such changes had occurred. Further, we do not detect any change
in signal-to-noise ratio (SNR) at any of these timepoints.

4. Brain imaging

4.1. Hardware

Participants are imaged using a Siemens 3T Prisma whole-body
scanner with 80 mT/m gradients capable of a slew rate of 200 T/m/s.
This high gradient strength is especially valuable for achieving high
diffusion weighting with shorter echo times and thus higher SNR
(Setsompop et al., 2013; Ugurbil et al., 2013). We use the standard
Siemens Prisma 64-channel head coil, which contains 52 head and 12
neck elements. Only head elements were used in our protocol. Button
boxes used for fMRI scans contain 5 buttons, one for each finger, and
are custom made by the scanning site. Buttons corresponding to the
participant's four fingers are adjacent, while the button corresponding
to the thumb is at a lower position in the pad. Left- and right-hand
button boxes mirror one another and only one is given to a participant
based upon his or her reported lateral-hand dominance. Instructions
and images presented during fMRI, and videos presented during the
structural and dMRI scans, are projected with a Sharp LCD XG-C465X
which is back-projected to a mirror mounted on the head coil.

4.2. Structural MRI

The field of view for all scans is positioned automatically using
Siemens’ AutoAlign feature (Van der Kouwe et al., 2005), then visually
inspected and corrected by an operator to avoid aliasing. A magneti-
zation-prepared rapid acquisition with gradient echo (MPRAGE)

sequence (Mugler et al., 1990) is used for T1w and a variable-flip-angle
turbo-spin echo (TSE) sequence (Mugler et al., 2000) is used for the
T2w scan. We use variants of these sequences that utilize embedded
volumetric navigators (vNavs) for prospective correction of within-scan
motion (Tisdall et al., 2012). This has been shown to reduce biases in
brain morphometric analyses (Reuter et al., 2015; Tisdall et al., 2016).
All acquisition parameters are shown in Table 2. The maximum dura-
tion for the T1w image is 7:50 min and the minimum is 6:52 min when
no re-acquisition is necessary. For the T2w image, the maximum
duration allowed is 6:58 min and minimum is 6:01 min.

The vNavs are low-resolution, 3D echo-planar images with low flip-
angles. These images are acquired in about 0.2 s, at every TR of the
primary scan. The vNav is inserted after the inversion pulse of the T1w
scan, and during the TR delay for contrast of the T2w scan waiting
period. This procedure adds no time to the total scan duration. The
vNavs are used to calculate motion between TRs in real time, which is
fed back to update the image field-of-view position. Additionally,
quantitative information about motion between TRs is used to help
detect highly-corrupted k-space lines that need re-acquisition. When
there is motion between TRs that is greater than half a voxel in size, re-
acquisition is employed, which adds modestly to the duration of the
T1w and T2w scans (Tisdall et al., 2012).

4.3. Echo-planar imaging (EPI)

Scans are acquired with a 2D multi-band (MB) gradient-recalled
echo (GRE) echo-planar imaging (EPI) sequence. We use anterior-pos-
terior (AP) and posterior-anterior (PA) phase encoding directions to
harmonize with the HCP-D (Harms et al., 2018). The Siemens Prisma
scanner used in both projects is capable of achieving a shorter echo-
train length in the AP/PA direction, while the Siemens Connectome
scanner may achieve a shorter echo-train length with left-right and
right-left phase encoding direction, helping to decrease signal drop-out
(Smith et al., 2013).

4.3.1. Diffusion MRI
Diffusion-weighted images are acquired with an MB acceleration

factor of 4, a partial Fourier factor of 6/8, TR=3230 ms, TE=89.20 ms.
These sequences result in 1.5 mm isotropic voxel size with whole-brain
coverage, via 92 oblique-axial slices and a field of view (FoV) of
210 × 210 × 138 mm. During acquisition, q-space is densely sampled
with 183 diffusion-weighting directions, each acquired with two phase
encoding directions (PA-AP). During the 4 runs, directions are sampled
of the whole sphere on 2 shells of b = 1500s/mm2 and 3000 s/mm2.
Shells are interleaved within each dMRI run and 28 b = 0 vol are in-
terspersed uniformly across the four runs. Images are acquired over 4
runs for a total of 22:36 min.

