
https://doi.org/10.1177/1550059418795578

Clinical EEG and Neuroscience
2019, Vol. 50(1) 3–12
© EEG and Clinical Neuroscience 
Society (ECNS) 2018
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1550059418795578
journals.sagepub.com/home/eeg

Psychology/Psychiatry

Introduction

Resting EEG-Measures as Predictive and Diagnostic 
Biomarkers

Major depressive disorder (MDD) is a highly prevalent and 
chronic disorder, and a leading cause of disability world-
wide.1 Considering its immense contribution to the overall 
global burden of disease, the delayed onset of the effects of 
antidepressants (AD) and an AD nonresponse rate of up to 
50%,2 a robust and simple method for predicting AD treat-
ment response would be very valuable. Electroencephalogram 
(EEG)-derived neurophysiological measures are promising 
biomarkers for predicting AD treatment response and for dis-
criminating between MDD patients and healthy subjects (see 
Olbrich and Arns,3 Bruder et al,4 and Alhaj et al5 for review). 
They are highly heritable,6 widely available and they provide 
direct information on brain activity with a temporal resolution 
in the millisecond range.7
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Abstract
Several studies have found upregulated brain arousal during 15-minute EEG recordings at rest in depressed patients. 
However, studies based on shorter EEG recording intervals are lacking. Here we aimed to compare measures of brain 
arousal obtained from 2-minute EEGs at rest under eyes-closed condition in depressed patients and healthy controls in a 
multisite project—Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC). We 
expected that depressed patients would show stable and elevated brain arousal relative to controls. Eighty-seven depressed 
patients and 36 healthy controls from four research sites in the United States were included in the analyses. The Vigilance 
Algorithm Leipzig (VIGALL) was used for the fully automatic classification of EEG-vigilance stages (indicating arousal states) 
of 1-second EEG segments; VIGALL-derived measures of brain arousal were calculated. We found that depressed patients 
scored higher on arousal stability (Z = −2.163, P = .015) and A stages (dominant alpha activity; P = .027) but lower on 
B1 stages (low-voltage non-alpha activity, P = .008) compared with healthy controls. No significant group differences were 
observed in Stage B2/3. In summary, we were able to demonstrate stable and elevated brain arousal during brief 2-minute 
recordings at rest in depressed patients. Results set the stage for examining the value of these measures for predicting clinical 
response to antidepressants in the entire EMBARC sample and evaluating whether an upregulated brain arousal is particularly 
characteristic for responders to antidepressants.
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Among the most investigated findings in studies examining 
resting EEG Measures as AD response predictors are changes 
in the alpha band: several studies found greater resting state 
EEG alpha power in depressed patients who respond to antide-
pressants relative to nonresponders,4,8-11 mainly at posterior 
scalp locations. The posterior location was confirmed in a 
study analyzing spectra from reference-free current source 
density waveforms,8 which represent more closely the underly-
ing neuronal generators.12,13 For decades, elevated alpha activ-
ity during rest has consistently been found in MDD patients in 
comparison with controls (see Olbrich and Arns3 for review). 
Importantly, prominent resting EEG characteristics, such as 
posterior EEG alpha oscillations, are highly stable over long 
time intervals (>12 years) in adults, thereby meeting the 
requirement of a trait biomarker.11,14,15

More recently, Hegerl and colleagues developed the 
Vigilance Algorithm Leipzig (VIGALL; http://www.uni-
leipzig.de/vigall/), which classifies consecutive 1-second seg-
ments of eyes-closed resting EEG into different EEG-vigilance 
stages, indicating states of brain arousal. On a behavioral level, 
several states of arousal can be discerned during the waking 
state,16,17 ranging from high wakefulness to sleep onset.18 
VIGALL allows the objective assessment of the dynamics of 
brain arousal within multichannel EEG recordings using low-
resolution electromagnetic tomography (LORETA)19,20 for its 
automatic stage classification. It was broadly validated with 
simultaneous EEG-FDG-PET (EEG–fluorodeoxyglucose–
positron emission tomography),21 as well as EEG–functional 
magnetic resonance imaging studies,22 and by relating EEG-
vigilance stages to parameters of the autonomous nervous sys-
tem.23-26 A recent genome-wide association analysis (GWA) 
with arousal regulation (as assessed with VIGALL) revealed the 
involvement of a transmembrane protein, which has also been 
linked to depression in other GWAs.27 Evidence of elevated and 
more stable brain arousal regulation in depressed individuals 
compared with healthy controls, based on 15-minute eyes-
closed EEGs, was found28 and replicated in two samples.29,30

