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ABSTRACT
BACKGROUND: The National Institute of Mental Health Research Domain Criteria (RDoC) initiative aims to establish a
neurobiologically valid framework for classifying mental illness. Here, we examined whether the RDoC construct of
reward learning and three aspects of its underlying neurocircuitry predicted symptom trajectories in individuals with
mood pathology.
METHODS: Aligning with the RDoC approach, we recruited individuals (n = 80 with mood disorders [58 unipolar and
22 bipolar] and n = 32 control subjects; 63.4% female) based on their performance on a laboratory-based reward
learning task rather than clinical diagnosis. We then assessed 1) anterior cingulate cortex prediction errors using
electroencephalography, 2) striatal reward prediction errors using functional magnetic resonance imaging, and 3)
medial prefrontal cortex glutamatergic function (mPFC Gln/Glu) using 1H magnetic resonance spectroscopy.
Severity of anhedonia, (hypo)mania, and impulsivity were measured at baseline, 3 months, and 6 months.
RESULTS: Greater homogeneity in aspects of brain function (mPFC Gln/Glu) was observed when individuals were
classified according to reward learning ability rather than diagnosis. Furthermore, mPFC Gln/Glu levels predicted
more severe (hypo)manic symptoms cross-sectionally, predicted worsening (hypo)manic symptoms longitudinally,
and explained greater variance in future (hypo)manic symptoms than diagnostic information. However, rather than
being transdiagnostic, this effect was specific to individuals with bipolar disorder. Prediction error indices were
unrelated to symptom severity.
CONCLUSIONS: Although findings are preliminary and require replication, they suggest that heightened mPFC Gln/
Glu warrants further consideration as a predictor of future (hypo)mania. Importantly, this work highlights the value of
an RDoC approach that works in tandem with, rather than independent of, traditional diagnostic frameworks.

https://doi.org/10.1016/j.bpsc.2021.01.004
The Diagnostic and Statistical Manual of Mental Disorders
(DSM) (1) and International Classification of Diseases (2) clas-
sify major depressive disorder (MDD) and bipolar disorder (BD)
as separate conditions distinguishable by a history of
(hypo)mania, with evidence supporting a disease-specific
treatment approach (3,4). Although these nosological sys-
tems provide a useful common language for clinicians and
researchers, their value for understanding mood disorder
pathophysiology remains limited. Accordingly, the Research
Domain Criteria (RDoC) (5,6) was proposed as a strategic
change in scientific inquiry and seeks to classify psychiatric
disorders according to measurable variability within and across
different domains of functioning. Subsequently, the Positive
Valence Systems domain—in particular, the subdomain of
reward learning—has emerged as an especially promising target
for understanding the mechanisms underpinning mood symptoms.

Reward learning refers to the ability to adaptively modulate
behavior as a function of positive reinforcement. Abnormalities
in reward learning and underlying neurocircuitry have been
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strongly implicated in mood disorders (7,8). For example,
performance on behavioral reward learning paradigms has
been shown to 1) differentiate patients with MDD or BD from
control subjects during symptomatic and asymptomatic states
(9,10), 2) predict anhedonia severity and treatment outcome
(11), 3) change following pharmacological dopaminergic ma-
nipulations (12,13), 4) be linked to striatal dopamine transporter
function and frontostriatal functional connectivity (14), and 5)
be heritable (15). Decades of research in laboratory animals
has identified the neurobiological processes underpinning
reward learning (16). Therefore, examining how these pro-
cesses vary across the mood disorder spectrum represents a
fruitful avenue for identifying the neurobiological basis under-
pinning mood disorder heterogeneity.

Imaging and computational studies suggest that the brain
employs distinct hierarchical systems to support learning
(17,18), and to date the neural circuitry involved in learning
from positive reinforcement has been especially well charac-
terized (19–21). Importantly, individuals with MDD or BD have
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been found to exhibit dysregulation in three key aspects of this
neurocircuitry. First, a fundamental mechanism that supports
reward learning is the reward prediction error (RPE), which is a
striatal dopamine-based signal that encodes violations of
reward expectancies (22). Individuals with MDD have been
found to have blunted striatal RPE signals during learning
(23–25), and this blunting has been linked to a more recurrent
depressive illness course (23). Similar abnormalities have been
observed in individuals with BD, although the direction of ef-
fects often diverges from those observed in studies of unipolar
MDD. Relative to healthy control subjects, euthymic individuals
with BD or individuals with subthreshold hypomania have been
found to have elevated striatal activation during reward antic-
ipation (26) and reward outcome (27). Similarly, manic in-
dividuals with BD show striatal responses that fail to
differentiate between receipt and omission of rewards, sug-
gestive of abnormal RPE signaling (28).

Second, event-related potential (ERP) studies highlight the
reward positivity (RewP) as another important reward circuit
component linked to mood pathology (29). The RewP is a
frontocentral electroencephalographic (EEG) deflection that is
elicited by RPEs and is thought to originate from the anterior
cingulate cortex (ACC) and striatum (30). Smaller RewP am-
plitudes, as well as weaker RewP-related ACC activation,
predict poorer reward learning (31,32). Furthermore, abnormal
RewP amplitudes have been observed in individuals with hy-
pomania (33) and those with MDD (34), and they have been
found to predict future depression onset in healthy individuals
(35). Critically, the source of these RewP signals is believed to
be distinct from that of striatal dopaminergic RPEs (36); hence,
they offer complementary information to functional magnetic
resonance imaging (fMRI)-based RPE studies in terms of un-
derstanding the biological basis of reward learning
dysfunction.

Finally, while the reward learning literature has historically
emphasized the role of dopamine, the hedonic effects of
dopamine are thought to be partially mediated by its in-
teractions with glutamatergic signals originating in the medial
prefrontal cortex (mPFC) (37). In line with this notion, in animal
studies disrupted glutamate signaling between mPFC and
striatal regions impairs reward motivation (38), and in psychi-
atrically healthy humans mPFC glutamate levels (measured
using magnetic resonance spectroscopy [MRS]) predict
reward-based decision making (39). Human MRS studies often
focus on the glutamine/glutamate ratio (Gln/Glu) because
glutamate is released into the synaptic cleft, taken up by glial
cells, converted into glutamine, and cycled back into neurons
(40), making mPFC Gln/Glu a proxy measure of the integrity of
the glutamatergic synapse. Of note, meta-analyses of MRS
studies have highlighted mPFC glutamate abnormalities in
MDD and BD, albeit in opposite directions, with glutamatergic
transmission being reduced in MDD (41) but elevated in BD
(42) across manic (43), depressive (44), and euthymic (45)
mood states.

Taken together, these studies suggest that striatal and
ACC-mediated PE signals, along with mPFC Gln/Glu, are
promising biomarkers of reward learning that may be impli-
cated in mood pathology. Therefore, the aim of this study was
to determine whether variation in reward learning neurocircuit
function predicts variability in symptom trajectories in
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individuals with mood disorders. In line with the grant mech-
anism supporting this study (RFA-MH-14-050; Dimensional
Approaches to Research Classification in Psychiatric Disor-
ders), we recruited individuals based on their performance on a
well-validated behavioral reward learning task rather than on
the basis of specific DSM diagnoses. We then examined
whether neurobiological indices of reward learning predicted
cross-sectional and longitudinal variation in three reward-
relevant symptom domains, namely anhedonia, (hypo)mania,
and impulsivity. We predicted that potentiated striatal and
ACC-mediated PEs, and elevated mPFC Gln/Glu, would pre-
dict worsening (hypo)mania and impulsivity. In contrast, we
predicted that blunted striatal and ACC-mediated PEs, and
reduced mPFC Gln/Glu, would predict worsening anhedonia.
Importantly, we assessed whether these reward learning bio-
markers provided superior predictive validity in determining
symptom trajectories relative to clinical diagnostic information
alone.