4.3.2. Functional MRI
The fMRI data are acquired with an MB acceleration factor of 8,

TR=800, TE=37 ms, and a flip angle of 52 deg. These sequences result
in 2.0 mm isotropic voxel size with whole-brain coverage, via 72 ob-
lique-axial slices and an FoV of 208 × 208 × 144 mm. Every fMRI run
is paired with a run that has the opposite phase encoding direction (PA-
AP). Spin echo images are also acquired in opposite phase encoding
directions (PA-AP) to further correct for EPI distortions in rfMRI and
task fMRI (tfMRI).

Instructions, scanner tasks, and in-scanner follow-up questions for
fMRI are programmed in PsychoPy (Peirce, 2007, 2008). These scripts
are publicly available at: https://github.com/BANDA-connect.

4.3.2.1. Resting-state fMRI. During rfMRI scanning, participants are
shown a small, white fixation cross on a gray background.
Participants are instructed to keep still, stay awake, and blink
normally while the fixation cross is on the screen. After each of the
four 5:46 min runs, follow-up questions appear on the screen. These
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questions inquire about relevant experiences that the participants might
have during that run (e.g., about sleepiness and mind wandering).
Participants respond to these questions via the button boxes.

4.3.2.2. Task-based fMRI. Here, we briefly describe the fMRI tasks.
Additional information supporting task selection can be found in
Supplemental Table 1. For more details and preliminary results from
these tasks, see our companion article (Hubbard et al., 2020).

• Incentive Processing Task (IPT): Participants are asked to guess
whether a forthcoming number to appear on the screen will be
greater or less than 5 in order to win or lose money. Participants
receive additional payment for their correct guesses during this task.
However, the number of trials in which participants can win or lose
money is fixed. This task is adapted from Delgado and colleagues
(Delgado et al., 2000) and similar versions are used by the HCP-YA,
the HCP-D (Barch et al., 2013), the CRHD-AA, and the CRHD-DMS.2

• Emotion Processing Task (EPT): Participants decide which of two
pictures (happy, angry, sad, fearful, neutral expressions, or objects)
presented on the bottom of the display is identical to the single
picture at the top of the display (Hariri et al., 2002; Barch et al.,
2013). We used the Radboud (Langner et al., 2010) and NimStim
(Tottenham et al., 2008) face databases and object stimuli consisted
of fruits and vegetables (Chai et al., 2015). We added a sad stimulus
after the first 17 participants to remain consistent with adolescent
depression literature (Stuhrmann et al., 2011). This added 6 more
trials to each block in each run. Similar versions of this task are used
in the HCP-YA, HCP-D, and CRHD-DT2.

• Emotion Interference Task (EIT): Participants are presented a pair of
houses and a pair of faces (fearful or neutral), one arranged hor-
izontally and one vertically. They are instructed to attend to one axis
and determine whether elements on that axis are the same, while
ignoring the other axis (Vuilleumier et al., 2001; Wojciulik et al.,
1998; Fales et al., 2008b). This task is also administered in the
CRHD-AA.

Fig. 3 shows example images of T1w, T2w, dMRI and fMRI. For
dMRI, b = 0 images are shown. We show dMRI and fMRI images for
each PE direction to illustrate EPI distortions.

5. Study participants, clinical, and neuropsychological measures

Detailed information on participant demographics, recruitment, and
characterization can be found in our companion paper (Hubbard et al.,
2020). Briefly, adolescents are between the ages of 14 and 17 at ima-
ging, are fluent in English, and have a score of 85 or higher on the
Wechsler Abbreviated Scale of Intelligence (WASI-II; Wechsler, 2011).
Diagnoses of present and historical psychiatric disorders are given by
trained researchers who are, or are under the supervision of, clinical
psychologists. Diagnoses are based upon the DSM-5 (APA, 2013). For
ease of visualization and discussion, participants here are grouped into
one of three categories: Control Adolescent (CA) group, Anxious Ado-
lescent (AA) group, or Depressed Adolescent (DA). CAs have no present
psychiatric disorders, or historical diagnosis of anxiety or depression.
AAs meet the DSM-5 criteria for at least one anxiety disorder but do not
have a current depressive disorder. DAs meet the DSM-5 criteria for a
current depressive disorder and may also have a present or historical
diagnosis of anxiety disorders.