A relatively new paradigm in biomarker research is a multi-
marker strategy to improve the discriminative power and to 
achieve sufficient prediction accuracy in order to personalize 
treatment. For example, in the context of the multisite placebo-
controlled randomized clinical trial—Establishing Moderators 
and Biosignatures of Antidepressant Response for Clinical 
Care (EMBARC)31,32)—the value of multiple biomarkers for 
differential prediction of response to AD are systematically 
examined to develop biosignatures,31,32 which consist of a com-
bination of markers with combined predictive value.31 Prior to 
examining brain arousal regulation as a marker for response 
prediction in the EMBARC study, the current feasibility study 
was conducted.

Rationale and Aim of the Feasibility Study

Within the EMBARC project, a new standardized processing 
procedure had been developed to ensure data compatibility 
between EEG acquisition sites.32 This procedure implemented 

a standardized EEG procedure manual, data interpolation of 
different EEG recording setups to a common montage and 
sample rate, and a single standardized processing pipeline at all 
test sites (see figure 1 in Tenke et al32). Test-retest reliability of 
EEG-derived measures following the standardized procedures 
was demonstrated to be good to excellent.32 The assessment of 
brain arousal in the resting EEG data of the EMBARC study 
(four 2-minute periods, half with eyes open, half with eyes 
closed) presented several challenges for VIGALL assessment. 
For example, the duration of each eyes-closed period was only 
two minutes, as opposed to the 15- to 20-minute recording 
period usually used for EEG-vigilance analyses.18 In addition, 
the EMBARC standardized processing procedure differed from 
the VIGALL standardized processing procedure (eg, concern-
ing artifact correction). To evaluate whether automatic staging 
of EEG-vigilance in this dataset is feasible this initial study 
was conducted in a subsample of the EMBARC study before 
addressing the main study question of AD-response prediction 
in a separate report.

To this end, we examined whether the upregulated brain 
arousal previously demonstrated in depressed patients as com-
pared with healthy adults using 15-minute resting EEG data28-30 
could be replicated in 2-minute EEG recordings at rest under 
eyes-closed condition. We expected that depressed patients 
would show a more stable regulation and higher level of brain 
arousal than healthy controls.

Materials and Methods

Study Participants

The sample characteristics of all randomized depressed partici-
pants (N = 309) is described elsewhere.31 In this feasibility 
study, a subsample of 96 patients with MDD (among the first 
100 batch with usable EEG data) constituted the patient sample 
from 4 testing sites: Columbia University Medical Center in 
New York (CU; n = 22), Massachusetts General Hospital in 
Boston (MG; n = 11), University of Texas Southwestern 
Medical Center in Dallas (TX; n = 41; and University of 
Michigan in Ann Arbor (UM; n = 22). Main inclusion criteria 
were age between 18 and 65 years (male/female), chronic (epi-
sode duration >2 years) or recurrent (⩾2 recurrences) nonpsy-
chotic MDD (according to DSM-IV) with an early onset (before 
age 30 years), fluency in English, and provision of written 
informed consent. Main exclusion criteria included diagnosis 
of bipolar disorder or schizophrenia (current or lifetime), other 
axis I or II diagnoses (except for nicotine/caffeine dependence), 
meeting DSM-IV criteria for substance abuse in the past six-
months (except for nicotine). Of the 96 participants in the sub-
sample used for the current analysis, data from eight depressive 
participants were eliminated due to bad EEG quality (⩾ 70% 
of artifactual epochs in the first eyes-closed period), thus leav-
ing data of 87 patients for the EEG-vigilance analyses.

The control sample for this feasibility study consisted of a 
total of 38 healthy adults (24 female, mean age of 37.6 years, 
age range 18 to 65 years,31,32 including study participants 

http://www.uni-leipzig.de/vigall/
http://www.uni-leipzig.de/vigall/
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from CU (n = 10), MG (n = 9), TX (n = 10), and UM (n = 
9). Recruitment and screening methods are described else-
where.32 Main inclusion criteria included age between 18 and 
65 years, Quick Inventory of Depressive Symptomatology 
Self-Report (QIDS-SR)33 score <8, fluency in English, and 
provision of written informed consent. Main exclusion crite-
ria included diagnosis of major depression, bipolar disorder 
or schizophrenia (current or lifetime), current axis I or II diag-
noses (except for nicotine/caffeine dependence), meeting 
DSM-IV criteria for substance abuse in the past six months 
(except for nicotine). Between testing sites, there was no sig-
nificant difference in mean age or gender ratio; a more 
detailed description of inclusion and exclusion criteria is pro-
vided by Tenke et al.32 Data from two control subjects were 
eliminated due to bad EEG quality (⩾70% of artifactual 
epochs in the first eyes-closed period), thus leaving data of 36 
controls for the EEG-vigilance analyses.