METHODS AND MATERIALS

Participants

Subjects in the mood pathology group were required to have
depressive, mixed, or hypomanic symptoms severe enough to
cause distress/impairment. Participants could pursue treat-
ment but were excluded from further testing if they initiated
one of the exclusionary treatments (see Supplemental
Methods). Psychotropic medication load was quantified us-
ing previously established procedures (Supplemental
Methods). Subjects in the control group had no lifetime psy-
chiatric disorders or psychotropic medication use. This study
was approved by the Partners Human Research Committee.
Participants provided written informed consent prior to
participating.

Study Design and Recruitment

Figure 1A shows the study design. Recruitment occurred as
follows. Healthy control subjects and treatment-seeking in-
dividuals with mood disorders were screened on a probabilistic
reward task (PRT) (10,46). Screening continued until two con-
ditions were met: 1) a sample of 32 healthy control subjects
with valid PRT data, and who met study eligibility criteria, was
recruited and 2) a sample of 80 individuals with mood pa-
thology whose PRT performance spanned the full range of a
normative distribution, and who met study eligibility criteria,
was recruited. For the 80 individuals with mood pathology, we
focused on equally populating quintiles of reward learning (nw
16/quintile) (Figure 2) that were defined using cutoffs derived
from a prior normative sample of 572 control subjects who had
performed the PRT in prior studies. In total, 272 individuals
needed to be screened on the PRT to reach these two criteria
(see Figure S1 for study flow diagram).

For participants who were screened on the PRT and had
valid data, study eligibility criteria and clinical diagnoses were
further evaluated via a Structured Clinical Interview for DSM-IV
(47) conducted by master’s- or Ph.D.-level interviewers. Par-
ticipants were also screened with the Young Mania Rating
Scale (48) to ensure that at least one third of the mood pa-
thology sample exhibited (hypo)manic symptoms. Eligible
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Figure 1. Study methods overview. (A) Summary
of the study flow. Participants were screened on a
probabilistic reward task (PRT), and the patient
group was recruited so that patients’ scores on the
PRT spanned the entire range of possible scores on
a preexisting normative distribution. If eligible, a
clinical assessment was conducted and then par-
ticipants returned for two baseline neuroimaging
visits (electroencephalography [EEG] and functional
magnetic resonance imaging [fMRI]/magnetic reso-
nance spectroscopy [MRS] sessions) as well as 3-
and 6-month follow-up assessments. (B) Source
localization analyses demonstrated that scalp-
recorded reward positivity (RewP) amplitude corre-
lated with current source density in the dorsal ante-
rior cingulate cortex (ACC) (p , .005 uncorrected;
x = 23), validating RewP amplitude as a marker of
ACC-mediated activation. (C) Bilateral nucleus
accumbens (NAc) region of interest (y = 10) from
which striatal reward prediction errors (RPEs) were
extracted. (D) The 2 3 2 3 2-cm voxel placed in the
medial prefrontal cortex (mPFC) (x = 0) from which
glutamine/glutamate (Gln/Glu) metabolites were
extracted. BIS, Barratt Impulsiveness Scale; BISS-
Mania, Mania subscale of the Bipolar Inventory of
Symptoms Scale; ERP, event-related potential;
MASQ AD, Anhedonic Depression subscale of the
Mood and Anxiety Symptom Questionnaire.
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participants completed five study visits: 1) behavioral testing
and clinical assessment, 2) a baseline EEG/ERP recording, 3) a
baseline MRI scan, 4) a 3-month follow-up clinical assessment,
and 5) a 6-month follow-up clinical assessment. Participants
received $15/hour in compensation plus earnings on the
behavioral and imaging tasks.
Primary Outcomes

Anhedonia was measured using the Anhedonic Depression
subscale of the 62-item Mood and Anxiety Symptom Ques-
tionnaire (MASQ-AD) (49), and impulsivity was assessed using
the Barratt Impulsiveness Scale (BIS) (50). (Hypo)mania was
measured using the Mania subscale of the Bipolar Inventory of
Symptoms Scale (BISS-mania), which was chosen over the
Young Mania Rating Scale because it measures an extended
708 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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range of (hypo)manic symptoms (51) and showed greater
variance across both unipolar and bipolar groups. These
measures were completed at baseline and again at 3- and 6-
month follow-up assessments. All three scales demonstrated
good internal consistency (Supplemental Methods).
PRT: Quantifying Reward Learning

Reward learning was assessed using a well-validated com-
puter-based PRT (46). On each trial, a fixation cross (500 ms)
was followed by a schematic mouthless face (500 ms). Next, a
short (11.5-mm) or long (13-mm) mouth appeared (100 ms).
Participants indicated whether the mouth was long or short.
There were 3 blocks of 100 trials, and for each block 40 correct
trials were rewarded (“Correct!! You won 20 cents”). Although
long and short mouths were presented at equal frequency,
Figure 2. Recruitment based on behavioral
reward learning. (A) Number of participants with
mood pathology whose probabilistic reward task
performance fell in each quintile of reward learning
performance according to the normative distribution.
(The normative distribution was based on a separate
existing sample of N = 572 healthy control subjects.)
The dotted line indicates the a priori target of n = 16
per quintile that was set to ensure that we recruited
individuals who spanned the entire range of reward
learning performance. This target was met in all but
the lowest quintile; however, this quintile was still
adequately represented with a sample of n = 13. (B)
Frequency histograms of reward learning perfor-
mance across the control, unipolar, and bipolar
groups.
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unbeknownst to participants, correct identification of one
mouth (the rich stimulus) was rewarded 3 times more than the
other mouth (the lean stimulus).

Following quality control (Supplemental Methods), we used
signal detection analysis (52) to compute response bias (the
tendency to bias responding to the rich stimulus) using the
following formula:

log b¼ 1
2

log
�
Richcorrect 3 Leanincorrect
Richincorrect 3 Leancorrect

�

To allow calculation of response bias for cases that included
a zero in the formula, 0.5 was added to each cell of the matrix
(53). Reward learning was defined as the increase in response
bias from block 1 to block 3.

Scalp-Recorded RewP Amplitude: Quantifying ACC
PEs

The RewP was computed from 128-channel scalp-recorded
EEG acquired while participants performed a counterbalanced
version of the PRT. After preprocessing, temporospatial principal
components analysis (PCA) was used to decompose the time
domain ERP (54). Temporal variance in the averaged ERP
waveforms was examined using temporal PCA and infomax
rotation. Based on the scree plot used to determine the factors
to retain in a PCA analysis, 12 temporal factors were retained for
rotation. The spatial distribution of these temporal factors was
then examined using spatial PCA and infomax rotation, with a
spatial PCA being conducted for each temporal factor. Eight
spatial factors were retained for each temporal factor. Analyses
focused on the PCA component with timing and topography
most consistent with the RewP (TF8/SF2; see Supplemental
Methods). Furthermore, source localization (55) confirmed that
the RewP had a source in the dorsal ACC (Figure 1B). Our pri-
mary variable of interest was the difference in RewP amplitude
following feedback on lean versus rich trials (DRewP), which
captures the degree to which the ACC tracks reward probability
across different contexts.

fMRI-Based Learning Task: Quantifying Striatal
RPEs

Striatal RPE signals were assessed using a well-validated
explicit reinforcement learning paradigm (19,56) that required
participants to learn reward contingencies through trial and
error. On each trial, participants were asked to choose be-
tween 2 symbols, where each symbol in the pair was associ-
ated with an 80%/20% probability of a given outcome (gain:
$1/$0; loss: $0/2$1; neutral: gray square/nothing). We used Q-
learning to calculate the RPE (19) from participants’ behavioral
data and then imaging analyses focused on a parametric
modulation contrast for RPE signals (Supplemental Methods).