5.1. Clinical dimensional measures

This project uses questionnaires to characterize key clinical di-
mensions related to adolescent anxiety and depression. A total of seven
dimensional measures are collected for the BANDA project. These
measures, as well as the reasoning behind their selection are discussed
in our companion article (Hubbard et al., 2020). Here we assess the
relationships between continuous clinical dimensions and measures of
MRI quality. The following measures are presented because they pro-
vide a general summary of key clinical dimensions within our sample:

• SHAPS:The Snaith-Hamilton Pleasure Scale provides a dimensional
measure of hedonic capacity and tone (Snaith et al., 1995). SHAPS
scores greater than 2 are thought to reflect anhedonic tone. Ad-
ministration takes ~5mins.

• MFQ:The Mood and Feelings Questionnaire (long version) is an
assessment of core depressive symptoms (Angold et al., 1995). Ad-
ministration takes ~7mins.

• BIS-BAS:The Behavioral Inhibition System and Behavioral
Activation System questionnaire quantifies predisposition for “ap-
proach” (BAS) and “avoid” (BIS) behaviors (Carver et al., 1994).
Administration takes ~3mins.

Fig. 4 demonstrates that groups show heterogeneous expressions of
clinical dimensions. For instance, all groups are comprised of both
anhedonic and non-anhedonic adolescents. The heterogeneity of diag-
nostic labels through clinical symptomatology suggests the importance
of examining these disorders as continua.

5.2. Cognitive and neuropsychological measures

The cognitive and neuropsychological measures chosen for this
project are largely consistent with the HCP-YA and HCP-D (Barch et al.,
2013; Satterthwaite et al., 2016; Luciana et al., 2018). Measures are
selected from the NIH toolbox (www.healthmeasures.net) and the
University of Pennsylvania Computerized Neuropsychological Test
Battery (Gur et al., 2001). The behavioral measures span a broad range
in the domains of cognition, emotion, perception, and motor function.
An additional measure of cognitive control in emotional contexts is

Fig. 3. Example images from a single participant.

2 These tasks were re-implemented in PsychoPy and adapted to our scanner's
trigger, button boxes, projector and monitoring screens. Instructions, practice
and assessment questions were added.
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assessed using an emotional-dot-probe task3(MacLeod et al., 1986;
Mogg et al., 2000; Gotlib et al., 2004; Humphreys et al., 2016; see
Supplemental 1). Administration of the NIH toolbox, Pennsylvania
Computerized Neuropsychological Test Battery, and dot-probe tasks
takes ~25mins, ~20mins, and ~15mins, respectively.

6. MRI quality and clinical factors

Head motion has been shown to differ between clinical and control
populations, and to be associated with clinical symptom severity, in
both child and adult samples (Kong et al., 2014; Yendiki et al., 2014;
Couvy-Duchesne et al., 2016; Dosenbach et al., 2017). Here, we discuss
relationships between estimates of SNR and participant motion with
clinical labels and selected dimensional measures. Nearly half of our

participants have reported difficulty holding still during the scanning
session (see Fig. 2). Thus, we quantify associations of clinical factors
with motion estimates and SNR.

Here, T1w and T2w structural images are processed in Freesurfer to
obtain cortical and subcortical brain parcellations, brain masks, and
surfaces. Diffusion MR images are corrected for EPI distortions using
FSL's topup (Andersson et al., 2003) to compute susceptibility maps
based on the b = 0 images obtained with opposite PE directions. This is
combined with FSL's eddy (Andersson et al., 2016) to correct for eddy
current distortions, motion, and EPI distortions. Functional MR images
are corrected for motion using mcflirt (Jenkinson et al., 2002) and for
EPI distortions using topup (Andersson et al., 2003) to compute sus-
ceptibility maps based on spin-echo images acquired with opposite PE
directions. We correct each pair of AP- and PA-acquired rfMRI scans
using spin-echo maps acquired before that pair of rfMRI scans (8 and 14
in Table 1); we correct the IPT fMRI scans using the spin-echo maps
acquired before the last rfMRI scan (14 in Table 1). We correct the EPT
and EIT fMRI scans using the last spin-echo maps, which are acquired