Questionnaires

The 17-item Hamilton Rating Scale for Depression (HAMD-
17)34 was administered to assess the severity of depressive symp-
toms. The sum score ranges between 0 and 52 whereby scores of 
0 to 7 are considered as being normal, 8 to 16 indicate mild 
depression, 17 to 23 moderate depression and scores >24 sug-
gest severe depression.35 The Edinburgh Handedness Inventory 

(EHI)36 laterality quotient (LQ; −100 to +100 maximum left to 
maximum right-handed) was used to assess handedness.

Resting EEG Acquisition Procedure

All four test-sites followed the EEG Procedure Manual to ensure 
standardized test administration.32 Experimenters at each lab 
were certified by the Columbia lab for EEG cap placement and 
task instruction via video conference. EEG acquisition at the 
four testing sites was conducted using different equipment, 
extensively outlined in Tenke et al.32 Continuous EEG data were 
recorded while participants sat quietly for four 2-minute periods 
in fixed order: eyes-open (block 1), eyes-closed (block 2), eyes-
closed (block 3), eyes-open (block 4). During the recording, 
participants were instructed to remain still, inhibit blinks or eye 
movements and, during the eyes-open condition, fixate a central 
cross on a monitor.32 For the purpose of this study, only block 2 
was examined (ie, the first eyes-closed condition).

Preprocessing Pipeline for Resting EEG

The preprocessing strategies to obtain comparable data of the 
four testing sites have been described by Tenke et al.32 Figure 1 
presents the flowchart of the (a) standardized preprocessing 
pipeline for resting EEG of the EMBARC study and (b) the pro-
cedure preceding automatic EEG-vigilance stage classification.
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Figure 1.  Flowcharts of the preprocessing pipeline (a) for continuous EEG of the EMBARC study, reproduced with permission from 
publisher32 and (b) preceding the EEG-vigilance staging with VIGALL 2.1.
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First, after data format conversion and import into Brain 
Vision Analyzer, a marker (“USE”) was placed in every alternate 
2-second epoch of block 2. Thereafter, 1000 ms after “USE” were 
segmented to obtain sequential nonoverlapping 1-second seg-
ments. Because of the preprocessed and segmented state of the 
resting EEG data, we refrained from preprocessing steps usually 
applied to raw data before applying VIGALL to comply with the 
standardized EMBARC protocol.

We refrained from using independent component analysis37-39 
because of its potentially reduced efficacy for selection of inde-
pendent components due to the cleaned and blink-removed data. 
We also refrained from marking of grapho-elements (eg, 
K-complexes), because epochs exceeding a 100 µV threshold on 
any channel (including the electrooculography channels) had 
been automatically rejected to remove any epochs containing 
eye blinks. Notwithstanding, all single trials were screened for 
sleep spindles by an experienced rater, but none were identified.

Adaptation to VIGALL Algorithm

In a first step, plausibility checks of the automatic EEG-
vigilance stage classification were conducted, resulting in meth-
odological adjustments to VIGALL and the release of VIGALL 
2.1. The necessity arose from the fact that initial EEG-vigilance 
staging with an earlier version of the algorithm (VIGALL 2.0) 
yielded an incorrect classification of segments containing traces 
of eye movement artifacts as EEG-vigilance Stage B2/3, which 
is characterized by dominant delta or theta power in the EEG 
(see Table 1). Since noncephalic artifacts often occur in the 2- to 
4-Hz frequency range,40 and given the absence of sleep-spindles 
in this dataset, we circumvented this problem in a new version 
of VIGALL, which allows the manual adjustment of the delta/
theta range,18 by omitting the delta range. The decision criteria 
of the algorithm are presented in Figure 2. The software was 
written by one of the authors, is licensed under GPL3 and avail-
able at https://github.com/danielboettger/VIGALL/.

EEG-Vigilance Staging and Arousal 
Parameterization

Using VIGALL 2.1, the consecutive 1-second segments were 
classified into 5 different EEG-vigilance stages: A1, A2, A3, 
B1 and B2/3 (C was not observed; see Table 1), based on fre-
quency bands and source localization with LORETA.

