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Genetic influences on brain and cognitive
health and their interactions with
cardiovascular conditions and depression

Peter Zhukovsky 1,2,3, Earvin S. Tio 3,4, Gillian Coughlan5, David A. Bennett6,
Yanling Wang 6, Timothy J. Hohman 7,8, Diego A. Pizzagalli 9,
Benoit H. Mulsant 1,2, Aristotle N. Voineskos 1,2,12 &
Daniel Felsky 2,3,4,10,11,12

Approximately 40% of dementia cases could be prevented or delayed by
modifiable risk factors related to lifestyle and environment. These risk factors,
such as depression and vascular disease, do not affect all individuals in the
same way, likely due to inter-individual differences in genetics. However, the
precise nature of how genetic risk profiles interact with modifiable risk factors
to affect brain health is poorly understood. Here we combine multiple data
resources, including genotyping and postmortem gene expression, tomap the
genetic landscape of brain structure and identify 367 loci associated with
cortical thickness and 13 loci associated with white matter hyperintensities
(P < 5×10−8), with several loci also showing a significant association with cog-
nitive function. We show that among 220 unique genetic loci associated with
cortical thickness in our genome-wide association studies (GWAS), 95 also
showed evidence of interaction with depression or cardiovascular conditions.
Polygenic risk scores based on our GWAS of inferior frontal thickness also
interacted with hypertension in predicting executive function in the Canadian
Longitudinal Study onAging. Thesefindings advance our understanding of the
genetic underpinning of brain structure and show that genetic risk for brain
and cognitive health is in part moderated by treatable mid-life factors.

Evidence suggests that modifying certain health-related factors in mid-
late life can improve risk trajectories for late-life dementia1. Specifically,
treating hypertension, depression, hearing impairment, smoking, obe-
sity, or diabetes; reducingexcessive alcohol consumption; and sustaining

physical activity and social contact is beneficial. Several of these risk
factors, including major depression2,3 and cardiovascular disease4,5, are
also associated with differences in brain structure andmay influence the
risk for dementia via this mechanism6,7. Similarly, hypertension is
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associatedwithagreater riskof severewhitematter lesions,which in turn
is associated with dementia risk8,9. However, brain structure is highly
heritable10, and it remains unclear whether the effects of treatable con-
ditions on cortical thinning and cerebrovascular disease are different in
individuals with different genetic risk profiles. Identifying such gene-by-
environment interactions is, therefore, an essential step toward devel-
oping precision interventions. They can inform whether modifying
dementia risk factors in mid-life should be expected to succeed despite
the presence of genetic risk for cortical thinning or white matter lesions.

Cortical thinning is a hallmark of neurodegenerative diseases11–13

and is the earliest established andmost widely replicated biomarker of
Alzheimer’s disease severity14–17. Unlike surface area and sulcal depth,
whicharemore heritable18, cortical thickness is under relativelygreater
environmental influence19. Cortical thickness declines most rapidly in
mid- and late-life20. White matter lesions, quantified as white matter
hyperintensities (WMH) onMRI scans, are a critical marker of cerebral
small vessel disease and also contribute to risk for dementia, cognitive
impairment21, and disability22,23.

Previous large-scale genome-wide studies of younger adults with
psychiatric conditions in the ENIGMA cohort24 and the lifespan
CHARGE cohort25 have identified common genetic variants that influ-
ence cortical thickness. A larger number of genomic risk loci for cor-
tical thickness have also been identified in a recent analysis of 3144
brain imaging phenotypes in older adults from the UK Biobank
(UKB)26, yet these loci have not been explored in detail. Similarly,
recent large-scale analyses of WMH have uncovered a number of
independent risk loci27. While the genetic control over these heritable
and clinically important brain phenotypes has been explored, the
interactions between modifiable factors and genetics are not known.

In this context, we use the large-scale mid- and late-life UKB
cohort to further explore the genetics of cortical thickness and WMH.
Second, we performed cross-region genetic correlation analyses and
triangulated evidence for functionally significant genes using RNA
sequencing and matched MRI in an independent late-life sample from
the Religious Orders Study (ROS) and Memory and Aging Project
(MAP)28. We hypothesized that a subset of genetic variants associated
with cortical thickness and WMHwould create a disproportionate risk
for cortical thinning in the presence of major depression or cere-
brovascular disease, detectable as gene-by-environment interactions.
Finally, we explored the impact of identified variants on memory and
executive function in a third population-based mid- and late-life
cohort, the large-scale Canadian Longitudinal Study on Aging
(CLSA)29–31.

Results
GWAS of cortical thickness and WMH
Buildingon existingGWASof cortical thickness andWMH,we analyzed
the UKB MRI cohort. We performed GWAS in two stages: (1) an
omnibus test on global thickness (n = 34,552) and total WMH volume
(n = 30,708), and (2) a set of 33 independent GWAS on regional
thickness of 33 cortical regions. Unlike most existing GWAS of cortical
thickness18,24,25, in this study, we co-varied for total intracranial volume
instead of global thickness, similar to neuroimaging studies of psy-
chiatric disorders32–35.