Anatomically defined regions of interest in the left and right
nucleus accumbens (NAc) were selected from prior research
showing links between dopamine transporter function and reward
learning (14) (Figure 1C). Beta weights from RPE contrasts were
extracted from these regions of interest. A one-sample t test
confirmed that the RPE in both regions of interest was .0 [left:
t106 = 3.07, p = .003; right: t106 = 4.12, p , .001], so beta values
were averaged to create a single NAc RPE beta weight that was
used for subsequent analyses. A positive RPE beta value signified
Biological Psychiatry: Cognitive Neuroscience and
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higher activation for unexpected reward and lower activation for
unexpected omission of rewards during gain trials.

MRS: Quantifying mPFC Glutamate
1H-MRS was used to assess mPFC Gln/Glu. A 2 3 2 3 2-cm
voxel was placed in the mPFC, midsagittally, anterior to the
genu of the corpus collosum (Figure 1D). The voxel was auto-
matically shimmed, with further manual shimming performed as
needed. A modified J-resolved protocol (57) was used to resolve
glutamatergic metabolites. This sequence involved the collection
of 22 echo time (TE)-stepped spectra with a TE ranging from 35
to 250 ms in 15-ms increments (repetition time = 2 s, f1 acqui-
sition bandwidth = 67 Hz, spectral bandwidth = 2 kHz, readout
duration = 512 ms, number of excitations = 16/TE step,
approximate scan duration = 12 min).

To quantify glutamate and glutamine with the modified
J-resolved protocol data, the 22 TE-stepped free in-
duction decay series was zero filled out to 64 points,
Gaussian filtered, and Fourier transformed using gamma-
simulated J-resolved basis sets modeled for 2.89T. Every
J-resolved spectral extraction within a bandwidth of 67 Hz
was fit with the spectral-fitting package LCModel (http://
s-provencher.com/pages/lcmodel.shtml) and its theoreti-
cally correct template. The integrated area under the
entire 2D surface for each metabolite was calculated by
summing the raw peak areas across all 64 J-resolved
extractions (Supplemental Methods). Our primary outcome
was the Gln/Glu ratio.

Statistical Analysis

Multivariable regression analyses examined whether
DRewP, NAc RPE, or mPFC Gln/Glu predicted anhedonia,
(hypo)mania, or impulsivity in the clinical sample cross-
sectionally and longitudinally. Separate regression models
were run for each outcome (MASQ-AD, BISS-mania, and
BIS). Models included covariates (age, sex, and medication
load), mood polarity/diagnosis (group: dummy coded with 0 =
unipolar and 1 = bipolar), the three neural predictors (DRewP,
NAc RPE, and mPFC Gln/Glu), and a group 3 predictor
interaction term for each neural predictor. Models predicting
follow-up symptom severity also controlled for baseline
symptom severity.

RESULTS

Sample Characteristics

The sample was 63.4% female (n = 71), with a mean age of
28.6 years (SD = 9.1, range = 18–60). Of the patient group,
72.5% (n = 58) had unipolar mood pathology (MDD/dysthymia
or MDD in partial remission), 27.5% (n = 22) had bipolar mood
pathology (BD type I or II, depressed, mixed, or hypomanic),
and 40% (n = 32) took medication (see Table 1 and
Supplemental Methods for details). Sample sizes for each of
the analyses varied when a participant had missing data on
one or more of the neural indices and/or follow-up measures.
Accordingly, sample sizes ranged from 25 to 32 for the control
group, from 38 to 58 for the unipolar group, and from 12 to 22
for the bipolar group (sample sizes for the various analyses are
specified below).
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Table 1. Demographic and Clinical Characteristics of Sample

HC (n = 32) Unipolar (n = 58) Bipolar (n = 22) Test p

Demographic Characteristics

Age, years, mean (6SD) 28.4 (67.7) 28.0 (68.6) 30.5 (612.1) F = 0.59 .56

Female, n (%) 17 (53.1) 41 (71.7) 13 (59.1) c2 = 2.96 .23

Education, years, mean (6SD) 17.0 (63.2) 16.0 (62.8) 15.6 (63.1) F = 1.77 .18

White, n (%) 21 (65.6) 40 (69.0) 19 (86.4) c2 = 10.02 .26

Hispanic, n (%) 2 (6.3) 6 (10.3) 2 (9.1) c2 = 0.43 .81

Clinical Diagnoses, n (%)

Current MDD – 49 (84.5) – – –

Current dysthymia – 1 (1.7) – – –

MDD in partial remission – 8 (13.8) – – –

BD-I depressed – – 7 (31.8) – –

BD-I mixed – – 0 (0.0) – –

BD-I hypomanic – – 2 (9.1) – –

BD-II depressed – – 9 (40.9) – –

BD-II mixed – – 1 (4.6) – –

BD-II hypomanic – – 3 (13.6) – –

Comorbidities, n (%)

Alcohol abuse – 0 (0.0) 2 (9.1) c2 = 5.41 .02

EDNOS or BED – 2 (3.4) 2 (9.1) c2 = 1.07 .30

GAD – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Panic disorder – 1 (1.7) 0 (0.0) c2 = 0.38 .54

PTSD – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Social phobia – 8 (13.8) 3 (13.6) c2 = 0.00 .99

Specific phobia – 3 (5.2) 2 (9.1) c2 = 0.42 .52

Medication, n (%)

Antidepressants – 19 (32.8) 4 (18.2) c2 = 1.65 .20

Mood stabilizer or anticonvulsant – 1 (1.7) 7 (31.8) c2 = 16.05 ,.001

Anticonvulsants – 0 (0.0) 1 (4.5) c2 = 2.67 .10

All tests are two tailed.
BD-I/II, bipolar disorder type I/II; BED, binge eating disorder; EDNOS, eating disorder not otherwise specified; GAD, generalized anxiety disorder;

HC, healthy control group; MDD, major depressive disorder; PTSD, posttraumatic-traumatic stress disorder.
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Correlations Among Units

Pearson correlations were used to determine the degree to
which the three neural indices mapped onto behavioral reward
learning (see Tables S1 and S2; differences in units of analysis
between diagnostic groups are reported in the Supplemental
Results and Figure S2). Across the sample, higher mPFC
Gln/Glu correlated with better reward learning (r = .27, p = .007;
n = 102) (Figure S3A). This was consistent with the linear trend
shown in Figure S3A, where mPFC Gln/Glu values increased
across the learning quintiles. Furthermore, the quintiles
explained a greater proportion of the variance in mPFC Gln/Glu
relative to diagnosis (5% vs. 2%; R2 change = .05, F change =
5.25, p = .02).

AlthoughDRewP andNAcRPEwere not correlated with our a
priori–defined learningmeasure (block 3minus block 1 response
bias), they were correlated with the total overall response bias.
Specifically, heightened NAc RPE (r = .37, p = .04; n = 32)
(Figure S3B) and DRewP (r = .41, p = .04; n = 25) (Figure S3C)
correlated with greater overall response bias in control subjects
but not in patients (p . .10, n = 75). Furthermore, across the
whole sample, heightened NAc RPE was associated with faster
learning in block 1 (r = .23, p = .02; n = 107).
710 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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Elevated mPFC Gln/Glu Correlates With More
Severe (Hypo)manic Symptoms Cross-Sectionally

Standardized values for each outcome measure across the
reward learning quintiles are shown in Figure S4 (patients only).
Multimodal regression models assessed whether the three
reward circuit markers were associated with symptom severity
cross-sectionally.