To note, as no continuous EOG data were available, we 
could not discriminate stage B1 from stage 0, since this is done 
by detecting slow horizontal eye movements (SEM). Thus, 
stages B1 and 0 were combined as B1 as it is suggested when 
SEMs cannot be assessed.18 The VIGALL 2.1 classification 
results were written to a text file and imported into a Microsoft 
Excel template. Next, brain arousal parameters were calculated 
with Visual Basic for Applications (VBA) macros in Microsoft 
Excel and using SPSS-syntax in SPSS. Each 1-second staged 
EEG-segment was assigned a score ranging from 6 (A1) to 2 
(B2/3; see Table 1).

Arousal Regulation.  To quantify the extent of arousal decline 
(i.e., arousal regulation), we calculated an arousal stability 
index based on 1-minute intervals (interval 1, segments 1-60; 
interval 2, segments 2-61; etc). Scoring criteria are presented 
in Table 2; high score corresponds to a stable arousal 
regulation.

Arousal Level.  The absolute amount and the percentage (amount 
× 100/total number of non-artifactual segments) of EEG-vigi-
lance staged segments (A, B1, and B2/3) were calculated for 
block 2 (ie, the first eyes-closed condition). To calculate mean 
EEG-vigilance across block 2, we computed and averaged the 
mean of all scored 1-second segments without considering arti-
factual segments.

Statistical Analyses

Statistical analyses were performed in SPSS Statistics 24.0 
(IBM Corp; Armonk, NY, USA). To assess whether groups 
differed concerning gender, race, handedness, age, educa-
tion, and severity of depressive symptomatology we con-
ducted independent chi-square test (gender, handedness, 
race), and analyses of variance (continuous demographic 
variables). To assess group differences concerning arousal 
regulation (ie, arousal stability index), arousal level (ie, the 
relative amount of EEG-vigilance stages A, B1, and B2/3, 
mean EEG-vigilance) we conducted Mann-Whitney U tests 
due to non-normality of the data. For post-hoc analysis of 
mean EEG-vigilance, we limited the number of artifactual 
segments in each of the eight 15-second intervals. Thereby, 
subjects with 80% artifactual segments or more in any 

Table 1.  Assessment of EEG-Vigilance Stages by Applying VIGALL in the Current Study.

VIGALL Stages Stage Scoring EEG Characteristics

A1 6 Predominant occipital alpha activity
A2 5 Shifts of alpha to central and frontal cortical areas
A3 4 Continued frontalization of alpha
B1 3 Low amplitude, desynchronized non-alpha EEG with or without slow eye movements
B2/3 2 Dominant delta- and theta-power
Ca 1 Occurrence of grapho-elements indicating sleep onset

Abbreviations: VIGALL, Vigilance Algorithm Leipzig; EEG, electroencephalogram.
aNot observed.

https://github.com/danielboettger/VIGALL/
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15-second interval were excluded, leaving 66 depressed 
patients and 28 healthy controls. The one-tailed significance 
level was set to P ⩽ .05.

Results

Characteristics of Sample

Table 3 presents the demographic characteristics and the 
HAMD-17 scores at baseline of the 36 healthy controls and 
the 87 participants with MDD. Of the 36 healthy controls 
(age, mean ± SE: 37.0 ± 2.4 years), the majority (58.3%) 
were female and Caucasian (69.4%); mean HAMD-17 
scores of <1 (range 0-3) were in the normal range. Of the 87 
depressed patients (age, mean ± SE: 39.0 ± 2.4 years), the 
majority (64.4%) were female and Caucasian (65.5%); mean 
HAMD-17 scores of 18.7 (range 11-32) indicated a mild to 
severe depressive symptomatology in depressed partici-
pants. Groups did not differ in gender, race, handedness, 
age, EHI score, and education (F

1, 122
 < 1.0, nonsignificant). 

Groups differed in depression severity (F
1, 119

 = 533.94,  
P < .001).

Between-Group Comparisons of EEG Measures of 
Brain Arousal

Examples of the individual time course of EEG-vigilance 
stages across block 2 are presented in Figure 3. The time 
course of the mean EEG-vigilance over the 2-minute EEG 
(eight 15-second intervals) and the frequency distribution of 
the arousal stability scores in depressed patients and controls 
are presented in Figure 4. Between-group comparisons of 
arousal stability scores, mean EEG-vigilance and relative 
amount of EEG-vigilance stages A, B1, and B2/3 are presented 
in Table 4.