Our omnibus GWAS identified 22 independent loci (at uncor-
rected p < 5.0 × 10−8) associated with global thickness and 13 loci
associated with total WMH volume (Fig. 1, Supplementary
Data 3 and 4). Among the 13 loci associated with WMH, 10 have been

Fig. 1 | Locus discovery for global cortical thickness and white matter hyper-
intensities. A, D Manhattan plots of loci associated with global cortical thickness
(CT) and white matter hyperintensities (WMH) show the –log10(p-value) for each
genomic location. A red line denotes the genome-wide significance threshold of
two-sided P < 5 × 10−8. Results after correction for the 34 cortical thickness GWAS
are shown in Supplementary Data 4. B Desikan–Killiany parcellation was used for
regional thickness analyses (33 bilateral regions). E Ideogram of loci that influence
global and regional cortical thickness andWMH.GWAS analyses were conducted in
the UK Biobank (n = 35,846). T-statistics for genetic variants associated with
memory and executive function in the Canadian Longitudinal Study of Ageing

(C, CLSA) and in the UKB (F) after false discovery rate correction (q <0.1). Con-
gruent effects on cortical thickness and cognition are highlighted with a black
square.G Polygenic scores for the thickness of prefrontal regions, suchas the insula
or superior frontal gyrus, were associated with executive function, while polygenic
scores for the thickness of the anterior cingulate and entorhinal cortices were
associated with memory in CLSA. Regions with a positive association at uncor-
rected p <0.05 are highlighted in yellow; regions with a negative association at
uncorrected p <0.05 are highlighted in blue, while regions with a positive asso-
ciation at pFDR <0.1 are highlighted in red. PAL paired associates learning, Gf fluid
intelligence.
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previously associated with WMH27, either as an association with the
exact samevariant or a variant inmoderate-strong LD (r2 > 0.4). Among
the 22 loci significantly associatedwith global thickness, only five were
in high LD (r2 > 0.4) with the genome-wide significant loci from the
most recent ENIGMA GWAS24, likely since we did not include global
thickness as a covariate and due to themore homogeneousmakeup of
our UKB sample compared to ENIGMA.

In 33 regional GWAS analyses, we identified an additional 345 risk
loci for cortical thickness of 33 cortical regions (at uncorrected
p < 5.0 × 10−8) and provided clumped results across all cortical thick-
ness GWAS in Supplementary Data 5. A large proportion (59.4%) of
independently significant SNPs for global thickness in our UKB ana-
lyses were also significant at a suggestive significance threshold
(p < 5 × 10−4) in ENIGMA. Further, 21 associations from the discovery
analysis also passed a liberal replication threshold (p < 0.05) in a cis-
replication analysis of the ROS/MAP cohort.

Regional heritability, genetic correlations, and gene ontology
To identify areas of the brain with shared and distinct genetic control
over cortical aging, we estimated the heritable components of cortical
thickness and WMH phenotypes and between-region genetic correla-
tions for cortical thickness. SNP-based heritability estimates were
h2

SNP = 0.25 (SE =0.021) for global thickness and h2
SNP = 0.22 (SE =

0.047) for WMH. Compared to published GWAS of thickness and
WMH, we observed the expected strong genetic correlations between
our results and those from the ENIGMA consortium’s global thickness
analysis (rg = 0.82, p = 5 × 10−95) and from Persyn et al.’s analysis of
WMH27 (rg = 0.976, p = 6 × 10−70). We also tested for genetic correla-
tions of global thickness and WMH with a set of psychiatric and neu-
rological traits (Fig. 2C). While WMH showed significant genetic
correlations with insomnia, ADHD, and intelligence (Supplementary
Data 17), no significant genetic correlations were found for global
thickness after multiple comparison correction.

Across regions, the heritability of cortical thickness varied sub-
stantially, with pre- and postcentral regions, the precuneus, and visual
cortex regions showing the highest heritability of 0.23-0.28, while

entorhinal and anterior prefrontal regions showed the lowest herit-
ability (h2

SNP = 0.1, Supplementary Data 16). Regional genetic correla-
tions were generally high, consistent with previous work24,25, though
we noted comparatively low genetic correlations between para-
hippocampal, entorhinal, and caudal anterior cingulate regionswith all
other cortical regions (Fig. 2B). A networkmodularity analysis revealed
three distinct modules (Fig. 2A): first, a posterior module including
visual, motor and temporal areas, second, a midline module centered
around cingulate areas that also included the insula, and medial orbi-
tofrontal cortex and third, a prefrontal module. Notable outliers were
the parahippocampal cortex in the midline module and the entorhinal
cortex in the prefrontal module, which overall showed low heritability
and genetic correlations with other regions. GO enrichment analyses
implicated terms describing biological processes, including cell
development and growth (Supplementary Fig. 5).

Overlap in genes identified by GWAS eQTL mapping and post-
mortem brain gene expression analysis
Following our exploration of the genetic control over cortical thick-
ness and WMH, we performed a direct analysis of postmortem dif-
ferential gene expression in the independent ROS/MAP sample of the
frontal cortex with matched antemortem MRI (n = 66). This analysis
revealed 223 genes significantly associated with caudal middle frontal
thickness (pFDR < 0.05, Supplementary Data 24, 25). In parallel, we
performed eQTL mapping of genetic loci from our GWAS using eQTL
data from GTEx (using frontal cortex and BA9 references in FUMA).
Combining these results, we tested the overlap in the direction of
expression effects for all genes passing quality control in both ana-
lyses. Overall, we found strong agreement in the direction of effect
between GWAS and differential expression results for global thickness
(77% of associations were in the same direction; Fisher’s p = 0.04) and
rostral middle frontal thickness (73%, Fisher’s p = 0.03) but not for
caudal middle frontal thickness (45%, Supplementary Data 9; Fish-
er’s p =0.99).