Fig. 4. Clinical variables: MFQ= Mood
and Feelings Questionnaire score;
SHAPS = Snaith-Hamilton Pleasure Scale
(score greater than two reflects anhedonic
symptomology); BAS= Behavior Activation
Scale score; BIS= Behavioral Inhibition Scale
score. CA= Control Adolescents;
DA = Depressed Adolescents; AA = Anxious
Adolescents. The first and second columns
show scatter plots of each clinical variable for
all participants, color-coded by group. The
third column shows normal distributions fit to
each clinical variable for each group.

Fig. 5. Top row: SNR for T1w, T2w, and dMRI; bottom row: tSNR for fMRI (rfMRI, IPT, EPT and EIT). All measures are grouped by control, anxious and
depressed subjects. We show p-values of F-test, and Cohen's f-square values. No significant group differences were observed (all corrected p > .05, corrected
α=0.007). CA= Control Adolescents; DA = Depressed Adolescents; AA = Anxious Adolescents.

3 We thank Katheryn Humphreys and Ian Gotlib for contributing the emotion-
dot-probe task.
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before the EPT (20 in Table 1).

6.1. SNR

For structural and dMRI scans, SNR calculations use the region of
interest (ROI) of the left unsegmented white matter from Freesurfer.
The ROI is registered to the dMRI and T2 space using bbregister
(Greve et al., 2009). The mean image intensity in this ROI is divided by
the standard deviation of image intensities in a 20 mm3 background
ROI. The latter ROI does not contain any human tissue and is placed in
the right-anterior-superior corner of the image. For fMRI we calculate
temporal SNR (tSNR) for each voxel and average them. We show the
average SNR obtained from the 4 dMRI scans and the average tSNR
from all fMRI runs of the same scan (rfMRI: 4 runs; IPT: 2 runs; EPT: 2
runs; EIT: 4 runs).

6.1.1. Clinical group and SNR
Fig. 5 illustrates SNR for T1w, T2w, and dMRI, and tSNR for fMRI

scans. We test for group differences using an F-test with multiple linear
regression analysis of intercepts, with dependent variable of SNR and
independent variables of clinical classification, age, and gender. Fig. 5
shows Cohen's f-square coefficient and Bonferroni corrected p-values,
correcting for modalities and clinical classifications. No significant
group differences are observed (all corrected p > .05, corrected
α=0.007 for F-tests).

6.1.2. Clinical dimensions and SNR
In Fig. 6, we show SNR for T1w, T2w, and dMRI as a function of the

continuous clinical variables (MFQ, SHAPS, and BIS-BAS). We perform
a regression analysis with dependent variable of SNR and independent
variables of continuous clinical scores, age, and gender. We fail to find
significant relationships between SNR and the continuous scores after
Bonferroni correction for multiple comparisons (all corrected p>.05,
corrected α=0.001).

Fig. 7 shows the tSNR for the fMRI scans as a function of the same
continuous clinical variables. No significant group differences are ob-
served (all corrected p > .05, corrected α=0.001).

6.2. Motion

We estimate within-scan motion (i.e., average distance between
vNavs from the same scan for T1w and T2w) and between scan motion
(i.e., aggregate distance between different runs of scans) for each par-
ticipant. Within-scan motion is assessed because this form of motion is
known to impact data quality: e.g., corrupted k-space lines for struc-
tural, incorrect estimates of directional motion in dMRI, and spin his-
tory errors in fMRI. Between-scan motion may also impact analysis
quality when combining different runs into a single analysis or pro-
cessing steps such as surface reconstructions with Freesurfer.