A significant group 3 mPFC Gln/Glu interaction (b = .28,
p = .04; n = 57) emerged from the model predicting
baseline (hypo)mania severity (BISS-mania), indicating that
the effect of mPFC Gln/Glu on baseline (hypo)mania
severity differed across the unipolar and bipolar groups
(Table 2). To unpack this interaction, we examined the
correlation between mPFC Gln/Glu and baseline BISS-
mania scores (both residualized for other variables in the
model) in each group. mPFC Gln/Glu was associated with
higher BISS-mania scores in the bipolar group (r = .56,
p = .045; n = 13) but not in the unipolar group (r = 2.24,
p = .12; n = 45).

In contrast, none of the neural indices predicted anhedonia
severity (MASQ-AD) or impulsivity (BIS) (all ps . .05) cross-
sectionally.
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Table 2. Models Predicting (Hypo)manic Symptom Severity
on the BISS-mania Scale

B SE b t p

Dependent Variable: Baseline (Hypo)manic Symptom Severity

(Constant) 9.14 2.33 3.92 ,.001

Age 20.09 0.08 2.13 21.18 .24

Sex 22.77 1.52 2.20 21.82 .08

Medication load 20.71 0.42 2.19 21.71 .09

Group 10.46 1.60 .69 6.52 ,.001

DRewP 20.70 1.24 2.07 20.56 .58

NAc RPE 0.03 0.57 .01 0.05 .96

mPFC Gln/Glu 29.33 16.39 2.07 20.57 .57

Group 3 DRewP 21.48 2.27 2.09 20.65 .52

Group 3 NAc RPE 2.11 1.90 .13 1.11 .27

Group 3 mPFC Gln/Glu 68.06 31.51 .28 2.16 .04

Dependent Variable: 3-Month (Hypo)manic Symptom Severity

(Constant) 3.49 1.93 1.81 .08

Age 0.06 0.06 .15 0.99 .33

Sex 22.14 1.19 2.27 21.80 .08

Medication load 20.29 0.32 2.12 20.90 .37

Baseline BISS-mania 0.16 0.11 .28 1.54 .13

Group 21.15 1.61 2.13 20.71 .48

DRewP 21.02 0.99 2.16 21.03 .31

NAc RPE 20.04 0.43 2.01 20.10 .92

mPFC Gln/Glu 238.43 14.30 2.46 22.69 .01

Group 3 DRewP 1.03 1.93 .08 0.53 .60

Group 3 NAc RPE 20.07 1.35 2.01 20.05 .96

Group 3 mPFC Gln/Glu 96.92 24.90 .70 3.89 ,.001

Group was dummy coded (0 = unipolar, 1 = bipolar).
BISS-mania, Mania subscale score of Bipolar Inventory of

Symptoms Scale; RewP, reward positivity; NAc RPE, nucleus
accumbens reward prediction error; mPFC Gln/Glu, medial prefrontal
cortex ratio of glutamine to glutamate.
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Elevated mPFC Gln/Glu Correlates With More
Severe (Hypo)manic Symptoms Longitudinally

Next, we examined whether, after controlling for baseline
(hypo)manic severity, the reward circuit markers were associ-
ated with 3- and 6-month follow-up symptom severity (see
Figure S5 for mean symptom severity across time). A group 3

mPFC Gln/Glu interaction (b = .70, p , .001; n = 49) emerged
for the model predicting 3-month BISS-mania scores (Table 2).
To unpack this interaction, we again examined the correlation
between mPFC Gln/Glu and 3-month BISS-mania scores
(residualized for other variables in the model) in each group.
Increased mPFC Gln/Glu was associated with less severe
hypomanic symptoms in the unipolar group (r = 2.35, p = .03;
n = 38) but with more severe hypomanic symptoms in the
bipolar group (r = .85, p , .001; n = 12) (Figure 3) at 3 months.

In contrast, the reward learning markers did not predict 6-
month follow-up BISS-mania scores or 3- or 6-month
MASQ-AD or BIS scores (all ps . .05) (see Supplemental
Results for exploratory unimodal analyses).

Predictive Value of mPFC Gln/Glu

Next, we compared a simple model containing covariates (age,
sex, medication load, and baseline BISS-mania) and
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diagnostic information (group) with a model containing
terms for mPFC Gln/Glu and group 3 mPFC Gln/Glu. The
simple model explained 15.8% of the variance in 3-month
(hypo)manic symptom severity, F5,44 = 1.65, p = .17. Howev-
er, adding the mPFC Gln/Glu terms explained an additional
24.3% of the variance in 3-month hypomanic symptom
severity, F7,42 = 4.01, p = .002, and this change in R2 was
significant (F change = 8.49, R2 change = .24, p = .001). This
indicates that mPFC Gln/Glu explained greater variance in
future hypomanic symptom severity relative to baseline diag-
nosis alone. Furthermore, we confirmed that mPFC Gln/Glu
explained a greater proportion of the variance in 3-month
(hypo)manic symptom severity relative to behavioral reward
learning alone (F change = 3.91, R2 change = .09, p = .03)
(Table S3), indicating that adding this biomarker enhanced
predictive power over and above behavioral data.
DISCUSSION

Using a novel recruitment method, a transdiagnostic sam-
ple, and a multimodal longitudinal design, we examined
whether variation along the RDoC Positive Valence Systems
domain of reward learning and the underlying neurocircuitry
predicted variability in three reward-related mood symp-
toms: anhedonia, (hypo)mania, and impulsivity. In doing so,
we focused on three components of reward learning neu-
rocircuitry linked to mood disorder pathophysiology that
span distinct units of analysis across physiology (ACC-
mediated PEs), circuits (striatal RPEs), and molecules
(mPFC Gln/Glu).

As predicted, the three neural components correlated
with aspects of behavioral reward learning on the PRT. In
terms of symptoms, elevated mPFC Gln/Glu predicted
more severe cross-sectional and longitudinal (hypo)manic
symptoms in those with bipolar pathology. Importantly,
baseline mPFC Gln/Glu levels explained a greater propor-
tion of the variance in (hypo)manic symptoms at 3 months
relative to diagnosis alone. These findings extend prior
case-control MRS studies (41,42) by showing that elevated
mPFC Gln/Glu is also associated with (hypo)mania severity
dimensionally.

We replicated prior findings linking blunted DRewP ampli-
tude with greater anhedonia in exploratory unimodal analyses
(see Supplement); however, neither DRewP nor NAc RPE
signals were associated with symptom severity when entered
into a multimodal model with mPFC Gln/Glu. Although the lack
of a relationship between NAc RPE and anhedonia in our
unimodal analyses contrasts with recent findings showing that
striatal RPEs predicted improvement in anhedonic symptoms
(58), we used a more complex instrumental fMRI learning
paradigm designed to assess striatal RPEs in the context of
learning as opposed to a more traditional guessing-type
paradigm (which maximizes the RPE signal yet involves mini-
mal learning).