Among genes with concordant effects in both analyses, STMN4, a
stathmin-coding gene primarily expressed in neurons36, despite its

Fig. 2 | Heritability and genetic correlations. A Heritability estimated using UKB
GWAS results (n > 34,500) was lowest for the entorhinal, frontal pole, anterior
cingulate, and orbitofrontal cortices. B Genetic correlations (from LD Score)
between cortical regions without covarying for global cortical thickness are shown
above the diagonal, while phenotypic correlations between regional cortical
thickness pairs are shown below the diagonal. C Genetic correlations between

global thickness and white matter hyperintensity with attention deficit and
hyperactivity disorder (ADHD), schizophrenia (SCZ), major depressive disorder
(MDD), sensitivity to environmental stress and adversity (SESA), intelligence
(INTEL), insomnia (INSOM) and Alzheimer’s disease (AD). Error bars represent 95%
confidence intervals. *two-sided Bonferroni corrected p <0.007 (0.05/7).
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lower RNA abundance, was significantly associated with increased
caudal middle frontal thickness in the postmortem analysis (t = 3.74,
p =0.00047, pFDR = 0.04) and to global thickness in the UKB GWAS
eQTL mapping analysis (p = 1.74 × 10−13, QFDR = 7.16 × 10−9). Six other
genes (DPYSL5, KANSL1, ARL17A, ARL17B, LRRC37A, LRRC37A2) that
were identified through UKB GWAS eQTL analyses also passed a more
liberal, uncorrected threshold (pUNCORRECTED < 0.05) in the post-
mortem analysis, although the direction of the association was
inconsistent for KANSL1 and DPYSL5. Similarly, five genes (STMN4,
TRIM35, CLEC18C, ARHGAP27, ARL17A) were significantly associated
with rostral middle frontal thickness both in the postmortem expres-
sion analysis and in the GWAS eQTL mapping, with a consistent
direction of the effect for all genes except CLEC18C (Supplemen-
tary Data 8).

Convergent evidence for a complex locus on Chromosome 17
influencing thickness of multiple brain regions
Among hundreds of loci exerting effects on imaging phenotypes, we
noted that the complex q21.31 region of chromosome 17 harbored
several variants and genes of functional significance to global and
regional cortical thickness (Fig. 3). This region included two indepen-
dent SNPs associated with thickness (rs7206949 and rs55684829), and
a high number of significant SNPs in LD over a ~1MB region encom-
passing over a dozengenes. eQTLmapping using expressiondata from
the frontal cortex and BA9 linked these SNPs to 25 genes, and our
postmortem RNAseq findings show that LRRC37A, LRRC37A2, and
ARL17A, ARL17B play a functional role, as their expression was asso-
ciated with the caudal middle frontal thickness of the PFC in the
independent ROS/MAP cohort.

Using the SEA-AD Brain Cell Atlas, which includes single-nucleus
RNAseq data from middle temporal gyrus of 84 elderly donors (42
cognitively normal and 42 with dementia), we found that these genes
were preferentially expressed in microglia, astrocytes, oligoden-
drocytes, and oligodendrocyte precursor cells alongside vascular and
leptomeningeal cells (Fig. 3E, Supplementary Fig. 1). In addition to
these genetic variants linked to global thickness, we also found a
number of genomic risk loci related specifically to 13 visual, temporal,

parietal, and prefrontal regions. The anatomical anterior-posterior
ordering of these regions mirrored the order of their associated SNP
location on q21.31, i.e., SNPs associatedwith the thickness of prefrontal
regions were closer to the centromere than those associated with
visual and temporal regions, except for the lateral occipital cortex
(Supplementary Data 23). To disentangle the associations between
multiple genetic variants and multiple phenotypes, we used partial
least squares regression (Supplementary Section 7). We show that
while some SNPs were uniquely linked to the cortical thickness of
specific regions, we also found multivariate patterns of association, as
several SNPs were linked to the cortical thickness of several regions.

Given the presence of a large MAPT haplotype at 17q2137, we also
report the associations of haplotype tagging SNPs38with global cortical
thickness and LD between these SNPs with loci we show in Fig. 3A. We
found signals for cortical thickness both within and outside of the
MAPThaplotype. Briefly, a tagging SNP for the protectiveH2 haplotype
(rs8070723) was in high LD with several SNPs identified in our GWAS
(Supplementary Fig. 6) and was associated with global (p = 4 × 10−6)
and regional thickness (Supplementary Data 19). However, our GWAS
also identified other SNPs from this region thatwere not in LDwith the
MAPT haplotype.

Influences of modifiable risk factors for dementia and gene-by-
environment interactions
Following our mapping of the genetic drivers of volume-corrected
cortical thickness and WMH in UKB, we similarly mapped the asso-
ciations of depression and cardiovascular disease on the same phe-
notypes. We have also previously shown, a small but robust effect of
major depressiononcortical thinning2. The presenceof cardiovascular
conditions was associated with significant differences in thickness for
nearly half of all regions tested (pFDR < 0.05), with the strongest cor-
tical thinning observed in insular and opercular regions (Fig. 4A).