FSL's FLIRT (Jenkinson et al., 2002) with 12 degrees of freedom is
used to estimate within-scan motion parameters between TRs (navi-
gator volumes). Mcflirt is used to estimate motion between consecutive
volumes for fMRI. Eddy from FSL (Andersson et al., 2016) is used to

Fig. 6. SNR for T1w, T2w, and dMRI as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared values. No significant variable
effects were observed (all corrected p > .05, corrected α=0.001).
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estimate motion within diffusion MRI volumes.
To detect which navigator volumes correspond to k-lines that

should be thrown away and re-acquired, vNavs save in the dicom
header their positions with respect to the first volume in quaternion
format. Translation and rotation are calculated and, when differences
are higher than half the voxel size, if the maximum number of re-

acquisitions has not been reached, that volume is thrown away and re-
acquired. The k-line to be re-acquired is always the one with highest
motion. The vNav motion score s is calculated in millimeters as:

= + +s r r t t u u t2 ( . )2 2 , where =r 100 2 2 cos( )
and α is the rotation angle, u the rotation axis, and t the translation.

FLIRT is also used to estimate between-scan motion. For structural

Fig. 7. tSNR for rfMRI, IPT, EPT, and EIT fMRI scans as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared values. No
significant variable effects were observed (all corrected p > .05, corrected α=0.001).

Fig. 8. Average translation within scans
(voxels/sec). Motion measurements are
shown per categorical group. We show p-
values of F-test, and Cohen's f-square va-
lues. No significant group differences were
observed (all corrected p > .05, corrected
α=0.007). CA= Control Adolescents;
DA = Depressed Adolescents;
AA = Anxious Adolescents.
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images, FLIRT estimates motion parameter changes between the first
navigator scans from the T1w and T2w images. For diffusion images,
we estimate average motion parameter changes between the first b = 0
images of each of the 4 diffusion runs. Finally, for fMRI, we estimate
motion parameter changes from the first volume of each task or rest
run.

Framewise-displacement (FD; Power et al., 2012) is commonly used

as scrubbing technique in fMRI and calculates the sum of absolute va-
lues of translational and rotational re-alignment estimates. Rotational
estimates are converted from radians to millimeters by calculating the
rotational trajectory in a sphere of 5 cm radius, an average distance
from the center of an adult brain to the cortex. Root mean square (RMS)
of FD across TRs (Siegel et al., 2014) is evaluated over fMRI scans to
evaluate the number of TRs above a certain threshold.

Fig. 9. Average rotation within scans
(degrees/sec). Motion measurements are
shown per categorical group. We show p-
values of F-test, and Cohen's f-square va-
lues. No significant group differences were
observed (all corrected p > .05, corrected
α=0.007). CA= Control Adolescents;
DA = Depressed Adolescents;
AA = Anxious Adolescents.

Fig. 10. Average translation within scans (voxels/sec). Scores are shown as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared
values. No significant variable effects were observed (all corrected p > .05, corrected α=0.001).
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6.2.1. Motion estimates by group
Figs. 8 and 9 show average translation/rotation between TRs

grouped by clinical category. We perform a T-test for each pair of
groups and Bonferroni correction by categories and modalities. No
significant group differences are observed (all corrected p > .05) for
rotation or translation within scans. Rotation and translation between
consecutive scans for each modality are shown in Supplemental Figures
S1-S2.

6.2.2. Motion vs. clinical measures
Figs. 10 and 11 show average of rotation/translation between TRs

as a function of continuous clinical variables (MFQ, SHAPS, and BIS-
BAS) for structural and diffusion images. No significant variable effects
are observed (all corrected p > .05). Fig. 10/Fig. 11 shows r-squared
values and corrected p-values.

Figs. 12 and 13 show similar plots for fMRI scans. No significant
variable effects are observed (all corrected p > .05, corrected
α=0.001).

Plots of between-scan motion as a function of MFQ, SHAPS, and BIS-
BAS are shown in Supplemental Figures S3-S4 for structural and dif-
fusion scans, and in Supplemental Figures S5-S6 for functional scans.
No significant variable effects are observed (all corrected p > .05,
corrected α=0.001).