In general, arousal stability, mean vigilance, and Stage A 
vigilance scores were greater in MDD patients than healthy 
controls. However, vigilance scores in Stage B1 were greater 
in healthy controls than in MDD patients, and no significant 
group differences were observed in Stage B2/3 (see Table 4).

Concerning the arousal stability index, the between-group 
analyses revealed significant results with moderate effect size 
(Cohen’s d 0.461; P = .015). Depressed patients remained 
longer in A stages, as compared with healthy controls.

Concerning the relative amount of EEG-vigilance stages, 
MDD patients had significantly larger amount of Stage A (P = 
.027) with a moderate effect size (Cohen’s d = 0.485) and sig-
nificantly smaller amount of Stage B1 (P = .008), with moder-
ate effect size (Cohen’s d = 0.551).

Concerning the mean EEG-vigilance of the entire block 
2, no significant differences could be obtained (Cohen’s d = 
0.333, P = .085), albeit a trend was observed. Post-hoc 
analysis of mean vigilance did, however, reveal a significant 
effect (Z = −1.889, P = .029), when a successive artifact 
criterion was applied (see Materials and Methods section). 
To note, comparing both groups concerning the number of 

Figure 2.  Decision criteria of the Vigilance Algorithm Leipzig (VIGALL) used in the current study. Classification of vigilance stages is 
based on power in four regions of interest (ROIs; frontal, parietal, temporal, and occipital lobes). For these ROIs, current density power 
is calculated using low-resolution electromagnetic tomography (LORETA)19 for the alpha and delta/theta band. Prior to classification, alpha 
frequency and amplitude level is individually adapted, based on a 10-second epoch with prominent alpha activity (default range 7.5-12.5 Hz). 
For the respective epoch, the individual center of gravity for the alpha frequency and mean power in the occipital ROI are calculated. Based 
on this frequency, the alpha range (individual frequency ±2 Hz) is determined. Occipital alpha power is used to determine the individual 
alpha threshold as cutoff value in the classification of A and B2/3 stages.

Table 2.  Scoring Criteria of the Arousal Stability Index.

Scoring Criteria Score

⩾2/3 of all segments classified as A1 (minute 1 or 2) 6
⩾2/3 of all segments classified as A1-3 (minute 1 or 2) 5
⩾1/3 of segments in minute 2 classified as B1 4
⩾1/3 of segments in minute 1 classified as B1 3
⩾1/3 of segments in minute 2 classified as B2/3 2
⩾1/3 of segments in minute 1 classified as B2/3 1
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artifactual segments per 15-second interval no significant 
differences were found between groups (before and after 
limiting the number of artifactual segments) in the entire 
2-minute recording period or in any of the eight 15-second 
intervals.

Discussion

The present study used VIGALL 2.118 to compare EEG mea-
sures of brain arousal obtained from 2-minute eyes-closed 
recordings in depressed patients and healthy controls in the 
multisite EMBARC study. As expected, MDD patients 
showed a more stable arousal regulation, as evidenced by a 
higher arousal stability score, as well as relatively more A 
stages (alpha activity) and less B1 stages (low voltage, non-
alpha activity) than healthy controls. However, there were no 
group differences during B2/3 stages (indicating drowsiness) 
and the 2-minute mean EEG-vigilance score was marginally 
significant.

EEG-Measures of Brain Arousal: Regulation

Our results are in line with previous studies reporting evi-
dence of a hyperstable arousal regulation in unmedicated 
depressed patients during a 15-minute resting EEG,28 wherein 
depressed patients had a longer latency to stages A2, A3, and 
B2/3 and less switches between main stages A, B, and C, as 
well as significantly less frequent switches between EEG-
vigilance substages, relative to healthy controls. These effects 
were already present in the first 2 minutes,28 albeit more 

pronounced toward the end of the 15-minute recording. 
Conversely, although Schmidt et  al30 found a significant 
group x time interaction between unmedicated depressed 
patients and healthy controls using the means of EEG-
vigilance of five 3-minute intervals as a within-subjects factor 
time on task, significant group differences of mean EEG-
vigilance did not occur before the third 3-minute interval 
(minutes 7 to 9).30 This may indicate that a longer EEG 
recording (ie, 15-vs 2-minute recording period) may ensure 
more robust findings and may be more suitable for clinical 
practice than short 2-minute recordings.