Combining these risk factors with our top newly identified
genetic predictors of cortical thickness, we tested for GxE inter-
active effects on regional thickness. We prioritized 220 unique
variants we identified in the GWAS for these analyses. For each
genetic variant, we first identified all brain regions with evidence for

Fig. 3 | Complex locus influencing cortical thickness on Chromosome 17.
A Regional plot for rs7206949, including additional variants in high linkage dis-
equilibrium and anatomically mapped genes (UKB, n > 34,500). B Volcano plot of
the postmortem differential gene expression analysis results from ROS/MAP
(n = 66). C Ideogram of 17q21.31 that includes the significant genomic risk loci and
associated cortical regions. D Anterior–posterior organization of the cortical

regions and the genetic variants associated with these cortical regions. E Seattle
Alzheimer’s Disease Brain Cell Atlasmap of tissue-specific expression values for the
ARL17A gene, showing increased expression in microglia, endothelial cells, astro-
cytes, and oligodendrocytes. PFC prefrontal cortex, OPC oligodendrocyte pre-
cursor cells, VLMC vascular and leptomeningeal cells, FC: fold change.

Article https://doi.org/10.1038/s41467-024-49430-7

Nature Communications |         (2024) 15:5207 4



GxE interaction independently (PFDR < 0.1). We then averaged the
cortical thickness values within these regions and performed a
second model on this aggregated metric, resulting in one compo-
site model of cortical thickness for each genetic variant. Our GxE
models identified 35 SNPs showing a significant interaction with
depression, 49 SNPs showing a significant interaction with cardio-
vascular conditions, and 11 SNPs showing a significant interaction
with both conditions on regional cortical thickness (p < 1.3 × 10−5,
i.e., 0.05/220/18.1 effective comparisons, Fig. 4, Supplementary
Fig. 3, Supplementary Data 11–14). Seven SNPs with depression
interactions and 20 SNPs with cardiovascular conditions interac-
tions were also significant at uncorrected p < 0.05 in a cross-
validation analysis. Most interactions were qualitative in nature39,
with opposite effects of the SNP observed in cases compared to
controls, although some quantitative interactions with the same
effect direction but different effect magnitude in cases vs. controls
were also found (Supplementary Fig. 4). Overall, these data indicate
that some SNPs associated with cortical thickness also show inter-
actions of a similar magnitude to their main effects. For example,
compared to the basemodel including all covariates, the addition of
the main effects of rs11126806 explained 0.08% of the variance in
regional thickness, while the addition of the interaction explained
an extra 0.08% of the variance in regional thickness compared to
the main effect model.

Applying main effect genetic and G× E models to predict cog-
nitive function in 25,000 mid- or late-life adults
Finally, building on our genetic and G× E interaction analyses of cor-
tical thickness andWMH in the UKB imaging sample, we accessed data
for an independent population-based cohort (CLSA) of over 25,000
adults between the ages of 45–86 with genetic, clinical, and neuro-
cognitive assessment data. We first tested whether genetic variants
associated with cortical thickness in UKB were also able to explain
variation in cognitive performance in this sample. In our first set of
analyses, 10 of the 215 genetic variants imputed with high quality in
both samples had a significant effect on composite scores measuring
memory or executive function, eight of which had a consistent direc-
tion with the effect on cortical thickness (Fig. 1C, F, pFDR < 0.1). One of
the genes was COL4A2, which has been linked to brain small vessel
disease and vascular dementia40–43. Reassuringly, these cognition-
associated variants in CLSA included two of three variants associated
with fluid intelligence (n = 134,640) in UKB (pFDR < 0.1, Supplementary
Data 6, 7).

To examine the behavioral relevance of our findings and extend
them to the CLSA sample, we calculated polygenic scores using sum-
mary statistics from our cortical thickness GWAS conducted in the
UKB and tested whether they predicted better cognitive performance
in CLSA. We focused on the GWAS-significant variants. Polygenic risk
scores representing genetic determinants of thickness in the pars

Fig. 4 | Gene-by-environment interactions on cortical thickness.
A, B Cardiovascular conditions reduced cortical thickness (CT) in the insular
regions and increased the total volume of white matter hyperintensities (WMH).
Examples of interactions of rs9926320 (C, D, n = 34,204) and rs11126806
(F, G, n = 34,204) with cardiovascular conditions and an example of interaction
between rs7575796 and depression (I, J, n = 34,204) on cortical thickness are shown.
The effect magnitude of these clinical conditions was modified by genotype

categories. A total of 49 significant interactions of genetic loci with cardiovascular
conditions, 35 significant interactions with depression, and 11 significant interac-
tions with both conditions (E, Supplementary Data 11–14, 21, 22) were found. Sev-
eral polygenic risk scores (PRS) derived from the GWAS of regional thickness
showed an interaction with cardiovascular health on executive function composite
score in CLSA (H, Supplementary Data 15). In panels D, G, and J, means and 99.9%
confidence intervals are plotted. All p-values are two-sided.
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orbitalis and pars triangularis of the inferior frontal gyrus predicted
better executive function in those without hypertension but not in
those with hypertension (T = −2.75, p = 0.006, T = −2.80, p = 0.005,
pFDR < 0.1) (Supplementary Data 15).

Discussion
In genome-wide association analyses, we identified 367 significant asso-
ciations with global and regional cortical thickness in over 34,500 mid-
and late-life adults from the UKB in vivo.We probed the identified loci in
more detail and found functionally significant genes whose transcription
and allelic variation are associated with cortical thickness in postmortem
data froman independentdataset.Weshowedthatmajordepressionand
cardiovascular conditionsmoderate genetic effects on cortical thickness;
specific genetic variants interacted with depression and cardiovascular
conditions to exert additional risk for cortical thinning beyond either
genes or environment alone. The relevance of our findings was further
extended by the association of some of the same genetic variants with
memory and executive function in over 25,000 mid- and late-life adults
from CLSA. Finally, we showed the specific impact of GxE interactions,
whereby a polygenic risk score representing higher cortical thickness in
the inferior frontal gyrus predicted better executive function in partici-
pants without hypertension but not in those with hypertension.