Fig. 14 shows the average percentage of volumes with FD >
0.9 mm, which has been used previously as a threshold for discarding

fMRI volumes in adolescents (Siegel et al., 2014). Typically, when more
than 20% of volumes surpass this threshold, the subject's scan is dis-
carded from further analyses.

7. Harmonization

In this section we evaluate differences between the BANDA and
HCP-D4 data. To this end, we use 29 healthy controls from the BANDA
dataset, and 29 age-matched adolescents from the HCP-D (17 females in
HCP-D, 14 females in BANDA).

In Fig. 15 we show average SNR and tSNR for structural dMRI and
rfMRI. We performed a paired T-test, with age and gender regressed
out. We find no significant differences after Bonferroni correction for
the number of modalities (all corrected p>.05, corrected α=0.25).

In Fig. 16 we show comparisons between the first two rfMRI scans.
We did not include more rfMRI data because, for the HCP-D, the 4 runs
were acquired in two different sessions, which could add potential
confounds to comparisons. We preprocessed the first 2 rfMRI scans with
FS-FAST (http://freesurfer.net/fswiki/FsFast), and performed a con-
nectivity analysis seeding the bilateral isthmus, a primary region within
the default mode network (Robinson et al., 2015; Seibert et al., 2011).

Fig. 11. Average rotation within scans (degrees/sec). Scores are shown as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared
values. No significant variable effects were observed (all corrected p > .05, corrected α=0.001).

4 We thank Dr. Leah Somerville and the HCP-D consortium for granting us
early access to these data.
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We performed a One Sample Group Mean (OSGM) for BANDA
(Fig. 16a) and HCP-D (Fig. 16b). For group analysis we performed a
regression analysis with age and gender regressed out. Vertices that
survived the significance threshold of p>.01 after surface-based per-
mutation correction (Weiner et al., 2010; Greve et al., 2018) are shown
in Fig. 16c.

Finally, to evaluate differences in dMRI, we ran bedpostx
(Behrens et al., 2007; Jbabdi et al., 2012) with 3 anisotropic com-
partments on the full dMRI dataset. We evaluated the uncertainty of the
main fiber orientation in regions where one fiber population is expected
(i.e., corpus callosum, brainstem), and the volume fraction of each es-
timated anisotropic compartment in regions where more than one fiber
population is expected (i.e., white matter that is 4 voxels away from the
precuneus, and unsegmented white matter that is 4 voxels away from
any other Freesurfer segmentation or parcellation label). Fig. 17 shows
comparisons of these metrics between the BANDA and HCP-D datasets.
We found no significant differences after performing T-tests with age
and gender as regressors, and Bonferroni correction for the number of
structures and anisotropic compartments (all p >0.05).

8. Conclusion

The BANDA project provides a rich resource for researchers inter-
ested in understanding the neural correlates and predictors of

adolescent depression and anxiety. Open-access imaging data include
high-resolution T1w, T2w, dMRI with high-angular resolution, and
fMRI with sub-second temporal resolution collected from anxious and
depressed adolescents (ages 14–17), as well as their non-clinical
counterparts. Consistent with the RDoC framework, the present project
emphasizes sampling continuous symptom dimensions relevant to de-
pression and anxiety, which will allow researchers to investigate re-
lationships between neural and clinical diversity. Our QA analyses
suggest high data quality with minimal influence of clinical classifica-
tion or clinical features on SNR and motion estimates. Harmonization
procedures discussed and analyses demonstrated here suggest con-
fidence in allowing researchers to undertake joint analyses between
data from BANDA and other relevant imaging projects.

Previous research has demonstrated associations between motion
and clinical features that we present in our sample (e.g., Kong et al.,
2014; Couvy-Duchesne et al., 2016; Dosenbach et al., 2017). Motion
associated with clinical variables would be expected to bias imaging
analyses aimed at better understanding these variables. In our data, QA
analyses find mostly small and not statistically significant associations
between clinical status or key clinical features and SNR or head motion
estimates. Additionally, few functional imaging runs need to be dis-
carded after the application of a motion censoring criterion (>20% of
frames with >0.9 mm RMS of FD; see Siegel et al., 2014) and the
majority of fMRI runs (i.e., 97.55%) are retained using this QA

Fig. 12. Average translation within scans (voxels/sec). Scores are shown as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared
values. No significant variable effects were observed (all corrected p > .05, corrected α=0.001).
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Fig. 13. Average rotation within scans (degrees/sec). Scores are shown as a function of MFQ, SHAPS, BIS, and BAS. We show corrected p-values and r-squared
values. No significant variable effects were observed (all corrected ps > 0.05, corrected α=0.001).