It is important to consider what these findings mean for an
RDoC approach to mood disorder classification that remains
agnostic to DSM diagnoses. On the one hand, mPFC Gln/Glu
correlated with reward learning across diagnoses, providing
converging evidence that mPFC Gln/Glu is a transdiagnostic
marker of this RDoC domain. In addition, in a heterogeneous
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DC

BA Figure 3. Group 3 medial prefrontal cortex
(mPFC) glutamine/glutamate (Gln/Glu) interaction for
longitudinal (hypo)manic symptom severity. Resi-
dualized scatter plots show the relationship between
mPFC Gln/Glu and (hypo)manic symptom severity
(Mania subscale scores of the Bipolar Inventory of
Symptoms Scale [BISS-mania]) at baseline (A, B)
and at the 3-month follow-up assessment (C, D) in
the unipolar and bipolar mood disorder groups.
Residualized values on each axis control for the
other variables in the model, which were age, sex,
baseline BISS-mania subscale scores, change in
reward positivity amplitude, and nucleus accumbens
reward prediction error beta weights.
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sample, more homogeneity in neurobiology (mPFC Gln/Glu
levels) was observed within groups when groups were
defined on the basis of reward learning versus diagnostic
categories. This is consistent with the RDoC’s assumption
that dimensions of functioning are more proximal to neuro-
biology than to diagnostic categories. Furthermore, dimen-
sional increases in this reward learning biomarker (i.e., mPFC
Gln/Glu levels) predicted dimensional increases in symptoms
characterized by excessive reward responsiveness (i.e., hy-
pomania) rather than membership in a specific diagnostic
category. This echoes one of the RDoC’s central theses that
abnormalities in circuits and associated constructs likely un-
derpin specific features of mental illness rather than explain
any single disorder in its entirety. Together, these findings
partly align with a diagnosis-agnostic approach to mood
disorder classification.

However, our results also highlight the considerable value of
diagnostic information in predicting symptom trajectories.
Specifically, although mPFC Gln/Glu correlated with reward
learning transdiagnostically, the link between mPFC Gln/Glu
and (hypo)manic symptom severity was disease specific and
diagnostic information remained an integral component of the
final predictive model. If we assume that these findings could
inform novel interventions based on neurobiological un-
derpinnings (a key driver of the RDoC approach), then target-
ing mPFC Gln/Glu may affect reward learning in a similar
manner across disorders but have different effects on symp-
toms in distinct mood disorder subtypes. The degree to which
the RDoC framework predicts purely dimensional variability
712 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging J
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across disorders versus a blend of transdiagnostic and
disorder-specific effects remains an important topic of debate.
Our findings indicate that while information about reward cir-
cuit function could improve the prediction of risk for reward-
related clinical symptoms (an important finding in its own
right), it would do so in tandem with, rather than independent
of, existing diagnostic frameworks.

This study has several strengths. By examining neurobio-
logical mechanisms of reward learning across multiple units
of analysis, we could probe reward learning circuitry with
superior spatiotemporal resolution and at both micro and
macro scales, which cannot be achieved with a single unit or
modality alone. Furthermore, we tested whether these units
of analysis enhanced the ability to predict clinical course over
and above information already used in routine clinical care
(diagnosis and baseline symptom severity). Because mPFC
Gln/Glu levels can be obtained using MRS in as little as 6
minutes with good test–retest reliability (intraclass correlation
coefficient = .803) (59), mPFC Gln/Glu warrants further
investigation as a potential screening method for individuals
at suspected risk for BD.

However, some limitations of this study must also be noted.
First, mPFC Gln/Glu predicted worse (hypo)manic symptoms
specifically in individuals with bipolar mood pathology.
Because the instance of (hypo)manic symptoms was lower in
the unipolar group at follow-up, this may have restricted the
variance in symptoms that could be explained by mPFC Gln/
Glu. Second, although our three neural indices were selected
based on their established association with reward learning,
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only mPFC Gln/Glu was associated with our a priori reward
learning measure and the three neural indices were not
correlated with one another. Although stronger associations
may have been evident in a larger sample, the lack of asso-
ciation could also reflect an issue with the construct validity of
these units of analysis. For example, it is possible that similar
impairments in reward learning may have distinct etiologies
(often referred to as equifinality), particularly when considering
individuals with very divergent forms of psychopathology. How
equifinality is accounted for remains an important conceptual
issue for the RDoC framework. Finally, reductions in sample
size for longitudinal analyses (resulting from participant attri-
tion and the need to obtain good quality data across all three
neural indices) mean that reduced statistical power is a limi-
tation of our study and may explain several null findings. The
replicability of these results must be interpreted in light of
concerns around the generalizability and reproducibility of
neuroimaging findings obtained using small samples (60).
Accordingly, rather than being definitive, we interpret these
findings as novel yet preliminary insights that warrant replica-
tion in larger samples.

In sum, we showed that a key component of reward learning
neurocircuitry—mPFC Gln/Glu—predicted worse (hypo)manic
symptoms. This marker enhanced the ability to predict future
(hypo)mania risk over and above diagnostic information alone.
Using this marker to improve precision in the diagnosis and
treatment of mood pathology therefore represents an impor-
tant avenue for future research, with a focus on larger well-
powered samples.
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Supplementary Methods and Materials 

Sample size and power analyses for the clinical trial 

 The sample size of 300 was chosen to allow at least 80% power (α=0.05, two-tailed) to detect 

interaction effects of multiple (~40) potential moderators of the treatment on depressive symptom 

improvement, after adjusting for multiple comparisons. Based on prior work, the effect sizes of the 

moderators were hypothesized to be between 0.15 and 0.2. 

Methods used to generate the random allocation sequence 

 Randomization was conducted according to site, depression severity and depression 

chronicity. Within each of these levels, block randomization with a random block size of 2 or 4 was 

applied using the commercial clinical trial data management software StudyTrax. For each potential 

participant, a site coordinator would input information regarding all inclusion/exclusion criteria, after 

which the software crosschecked this information for eligibility. If the participant was deemed to be 

eligible, the software provided a random assignment, which was communicated directly to the site 

pharmacist. 

Participant inclusion/exclusion criteria 

All patients reported MDD onset before 30, and had either a chronic (episode duration > 2 

years) or recurrent (≥ 2 recurrences including the current episode) illness course. Participants were 

excluded from the study if they were currently pregnant, breastfeeding or were planning to become 

pregnant in the near future; had a lifetime history of bipolar disorder or psychotic disorder; met 

criteria for substance dependence in the past six months or substance abuse in the past two months; 

displayed evidence of unstable medical or psychiatric symptoms that required hospitalization; had 

any study medication contraindications; had clinically significant laboratory abnormalities; had a 
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history of epilepsy or any condition requiring anticonvulsant medication; had received transcranial 

magnetic stimulation, vagal nerve stimulation or electroconvulsive therapy during the current 

depressive episode; were currently taking psychotropic medications; were currently receiving 

psychotherapy; displayed evidence of significant suicide risk; failed to respond to any antidepressant 

at adequate dose and duration in the current episode.  

Participant compensation 

Compensation for the study components relevant to the current analyses was as follows: 

 Completion of the detailed interview and questionnaires administered at screening – $150 
 Completion of the two EEG recordings – $68 

 
Compensation for other study components that are not presented in this study, was as follows: 

 Completion of two MRI scans – up to $200 
 Completion of a behavioral task – up to $32 
 Completion of blood samples for research purposes – $25 per sample, up to $175 total 
 Completion of genetic blood sampling – $50 
 Completion of the final clinical rating session of the study – $50 

 

The total possible compensation for the study was $725. 
 
Participants lost to follow-up 

Of the 143 participants who received sertraline, 117 completed all 8 weeks of the intervention, 

whereas 26 discontinued (7 of whom were lost to follow-up). Of the 144 participants who received 

placebo, 125 completed all 8 weeks of the intervention, whereas 19 discontinued (5 of whom were 

lost to follow-up). A summary of the reasons why participants dropped out is provided in Table S1. 