The etiologies of Alzheimer’s disease and related dementias
(ADRD) are complex44, withmany studies individually attributing risk to
genetic, epigenetic, or environmental factors1,45,46. For example, both
depression and cardiovascular conditions are known risks for cognitive
impairment47 and dementia1,2,48, and they can lead to cortical thinning,
especially in the prefrontal cortex encompassing the insula. In turn,
cortical atrophy or thinning is one of the best-established character-
istics of cognitivedecline andADRD49. Thus, it is an importantbiological
markerof brainhealth.Whilewe found thatmanygenetic variants affect
brain and cognitive health independently from environmental factors,
the effects of others are magnified in the presence of depression and
cardiovascular conditions.Our findings ofG × E interactions show that a
substantial proportionof genome-wide significant variants (>12%) affect
cortical thickness differently in the presence of two key modifiable risk
factors for dementia: depression and cardiovascular conditions.

There are a number ofmodifiable risk factors for ADRD, including
depression, cardiovascular conditions, smoking, physical inactivity,
alcohol consumption, and hearing loss1. Mid-life and the start of late
life are critical timepoints in the lifespan for addressing these risk
factors1. However, it is unclear the extent to which treating depression
or cardiovascular conditions could mitigate heritable risk for ADRD. A
previous large-scale study has shown that a healthy lifestyle can
decrease but not eliminate the genetic contribution of polygenic risk
scores to dementia risk50,51. Moreover, G × E studies focusing on the
APOE gene have also shown significant interactions with physical
activity and alcohol consumption44. While G × E models are promising
in disentangling the complex contributions of genetics and environ-
ment, more comprehensive and powerful G × E studies are needed.
TheUKB sample is ideal for assessing theG × E effects given its size and
the age range (45–81) of its participants. In this population sample,
there are very few people with dementia; however, it is possible to
study biomarkers of preclinical AD by leveraging neuroimaging mea-
sures of brain health. In particular, cortical thinning is a good proxy
measure of ADRD severity15, including incipient dementia52,53. By
building complex G × E models of cortical thickness as a measure of
brain health, we pinpoint specific genetic variants interacting with
depression or cardiovascular conditions. Our findings of interactive
effects of polygenic scores for cortical thickness on cognitive function
reinforce the conclusion that some genetic variants associated with
cortical thickness differentially affect proxy measures of ADRD
depending on the presence of cardiovascular conditions.

In view of previous large-scale analyses of the genetics of cortical
thickness24,25,54, including imaging phenotypes from the UKB26, our

analyses offer several new findings. First, we analyzed regional cortical
thickness without correcting for global thickness and explored in
greater detail several novel loci. Most studies of cortical thickness in
psychiatric disorders do not covary for global thickness34, including
ENIGMA meta-analyses35,55 and large-scale UKB analyses2,33, with some
recent exceptions56. However, some studies covary for intracranial
volume to control for head size, leading us to include thismeasure as a
covariate. While our results are similar to those obtained in analogous
analyses of the ENIGMA cohorts24 (genetic correlation >0.8), we found
many distinct loci likely because our discovery sample included older
adults without psychiatric conditions, unlike ENIGMA. We confirmed
some of these associations in a smaller cohort of much older adults in
ROS/MAP. Our heritability estimates were in line with previous studies
of cortical thickness24–26 and WMH27. We found genetic correlations
between greater WMH volume and higher risk for ADHD, which itself
was previously linked with higher levels of amyloid and tau57,
insomnia58, and a lower intelligence quotient59.

We show that some loci associated with cortical thickness are also
associated with cognition and may play a functional role in cortical
thickness via effects on gene expression. For example, rs11197843 was
associated with higher anterior cingulate thickness and better memory
performance and is an eQTL for gene SHTN1, which is important for
axonogenesis60. Further, rs1562330, an eQTL for the gene STMN4, was
associatedwith global and regional thickness and executive function. In
turn, STMN4 expression also predicted cortical thickness, suggesting
that this nervous system gene is central to the regulation of neural and
cognitive processes. The role of STMN4 in microtubule polymerization
has been suggested to increase neuronal complexity through
evolution36, which could be a potential mechanism through which this
gene affects neuroimaging and cognitive phenotypes. It is also a critical
gene in controlling axonal myelination in ADRD through the rearran-
gement of actin cytoskeleton61. In addition to STMN4, we have identified
functionally significant genes linked to cortical thickness, including
ARL17A, ARL17B, LRRC37A, and LRRC37A2, all of which were located on
chromosome 17. Our findings in postmortem ROS/MAP data do not
exclude the possibility that other genes, especially those identified in
the eQTL analysis of our GWAS findings, play a functional role in reg-
ulating cortical thickness in younger populations or other brain regions.