Fig. 14. Percentage of frames per subject with FD greater than 0.9 mm for each scan.

Fig. 15. Average SNR for dMRI, T1, and T2
images and tSNR for rfMRI. We show p-
values of paired T-tests, and Cohen's f-square
values. No significant group differences were
observed (all corrected p > .05, corrected
α=0.25).
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approach.
Harmonization of acquisition parameters and scanner hardware can

help mitigate biases in joint analyses between independent MRI projects
(e.g., Vollmar et al., 2010; Cercignani et al., 2003; Han et al., 2006;
Jovicich et al., 2006; Leow et al., 2006; Friedman et al., 2008;
Pardoe et al., 2008; Jovicich et al., 2009; Huppertz et al., 2010;
Pagani et al., 2010; Yendiki et al., 2010; Fox et al., 2012;
Magnotta et al., 2012; Jovicich et al., 2016; Palacios et al., 2017). Our
scanner make and model, as well as dMRI and fMRI acquisition para-
meters, are harmonized with the HCP-D (Harms et al., 2018), CRHD-
AA, and CRHD-DT. This should serve to minimize bias in joint analyses
of connectomic measures derived from these projects. However, some
acquisition differences do exist. These are mainly differences in head
coil from the CRHD-DT, CRHD-DMS, and HCP-D, scanner make from
the CRHD-DMS, and some structural acquisition parameters from all
projects. Thus, additional analytic procedures may be beneficial for
harmonizing BANDA data to these of other HCP projects. Several
methods have been shown to be effective in reducing bias when com-
paring imaging data acquired from different sites with different hard-
ware and acquisition parameters (Mirzaalian et al., 2016; Fortin et al.,
2018; Yu et al., 2018; Karayumak et al., 2019), but travelling subjects
or age- and gender-matched healthy subjects may need to be scanned at
each harmonizing site. Comparisons of SNR, rfMRI connectivity ana-
lyses, and dMRI fiber compartment estimations between healthy ado-
lescents from the BANDA and HCP-D cohorts have shown no significant
differences, suggesting that a joint analysis at a larger scale would be
feasible. However, interpretations of direct comparisons across dif-
ferent imaging studies may still need to be approached with caution
(see Harms et al., 2018). More research is needed to understand the
specific effects of protocol differences on imaging data. Although this
was beyond the scope of the current project, more rigorous evaluation
of acquisition differences may be undertaken by utilizing a travelling
human phantom to provide potential correction factors for cross-study
comparison.

Large imaging initiatives and harmonized protocols will allow
analyses at larger scale with higher statistical power to potentially shed
light into current psychiatric neuroimaging discrepancies
(Murphy et al., 2011; Chen et al., 2016; Müller et al., 2017). Harmo-
nization of independent neuroimaging projects may increase accuracy
of prediction models of disease and treatment (e.g. Whitfield-
Gabrieli et al., 2016). It is important to note that large imaging in-
itiatives provide homogeneous clinical characterization definitions,
which could exclude severe cases that would require personalized
protocols. The outreach of such prediction models may be limited by
clinical characterization definitions and exclusion criteria. Never-
theless, the BANDA project emphasized sampling the full spectrum of
depressed/anxious symptoms and their comorbidity.

The BANDA project will provide the first HCP brain imaging dataset
on adolescent anxiety and depression. Raw data and data minimally

preprocessed with previously developed pipelines (Glasser et al., 2013)
will be made publicly available. De-identified data will be available
publicly through the NIMH Data Archive (https://ndar.nih.gov/). Fu-
ture data will also be made available through this repository at regular
intervals up to the planned total enrollment of 225 participants.
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