EEG systems used across the four recording sites 

Columbia University. 72-channel EEG was recorded using a 24-bit BioSemi system with a 

Lycra stretch electrode cap (Electro-Cap International Inc., Ohio), sampled at 256 Hz (bandpass: DC-
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251.3 Hz). An active reference (ActiveTwo EEG system) at electrode locations PPO1 (common mode 

sense) and PPO2 (driven right leg) were used.  

McLean Hospital. 129-channel EEG was recorded using a Geodesic Sensor Net system 

(Electrical Geodesics, Inc., Eugene, Oregon), sampled at 250 Hz (bandpass: 0.01-100 Hz). Data were 

referenced to the vertex (Cz) at acquisition.  

University of Michigan. 60-channel EEG was recorded using a 32-bit NeuroScan Synamp 

system (Compumedics, TX) using a Lycra stretch electrode cap (Electro-Cap International Inc., 

Ohio), sampled at 250 Hz (bandpass: 0.5-100 Hz). A nose reference was used during acquisition. 

University of Texas. 62-channel EEG was recorded using a 32-bit Neuroscan Synamp system 

(Compumedics, TX) using a Lycra stretch electrode cap (Electro-Cap International Inc., Ohio), 

sampled at 250 Hz (bandpass: DC-100 Hz). A nose reference was used during acquisition. 

EEG preprocessing 

A standardized analysis pipeline was developed and implemented by researchers at the 

Columbia site to minimize cross-site differences (1). First, data were interpolated to a common, 72-

channel montage using spherical spline (2) and resampled at 256 Hz. Second, electrodes with poor 

signal were interpolated using a spherical spline interpolation (recordings with less than 80% of 

usable data were discarded). Third, a spatial principal component analysis was used to correct for 

blink artifacts (3). Fourth, artifact-free data were segmented into 2 second, non-overlapping epochs, 

and bandpass filtered at 1-60 Hz (24-dB/octave). Fifth, residual artifacts were identified on an 

individual channel basis within each epoch using a semiautomated reference-free approach (4). 

Finally, flagged channels were interpolated using spherical spline from data of all valid channels for 

a given epoch if less than 25% of channels were flagged for this epoch.  
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Evidence for the validity of the LORETA algorithm 

The eLORETA solution space consists of 6239 cortical gray matter voxels in a realistic head 

model using the Montreal Neurological Institute 152 template. Validation for the LORETA algorithm 

comes from studies using simultaneous EEG and fMRI (5) as well as in an EEG localization study 

for epilepsy (6). The algorithm has also received validation from studies examining LORETA and 

fMRI data (7-9), or LORETA and PET data (10-12) in the same samples. In a review of independent 

source localization techniques, sLORETA – the algorithm upon which the eLORETA algorithm used 

in the current study was based – was found to perform best in terms of localization error (13). In the 

context of functional connectivity, eLORETA has been found to minimize the detection of false 

positive connections significantly more so compared to other EEG source localization methods (14).  

Additional information about computation of lagged phase synchronization 

Lagged phase synchronization is a metric that refers to the nonlinear dependence between the 

phases of pairs of intracortical EEG source estimates. It is a measure of phase synchrony between 

intracortical signals in the frequency domain (calculated using normalized Fourier transforms). The 

strength of this method is its ability to minimize the impact of volume conduction on EEG source-

based connectivity estimates. Specifically, volume conduction refers to the tendency for intracortical 

signals to spread laterally upon contact with the skull, and this causes spurious correlations in activity 

detected at neighboring scalp-level electrodes. To minimize the effects of volume conduction, the 

instantaneous “zero-lag” contribution is excluded from the total phase synchronization, leaving only 

non-instantaneous synchronization.  

Total phase synchronization (which is susceptible to volume conduction effects) is typically 

computed using the following formula: 
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𝜑ଶ
௫,௬ሺ𝜔ሻ ൌ ห𝑓௫,௬ሺ𝜔ሻห

ଶ
ൌ ൛Reൣ𝑓௫,௬ሺ𝜔ሻ൧ൟ

ଶ
 ൛Imൣ𝑓௫,௬ሺ𝜔ሻ൧ൟ

ଶ
  (1) 

where:   𝑓௫,௬ሺ𝜔ሻ ൌ ଵ

ேೃ
∑ ቔ ௫ೖሺఠሻ

|௫ೖሺఠሻ|
ቕேೃ

ୀଵ ቔ ௬ೖ
∗ሺఠሻ

|௬ೖሺఠሻ|
ቕ   (2) 

In this algorithm, “ω” refers to the frequency band, and “𝑥” and “𝑦” are the intracortical 

sources (i.e., two ROIs in each connectivity pair). “Re” and “Im” indicate the real and the imaginary 

parts of a complex element C, respectively; 𝑥 (ω) and 𝑦 (ω) denote the Fourier transforms of the two 

signals 𝑥 and 𝑦, respectively, at frequency “ω”. 

The second part of the formula (2) explains the cycle of C and “*” denotes a complex 

conjugate (this is where the sign of the imaginary part of a complex number is flipped but the real 

part is left unchanged). The instantaneous connectivity component is closely related to the real (“Re”) 

part of the phase synchronization.  

Lagged phase synchronization partials out the instantaneous component of total connectivity, 

and is defined as: 

𝜑௫,௬
ଶ ሺ𝜔ሻ ൌ

൛୍୫ൣೣ ,ሺఠሻ൧ൟ
మ

ଵି൛ୖୣൣೣ ,ሺఠሻ൧ൟ
మ                                                                      (3) 

This measures the similarity of two time series according to the phases of the signal, after the 

instantaneous similarity has been removed. A value of 0 indicates no synchronization and 1 indicates 

perfect synchronization. This measure is thought to capture only physiological connectivity. 

Additional details on the eLORETA connectivity algorithm can be found in Pascual-Marqui et al 

(15). In the current study, lagged phase synchronization was computed in the theta (4.5-7 Hz) and 

beta (12.5-21 Hz) frequency bands using a normalized Fourier transform. 
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Supplementary Results 

Models showing significant connectivity effects at only the intercept or the slope, but not both 

Two of the connectivity variables under consideration were found to have significant effects 

at either the intercept or the slope, but not both, specifically: 

In the beta band, there was a significant Connectivity x Time interaction (effect on the slope) 

for rACC-PCC (the DMN hub) connectivity (B=-0.54, 95% CI=-1.00, -0.09, p=0.02) but the main 

effect of Connectivity (effect at intercept) was at trend (B=-2.12, 95% CI=-4.59, 0.36, p=0.09). 

Exploratory analyses confirmed that adding beta-band rACC-PCC connectivity terms did not provide 

a significantly better model fit compared to the reduced model that contained the covariates and rACC 

theta activity (LR=5.62, p=0.06).  

Also in the beta band, there was a main effect of Connectivity (effect at intercept) for rACC-

rAI (the SN hub) connectivity (B=2.75, 95% CI=0.15, 5.35, p=0.04) however the Connectivity x Time 

interaction term was not significant (B=0.10, 95% CI=-0.38, 0.58, p=0.68). The addition of beta-band 

rACC-rAI connectivity terms did not provide a better model fit than the reduced model containing 

covariates and rACC theta activity model (LR=5.20, p=0.07). 