Our study has several limitations. First, the UKB includes partici-
pants with a predominantly European ancestry. Larger well-
phenotyped non-Caucasian samples are needed for our results to
generalize across ancestries62–64. While PLINK-based linear modeling is
computationally efficient, it may result in inflated type I error rates
when population substructure is present in the study sample; future
studies including more diverse populations would benefit from
emerging multivariate18 and mixed-effect models designed for
biobank-scale analyses65,66. Second, current ROS/MAP data include
relatively small numbers of participants with both neuroimaging and
genetic data.While the sample size for the differential gene expression
analysis is relativelymodest, wewere still able to identify several genes
overlapping with the eQTLmapping of GWAS results. Third, we tested
for G × E interactions with only two variables to reduce the number of
false positives. A more comprehensive approach is needed to incor-
porate a range of environmental factorswhile tackling the challenge of
multiple comparison corrections. Finally, cardiovascular conditions
(Fig. 4) and depression2 affect brain structure, and previous work has
identified bi-directional associations between depression and white
matter integrity using Mendelian Randomization67. Future studies
should examine how neuroimaging phenotypes of brain structure,
taken as a proxy measure for ADRD here15,52, may also interact with
other environmental factors to influence psychiatric conditions.

In conclusion, we identified novel genome-wide significant loci
associated with cortical thickness, assessing their shared heritability,
expression-based roles, and relevance to cognitiveoutcomes inmidlife
and older adults. We also found GxE interactions providing a template
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for discoveringmore impactful variants affecting phenotypic variation
in brain structure. Our findings suggest that treating depression and
hypertensionhas the potential tomitigate someof the genetic risks for
poor brain and cognitive outcomes. In addition, understanding an
individual’s underlying genetic architecture could clarify the risk for
these poor outcomes and help to select preventative interventions.

Methods
Participants
Participants forprimary analyseswerepart of theUKBcohort.Wedidnot
exclude participants with specific medical conditions. The overall num-
ber of participantswith preprocessedMRI outputswas 40,669; however,
we analyzed data from 35,846 White British68 and European participants
as defined by (https://pan.ukbb.broadinstitute.org/, Return 2442) given
the low numbers of participants of other ancestries. Details on the UKB
study protocols have been described69,70. The UKB study has obtained
ethical approval from the National Health Service National Research
Ethics Service (reference11:/NW/0382) and all participants provided
informed consent. We compared our findings to the largest non-UKB
univariate analysis of cortical thickness in the ENIGMA dataset24.

For secondary analysis of postmortem brain tissue, we accessed
data from the Religious Orders Study of the Rush Memory and Aging
Project (ROS/MAP)28. These data were used to (1) replicate the asso-
ciations between SNPs representing risk loci and cortical thickness, (2)
replicate the interactive effects of risk loci with cardiovascular health
issues on cortical thickness, and (3) examine direct transcriptome-
wide associations between gene expression and regional cortical
thickness. All ROS/MAPparticipants provided informedand repository
consent and also signed the Anatomical Gift Act, and ethical approval
was obtained from the institutional review board of Rush University
Medical Center. A total of 202 ROS/MAP participants had both T1 MRI
and genome-wide genotype data. Finally, we ran a transcriptome-wide
differential expression analysis of MRI-derived cortical thickness in 66
ROS/MAP participants with both dorsolateral prefrontal cortex
(DLPFC) RNA sequencing (RNAseq) and in vivo structural MRI data
acquired prior to death.

Finally, we analyzed associations between genetic and cognitive
function data in the CLSA, a sample of 25,387 older adults aged 45–86
from seven Canadian provinces29–31. Ethical approval was obtained
from research ethics boards of all the participating institutions across
Canada, and informed consent was obtained from all participants71.
More information on participant characteristics can be found in Sup-
plementary Data 1.

Modifiable factors
Among the modifiable factors that determine risk for dementia, we
focused on depression and cardiovascular health1. In the UKB,
depression at the time of MRI scan was assessed using the Patient
Health Questionnaire (PHQ-2)2,72; cardiovascular conditions were self-
reported vascular/heart diagnoses from a physician (Data Field 6150,
self-report questionnaire) and included heart attack (n = 415, 1.2%),
angina (n = 426, 1.2%), stroke (n = 227, 0.7%) and hypertension
(n = 6514, 18.2%), with most participants reporting none of these con-
ditions (n = 28,264, 78.8%). Given the low frequency of heart attack,
angina, and stroke,wecombined all cardiovascular conditions intoone
cardiovascular variable encompassing at least one of these conditions.

Data processing
MRI. Structural MRI data was processed using FreeSurfer by the UKB.
We have used the cortical thickness outputs from the Desikan–Killiany
parcellation73 (UKBData Fields 26755–26788 and 26856–26889), in the
genome-wide association study (GWAS) analyses of bilateral thickness.
In addition, we also analyzed the total volume of white matter hyper-
intensities (Data Field 25781). These imaging-derived phenotypes were
generated by using pipelines developed and run on behalf of UKB

(https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/ brain_mri.pdf).
For analyses of gene-by-environment (GxE) interactions based on
variant prioritization, we used a more fine-grained Human Con-
nectome Parcellation (HCP)2,74. Total intracranial volumewas included
as a covariate in all analyses. We excluded outliers with cortical
thickness orWMHscores of ±4 s.d. from themean inUKB analyses.We
did not include the anterior temporal lobe since FreeSurfer recon-
struction often fails in these regions in older adults. A similar approach
was used to analyze MRI data from the ROS/MAP.

Genetics. Following previous work27, we excluded related indivi-
duals with a Kinship-based INference for Gwas (KING) kinship coeffi-
cient ≥0.0884, keeping only one individual per group of up to second-
degree relationships75. We also excluded individuals with mismatched
genetically determined vs. self-reported sex. Quality control (QC) of
genetic data was performed using PLINK version 2.0076. We filtered
autosomal nonduplicate single-nucleotide variants with imputation
information (INFO) score > 0.8, and with Hardy–Weinberg equilibrium
P > 10−10,missingness <5%, andminor allele frequency (MAF) > 0.1%.We
focusedonEuropeanUKBparticipants,with assignments andprincipal
components (PCs)obtained fromhttps://pan.ukbb.broadinstitute.org/
. CLSAgeneticdata processing, includinggenotypeQCand imputation
to the TOPMed reference panel is described inmore detail in previous
studies31. CLSA QC procedures followed UK Biobank QC
documentation31.