EEG-Measures of Brain Arousal: Level

Mean EEG-Vigilance.  The mean vigilance over the 2-minute 
recording period was greater in depressed patients than in 
healthy controls, but this finding was less robust than between-
group differences of arousal stability score. Still, when restrict-
ing the number of artifacts in consecutive eight 15-second 
intervals, group differences of mean EEG-vigilance reached 
the level of significance in support of this observation. One 
reason for the higher vulnerability of mean EEG-vigilance to 
the unequal distribution of artifact segments in the 2-minute 
recording period could be due to missing segments at the end 
or the beginning of the recording, which may create a bias in 
producing results that are falsely low or high. For example, 
given that eyelid closure results in alpha synchronization in 
most people,42 dominant artifact contamination in the second 
minute of recording could result in a falsely high EEG-vigi-
lance score, given that artifacts were not taken into account for 

Table 3.  Characteristics of 36 Healthy Controls and 87 Depressed Patients.

Healthy Controls (n = 36)
Depressed Patients  

(n = 87) Comparison

Characteristic n % n % Chi-Square P

Sex .529
  Female 21 58.3 56 64.4  
  Male 15 41.6 31 35.6  
Race .883
  White 25 69.4 57 65.5  
  Black or African American 7 19.4 22 25.3  
  Asian 2 5.6 3 3.4  
  American Indian/Alaska native 0 — 1 1.2  
  More than one race 2 5.6 4 4.6  
Handedness (EHI) .296 (Fisher’s exact P)
  Left-handed 5 13.9 6 6.9  
  Right-handed 31 86.1 81 93.1  

  Mean SE Range Mean SE Range F df P

Age (years) 37.0 2.4 18-65 39.0 1.5 18-65 0.52 122 .474
Education (years) 15.2 0.4 10-20 15.1 0.3 9-21 0.04 122 .839
EHI score 67.5 4.7 -100-100 74.7 4.7 -100-100 0.60 122 .441
HAMD-17 0.7 0.2 0-3 18.7 0.5 11-32 533.94 119 <.001

Abbreviations: EHI, Edinburgh Handedness Inventory; HAMD-17, 17-item Hamilton Rating Scale for Depression.
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Figure 3.  Time course of scored EEG-vigilance over 120 consecutive 1-second segments in (a) a patient with major depressive disorder 
and (b) a healthy control subject. To obtain EEG-vigilance scores, consecutive 1-second EEG segments were classified using the Vigilance 
Algorithm Leipzig into five different EEG-vigilance stages: A1, A2, A3, B1, B2/3 (based on frequency bands and source localization with 
LORETA). Each staged segment was assigned a number ranging from 6 (highest Stage A1) to 2 (lowest Stage B2/3).
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the calculation of the 2-minute mean vigilance score. Thus, for 
the assessment of the mean EEG-vigilance, a successively 
applied artifact criterion is crucial.

EEG-Vigilance Stages A, B1, and B2/3.  Several studies have found 
higher occurrence of EEG-vigilance Stage A and lower occur-
rence of B1-stages in depressed patients, relative to controls, in 
15- to 20-minute resting EEGs.28-30 Despite the relative short 
eyes-closed period of two minutes analyzed in the current study, 
we obtained similar findings, that is, a pattern of increased alpha 
and decreased desynchronized non-alpha EEG in MDD patients. 
Of note, group differences of Stages A and B1 were significant, 
but not group differences of Stage B2/3. We attribute this to its 
overall rare occurrence (<3.5%) within the short recording time. 
Our findings are consistent with previous studies that demon-
strated increased alpha power in MDD patients43,44 in compari-
son with healthy controls (reviewed in Olbrich and Arns3).

Limitations

Limitations of the current study include a lack of control for 
sleep quality or duration during the night preceding the EEG 
recording, although participants had been instructed to get 
adequate sleep before testing. Despite these limitations, the 
present findings are in remarkable agreement with those of 
prior reports.28,45

Conclusion

We were able to replicate the finding of a more stable regula-
tion and elevated level of brain arousal in MDD patients dur-
ing short 2-minute EEG recordings at rest using an EEG-based 
algorithm for automatic EEG-vigilance stage classification. 
For the first time, we applied a fully automatic version of 
VIGALL in a multisite study which uses standardized proce-
dures across testing sites that differ from VIGALL’s standard 
operating procedure, suggesting a broader applicability of this 
algorithm. Accordingly, an evaluation of these EEG measures 

of brain arousal as a putative predictor of AD response is war-
ranted as the logical next step in keeping with the aims of the 
EMBARC study.
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