Results of mediation models 

For illustration purposes, the results of the two mediation models tested are shown in Figure 

S2. The indirect effect of baseline rACC theta activity on HRSD improvement through baseline theta-

band rACC-rAI connectivity was -0.17 (SE=0.30; 95% CI=-0.88, 0.34). In the second mediation 

model, where change in theta-band rACC-rAI connectivity from baseline to week 1 was evaluated as 

the potential mediator, the indirect effect was 0.02 (SE=0.03; 95% CI= -0.49, 0.49). The inclusion of 
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zero within the CIs for both models indicated that neither baseline theta-band rACC-rAI connectivity 

nor early change (baseline to week 1) in this connectivity was a mediator. 

Control analyses examining potential confounds in the link between theta-band rACC-rAI 

connectivity and remission status 

The between-subjects variability in theta-band rACC-rAI connectivity at baseline and week 

1, between the placebo and sertraline groups is shown in Fig. S3. As is evident, there were no 

differences in connectivity between the groups at either time point. 

Theta-band rACC-rAI connectivity changes from baseline to week 1 predicted remission 

status after controlling for baseline HRSD scores (odds ratio=2.90, 95% CI=1.11, 7.58, p=0.03). 

Aligning with the absence of moderation or mediation effects, we confirmed that theta-band rACC-

rAI connectivity changes predicted remission status even when rACC theta activity change was 

entered into the model (odds ratio=2.94, 95% CI=1.12, 7.71, p=0.03) indicating that the relationship 

between early theta-band rACC-rAI connectivity changes and symptom remission was not related to 

early rACC theta activity changes. Theta-band rACC-rAI connectivity also remained a significant 

predictor when recruitment site was entered into the model as a covariate (p=0.04). 

Link between rACC connectivity and depression chronicity  

Relative to those with non-chronic MDD at baseline (n=122), those with chronic (episode 

duration longer than 2 years) MDD (n=116) had lower baseline theta-band rACC-rAI connectivity, 

t(236)=2.83, p=0.005, Cohen’s d=0.37 [chronic M=-1.12, SD=0.22; non-chronic M=-1.04, SD=0.21]. 

This was not driven by differences in symptom severity, as chronic and non-chronic MDD patients 

did not differ in baseline HRSD scores, t(236)=-0.62, p=0.53, and connectivity differences remained 

significant when controlling for baseline HRSD scores, F(1, 235)=7.93, p=0.005, p
2=0.03. 
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Tests of whether early changes in theta-band rACC-rAI connectivity reflect a marker of 

depression remission that is already in progress during the first week of treatment 

As requested by an anonymous Reviewer, we examined whether remitters who were predicted 

by early changes in theta-band rACC-rAI connectivity were those who showed a decline in HRSD 

scores from baseline to week 1. If this were the case, then this may indicate that early changes in 

theta-band rACC-rAI connectivity represents a potential marker of depression remission that is 

already in progress during the first week of treatment.  

To do this, we generated the predicted group membership (remitter vs. non-remitter) from the 

binary logistic regression model examining the degree to which early changes in theta-band rACC-

rAI connectivity from baseline to week 1 predict depression remission status at week 8. The model 

accurately classified 109 of the 122 individuals who did not remit (89.3% accuracy) but only 12 of 

the 73 individuals who did remit (16.4% accuracy). Next, we ran a Remitter (predicted remitter, 

predicted non-remitter) x Week (baseline, week 1) repeated measures ANOVA to determine whether 

predicted remitters showed greater depressive symptom reductions from baseline to week 1 relative 

to predicted non-remitters. Of the 195 individuals with remission status data available, 186 had HRSD 

data at both baseline and week 1. The Remitter x Week interaction was not significant, F(1,184)=0.09, 

p=0.73, p
2<0.001, indicating that the predicted remitters and predicted non-remitters did not differ 

in their overall change in HRSD scores from baseline to week 1. There was a main effect of Week, 

F(1,184)=25.06, p<0.001, p
2=0.12, where across both groups, HRSD scores decreased significantly 

from baseline to week 1. Furthermore, there was a main effect of Remitter, F(1,184)=23.75, p<0.001, 

p
2=0.11, where averaged across baseline and week 1, the HRSD scores of the predicted remitters 
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was significantly lower than the predicted non-remitters (predicted remitters: M=13.60, SE=0.76; 

predicted non-remitters: M=17.58, SE=0.29).  

These results suggest that remitters, as predicted by early changes in theta-band rACC-rAI 

connectivity, were more likely to have lower HRSD scores at the beginning of treatment. This is 

consistent with the widely-replicated link between lower baseline depression severity and greater 

responses to treatment. 

Symptom trajectories in first and second-stage treatment remitters 

At the suggestion of an anonymous Reviewer, we also conducted an exploratory analysis that 

sought to compare the symptom trajectories of individuals who remitted at the first stage of treatment 

(i.e., at week 8 and who were predicted by early changes in theta-band rACC-rAI connectivity) to 

individuals who remitted after a second stage of treatment (i.e., at week 16 and who were not 

predicted by early changes in theta-band rACC-rAI connectivity) to individuals who never remitted.  

The second stage of treatment was conducted from weeks 9 to 16, where some individuals 

who were randomized to placebo at the first stage of treatment received either placebo or sertraline 

at the second stage, and some individuals who received sertraline at the first stage were randomized 

to sertraline again, or to bupropion or placebo at the second stage. To inspect the rate of symptom 

improvement, we first divided the sample into those who remitted at the first stage of treatment (i.e., 

those who had a HRSD score ≤7 at week 8), those who remitted at the second stage of treatment (i.e., 

those who had a HRSD score ≤7 at week 16), and those who never remitted (i.e., those who had a 

HRSD score >7 at week 16) and plotted the raw mean HRSD (±SEM) scores over time (Fig. S4). 

Pairwise comparisons focused on differences in HRSD scores at week 8, since early changes in theta-

band rACC-rAI connectivity predicted remission status at week 8.  

Results showed that week 8 HRSD scores in second stage remitters (M=12.87, SD=3.42) were 

significantly higher than first stage remitters (M=3.96, SD=2.25), t(119)=17.27, p<0.001, but were 



Whitton et al.  Supplement 

 
 

11

significantly lower than non-remitters (M=16.65, SD=5.25), t(129)=18.84, p<0.001. These findings 

suggest that second stage remitters fall intermediate between remitters who were predicted by early 

changes in theta-band rACC-rAI connectivity (i.e., first-stage remitters) and non-remitters in terms 

of symptom severity. It is possible that second stage remitters may be captured by changes in theta-

band rACC-rAI connectivity over a longer time course (e.g., from baseline to week 8). Although EEG 

data were only obtained at baseline and week 1 in the current study, future studies examining changes 

in theta-band rACC-rAI connectivity over a longer time course would assist in determining whether 

this connectivity marker reflects remission that is “in progress” or whether it is a marker that indicates 

a person’s likelihood of achieving remission/early response. 
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Figure S1. CONSORT flow diagram showing numbers of participants who were randomized to treatment, 
who received treatment, who had valid EEG data available for the current analyses, and who completed 8 
weeks of treatment.  

 

 

aNote that there are more reasons for exclusion than there are total discontinued participants as some participants 
discontinued for more than one reason. 