Main effect GWAS models
We used PLINK2 (https://www.cog-genomics.org/plink/2.0/assoc)77 to
independently test for additive allelic dosage associationswith a)WMH,
b) global cortical thickness calculated as the average thickness of the
cortex, and c) 33 regional thickness in the large-scale UKB data. PLINK2
Models covaried for total intracranial volume, sex, age, study site, and
the first 10 genomic PCs. Sensitivity analyses, including an expanded set
of covariates, are shown in the Supplementary (Supplementary
Data 20). Separate models were run on White British and non-White
British European participants. We then used the METAL software
package (z-scores method78) to perform meta-analyses across these
models for variants with non-missing data in at least 10,000 individuals.
Effect and reference allele, p-values, sample size, and direction of effect
were included in the meta-analysis, with genomic control correction.

To replicate our findings, we tested for additive associations
between 220 SNPs identified as genetic risk loci for cortical thickness
in UKB analyses in ROS/MAP data. In eachmodel, we covaried for total
intracranial volume, sex, age, age2

, age × sex, ROS vs MAP site, and the
first 10 genetic PCs (MatlabR2016a, fitlme.m). Since 55%of participants
had repeated MRI measures, we included all data and fitted a random
intercept for each participant (1| participant ID). Given the size of the
ROS/MAP sample featuring MRI and SNP data (n = 202), we tested
whether each of the UKB risk loci showed an association with the same
(bilateral) regional thickness as in the UKB analyses (uncorrected
P <0.05). We also tested whether UKB risk loci showed a significant
associationwith any of the 66 lateralized regions, setting the threshold
to p < 0.0015 (0.05/33 regions for each SNP).

We examine the overlap between our genomic risk loci with those
identified in the ENIGMA data24 first by comparing the ENIGMA sum-
mary statistics for our loci and our summary statistics for the loci
identified as significant in ENIGMA. Further, we used LDlink (https://
ldlink.nih.gov/?tab=home, European reference population) to test
whether any of the ENIGMA loci were in linkage disequilibrium (LD)
with risk loci we identified in UKB (Supplementary Data 4).

Locus definitions and SNP-to-gene mapping
We used the online FUMA (Functional Mapping and Annotation of
Genome-Wide Association Studies, https://fuma.ctglab.nl/) toolkit
with default settings for definitions of the lead SNPs and genomic risk
loci79,80. Notably, we specified 1000 Genomes Phase 3 European as a
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reference population for LD clumping, and the GWAS-level sig-
nificance threshold was set to 5x10-8. For annotation of genomic risk
loci in each GWAS, we used FUMA’s SNP2GENE tool81. However, we
used FUMA expression quantitative trait loci (eQTL) mapping to
identify genes related to cortical thickness in our GWAS analyses for
select phenotypes, namely for global cortical thickness and cortical
thickness of caudal middle frontal and rostral middle frontal regions.
These regions were selected since the ROS/MAP postmortem analysis
was run on tissue from the dorsolateral prefrontal cortex (DLPFC), of
which anatomical location approximately matches the caudal middle
frontal and rostral middle frontal regions of the Desikan–Killiany
atlas73. We examined eQTLs in tissue types of GTEx Brain cortex and
GTEx Brain frontal cortex BA9 regions and set the false discovery rate
threshold (FDR) at FDR <0.05 to define significant eQTL associations.

Heritability, genetic correlations, and gene ontology
We calculated heritability from GWAS summary statistics using the LD
Score tool (LDSC; v 1.0.1 https://github.com/bulik/ldsc)82. Genetic cor-
relations were estimated by comparing our summary statistics for glo-
bal thickness and WMH (Supplementary Data 3 and 4) with summary
statistics for schizophrenia, major depression, socioeconomic status,
intelligence, insomnia, and Alzheimer’s disease using LDSC83 (Supple-
mentary Data 18). We calculated the genetic correlationmatrix for each
pair of regional thickness summary statistics and used the Brain Con-
nectivity Toolbox (BCT, https://sites.google.com/site/bctnet/) to assess
network modularity based on this correlation matrix84. Finally, to
identify biological processes implicated by GWAS analyses of regional
cortical thickness, we used the clusterProfiler package in R (4.2.0) to
conduct gene ontology (GO) overrepresentation analyses on position-
mapped (ANNOVAR, Supplementary Data 10) genes, which maps sev-
eral GO terms to several phenotypes in the same figure.

Postmortem brain differential expression analysis
Postmortem bulk tissue RNAseq data for DLPFC from participants in
ROS/MAP were accessed to identify genes whose expression was
associatedwith cortical thickness.We analyzed a subset of brain tissue
samples donated by participants who had also undergone ante-
mortem MRI prior to death (n = 66). MRI acquisition details are pro-
vided in Supplementary Data 2. Full details on DLPFC RNAseq sample
extraction, preprocessing, post-processing and QC, and statistical
modeling have been previously published85,86. Paired-end sequencing
was performed in three sets of a total of 13 batches, with an average
depth of 50million reads per sample. Reads were quantified according
to the following pipeline: (1) fastq file QC was performed using FastQC
v0.11.5 (default parameters), (2) STAR v2.5.3a was used to align reads
(GRCh38.91 reference), (3) RSEM v1.2.31 was used to quantify expres-
sion fromaligned BAM files, and (4)multiqc v1.5 was used to aggregate
quality metrics from fastqc and Picard tools v2.17.4.

Differential expression analyses were performed on expected
counts, aggregated across batches, using limma (v3.48.3) voom in R
(v4.1.1). Model co-variates for inclusion in downstream analyses were
determined by evaluating the effects of candidate variables on the top
20 principal components (PCs) of gene expression86. Brain cell type
proportions, estimated by BRETIGEA87, were also included as covari-
ates, as described86. Robust linear modeling was used for differential
expression, allowing up to 20,000 iterations to reach convergence.
Significance of the effects for target outcomes in our multivariate
models was performed using empirical Bayes moderation (eBayes
function). P-values were adjusted using the FDR approach88.

Cell-type mapping with single-nucleus RNAseq
We used the Seattle Alzheimer’s disease (SEA-AD) Brain Cell Atlas
(https://portal.brain-map.org/explore/seattle-alzheimers-disease) to
explore the cell types preferentially expressing genes identified in our
GWAS and postmortem analyses of cortical thickness.

Gene × Environment (G × E) interaction testing
We tested two approaches to variant prioritization that narrow the
search for G × E interactions to a few select SNPs. First, we tested each
of the 220unique leadSNPs identified asgenomic risk loci for global or
regional cortical thickness. Second, we used the Deviation Regression
Model to compute variance QTLs (vQTLs)89. However, no vQTLs were
significant at the GWAS level of significance (P < 5 × 10−8), thus leaving
our initial set of variants of interest unchanged.

When testing for interactions, we chose the HCP parcellation74,
which includes 360 cortical regions and thus provides a more fine-
grained map of the brain. For each SNP of interest, we computed an
interaction map, controlling for site, age, sex, age × sex, age2, total
intracranial volume, and the first 10 principal components (fitlm,m,
MATLABR2016a).We appliedp <0.01 correction to eachof themaps to
identify regions with a significant SNP ×depression or SNP×
cardiovascular health interaction (Supplementary Fig. 3). We then
averaged cortical thickness values across the significant regions
(p <0.01), resulting in one mean thickness variable for each SNP of
interest that was entered into a model identical to the regional inter-
actionmodels. Given the substantial correlation among the 360 cortical
thickness variables, we calculated a smaller number of “effective”
comparisons followingpreviouswork90–92 toguidemultiple comparison
correction. Specifically, we used principal component analysis to obtain
the eigenvalues λ1,…, λp for the 360 cortical thickness phenotypes p,

and calculated the number of effective phenotypes as
ð
Pp

k = 1
λk Þ

2

Pp

k = 1
λ2k

91,

obtaining 18.1 effective phenotypes. We further used cross-validation to
test the robustness of the results from the whole sample in held-out
data (Supplementary Section 2, Supplementary Data 21, 22).

Gene effects on cognitive function
Using cognitive and genetic data from the CLSA, we aimed to test
whether genetic risk loci for cortical thickness also affect cognitive
function and whether polygenic scores for cortical thickness interact
with hypertension to affect cognitive function. We first tested for
associations of each variant from UKB GWAS analyses with composite
scores of memory and executive function29,30. We also tested for
associations of each variant from UKB GWAS with paired associates
learning and fluid intelligence in UKB. Second, we calculated a poly-
genic score in CLSA for each brain region by multiplying the aligned
effect allele dosage (0,1,2) with the summary statistics from the GWAS
analysis (z-score) and adding them together to obtain the polygenic
score. We then tested for main effects and interactions between the
resulting polygenic score representing cortical thickness and the
presence of hypertension on composite scores of memory and
executive function.Models co-varied for age, sex, age2, age × sex, years
of education, and the first 10 genetic PCs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary statistics generated in this study have been
depositedwith the GWAS catalog (https://www.ebi.ac.uk/gwas/) under
GCST90399874–GCST90399911. Raw data are available under
restricted access as follows. Data are available from the Canadian
Longitudinal Study on Aging (www.clsa-elcv.ca) for researchers who
meet the criteria for access to de-identified CLSA data. Data are avail-
able from the UK Biobank (application #61530) for researchers who
meet the criteria for access to de-identified UK Biobank data. The UK
Biobank is a uniquely powerful biomedical database. It aims to facil-
itate research in life sciences by providing multiscale data for a large
number of participants. The UK Biobank legally binds the researchers
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using the data not to publicly shareUKBiobankdata. Therefore, we are
unable to share the data in a public repository. However, all data used
here canbe accessedbymaking a requestwith theUKBiobank. TheUK
Biobank has a dedicated portal for applying for data access here:
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
The use of UK Biobank data is not entirely free, but the data access
costs are accessible to researchers. Researchers can submit a data
request for ROS/MAP data to the Rush Alzheimer’s Disease Center.
SEA-AD data resource is publicly available at https://knowledge.brain-
map.org/data as part of the Seattle Alzheimer’s Disease Brain Cell Atlas
Comparative Viewer. The summary statistics for significant genetic
variants are also available in the Supplementary Information.

Code availability
We share all code used in the manuscript on GitHub (https://github.
com/peterzhukovsky/imaging_genetics; Zenodo https://doi.org/10.
5281/zenodo.10895139 https://zenodo.org/records/10904367).
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