Completed 8 week Intervention (n = 95) 

Discontinued (n = 22)a 
� Lost to follow-up (n = 8) 
� Non-adherent (n = 4) 
� Found Study too Burdensome (n = 3) 
� Wanted to Discontinue Meds (n = 3) 
� Believed Treatment not Working (n = 1) 
� Side Effects Unacceptable (n = 6) 
� Developed Medical Condition (n = 1) 
� Became Danger to Self (n = 1) 
� Hospitalized for Worsening Dep (n = 1) 
� Hospitalized for Suicidal Id. (n = 1) 
� Other (n = 3) 

Allocated to SERTRALINE (n = 146) 
- Dropped out before 1st dose (n = 3) 

� Received SERTRALINE (n = 143) 

Discontinued (n = 10) 
� Moved from area (n = 1) 
� Lost to Follow-up (n = 2) 
� Non-adherent (n = 5) 
� Wanted to Discontinue Meds (n = 2) 
� Believed Treatment not Working (n = 1) 
� Other (n = 6) 

Allocated to PLACEBO (n = 150) 
- Dropped out before 1st dose (n = 6) 

� Received PLACEBO (n = 144) 

Completed 8 week Intervention (n = 111) 
 

Allocation 

Analyzed (n = 117) 
� Missing baseline EEG (n = 12) 

� Excluded from analysis because poor EEG 
data quality (n = 10) or insufficient amount of 
artifact-free data (n = 4) 

Analyzed (n = 121) 
� Missing baseline EEG (n = 9) 

� Excluded from analysis because poor EEG 
data quality (n = 8) or insufficient amount of 
artifact-free data (n = 6) 

 

Analysis 
(n = 238) 

 

Assessed for eligibility (n = 634) 

Excluded (n = 338) 

� Did not meet inclusion/exclusion criteria (n = 325) 

� Randomized but did not meet criteria (n = 3) 

� Treated with different medication (n = 10) 

Enrollment 

Randomized (n = 296) 
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Figure S2. Figure shows mediation models examining the indirect (mediating) effect of baseline theta-band 
rACC-rAI connectivity (top model) and changes in theta-band rACC-rAI connectivity from baseline to week 
1 (bottom model) as potential mediators of the link between elevated baseline rACC theta activity and greater 
reduction in HRSD scores from baseline to week 8. Neither model shows evidence of theta-band rACC-rAI 
connectivity acting as a mediator. rACC=rostral anterior cingulate cortex; rAI=right anterior insula, 
∆HRSD=change in Hamilton Rating Scale for Depression scores from baseline to week 8; *=significant at 
p<0.05. 
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Figure S3. Box plots showing the between-subject variability in theta-band rACC-rAI connectivity between 
the placebo (PLA) and sertraline (SER) groups at baseline (grey bars) and week 1 (blue bars). Cases 
represented by black dots are greater than ±2SD from the mean but less than ±3SD, and are not considered 
outliers. The figure shows that there were no differences in theta-band rACC-rAI connectivity between the 
two treatment arms either at baseline or at week 1. This suggests that early changes in theta-band rACC-rAI 
connectivity and their relationship with depression remission at week 8 cannot be solely attributable to the 
acute effects of sertraline (since the same effects were observed for the placebo group). This further highlights 
theta-band rACC-rAI connectivity as a prognostic, yet treatment non-specific indicator of depression 
improvement. 
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Figure S4. Mean (±SEM) HRSD scores across the first stage (weeks 0-8) and second stage (weeks 9-16) of 
treatment in individuals who were classified as: 1st stage remitters (HRSD ≤7 by week 8); 2nd stage remitters 
(HRSD ≤7 by week 16); non-remitters (HRSD >7 at weeks 8 and 16). 
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Table S1. Reasons for participant dropout across the sertraline and placebo groups 
 

Discontinued Sertraline (n=26) Discontinued Placebo (n=19) 

Lost to follow-up (n=7) Lost to follow-up (n=5) 

Non-adherent (n=6) Non-adherent (n=6) 

Wanted to discontinue medication (n=3) Wanted to discontinue medication (n=4) 

Believed treatment was not working (n=1) Believed treatment was not working (n=2) 

Side effects unacceptable (n=9) Side effects unacceptable (n=1) 

Found study too burdensome (n=3) Moved from area (n=1) 

Developed medical condition (n=1) Became pregnant (n=1) 

Became danger to self (n=1) Other (n=6) 

Hospitalized for worsening depression (n=1)  

Hospitalized for suicidal ideation (n=1)  

Other (n=4)  

 
Note. Numbers add up to more than the totals because participants discontinued for more than one reason. 
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 Table S2. Seed regions used for connectivity analyses 

 

Region X Y Z  Reference 

Rostral anterior cingulate cortex 11 45 -6  Pizzagalli et al. (2001), Fig. 1 

Posterior cingulate cortex 0 -52 26  Yeo et al. (2011), Table 5  

Left dorsolateral prefrontal cortex -43 22 34  Dosenbach et al. (2007), Table 1 

Right anterior insula 42 10 -12  Seeley et al. (2007) Supp. Table 2 

 
Note. X=left(-) to right(+); Y=posterior(-) to anterior(+); Z=inferior(-) to superior(+). Note that regions-of-
interest were not registered to subject space from the MNI template, but rather, were retained in MNI space. 
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Table S3. Demographic and clinical factors that have been identified as predictors of poor outcome in 
prior studies of depression. Variables capturing each of these factors were used as covariates in our final 
model and the model reported in Table 2 of Pizzagalli, Webb, et al. (2018) 
 

Covariate Reference 

Greater baseline depression severity (QIDS-SR, HRSD) Trivedi et al. (2006)  

Anxious depression (anxiety factor score on the HRSD) Fava et al. (2008) 

Anhedonia (CIDI) Spijker et al. (2001) 

Male gender Trivedi et al. (2006) 

Older age Fournier et al. (2009)  

Lower socioeconomic status Jakubovski et al. (2014)  

Being non-Caucasian Trivedi et al. (2006) 

Being unmarried Fournier et al. (2009) 

 
Note. QIDS-SR=Quick Inventory of Depressive Symptoms, Self-Report; HRSD=Hamilton Rating Scale for 
Depression; CIDI=Composite International Diagnostic Interview. 

 



Whitton et al.  Supplement 

 
 

19

Table S4. Demographic and clinical characteristics of the sertraline and placebo groups for the subsample 
included in the current analysis (n=238) 

 

 Whole sample 

(n=238) 

Sertraline  

(n=117) 

Placebo 

(n=121) 
P Value 

Age in years, M (SD) 36.9 (13.2) 36.6 (13.5) 37.3 (13.0) 0.68 

Female, No. (%) 151 (63.4) 79 (67.5) 72 (59.5) 0.20 

Years of education, M (SD) 15.1 (2.4) 14.9 (2.4) 15.3 (2.4) 0.21 

Caucasian, No. (%) 163 (68.5) 78 (66.7) 85 (70.2) 0.55 

Hispanic, No. (%) 42 (17.6) 20 (17.1) 21 (17.4) 0.90 

Married, No. (%) 49 (20.6) 22 (26.5) 29 (24.0) 0.19 

Employed, No. (%) 135 (56.7) 64 (54.7) 71 (58.7) 0.54 

Age of MDD onset, M (SD) 16.3 (5.7) 16.5 (5.8) 16.1 (5.6) 0.63 

Current MDE length (months), median 15.5 13.0 18.0 0.49 

Number of prior MDEs, median 4 4 5 0.42 

QIDS, M (SD) 18.2 (2.8) 18.6 (2.8) 17.7 (2.8) 0.02 

HRSD 17-item, M (SD) 18.5 (4.5) 18.4 (4.5) 18.5 (4.4) 0.89 

Note. MDD=Major Depressive Disorder; MDE=Major Depressive Episode; QIDS=Quick Inventory of Depressive 
Symptoms; HRSD=Hamilton Rating Scale for Depression; P Values indicate the significance value for tests of differences 
between the sertraline and placebo group.
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