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Abstract
Approach-avoidance conflict arises when the drives to pursue reward and avoid harm are incompatible. Previous
neuroimaging studies of approach-avoidance conflict have shown large variability in reported neuroanatomical
correlates. These prior studies have generally neglected to account for potential sources of variability, such as
individual differences in choice preferences and modeling of hemodynamic response during conflict. In the
present study, we controlled for these limitations using a hierarchical Bayesian model (HBM). This enabled us to
measure participant-specific per-trial estimates of conflict during an approach-avoidance task. We also employed
a variable epoch method to identify brain structures specifically sensitive to conflict. In a sample of 28 human
participants, we found that only a limited set of brain structures [inferior frontal gyrus (IFG), right dorsolateral
prefrontal cortex (dlPFC), and right pre-supplementary motor area (pre-SMA)] are specifically correlated with
approach-avoidance conflict. These findings suggest that controlling for previous sources of variability increases
the specificity of the neuroanatomical correlates of approach-avoidance conflict.
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Introduction
The drive for self-preservation is fundamental to every

living organism. Behavioral psychologists have long ar-
gued that animals evaluate objects and events in their
environments along an appetitive-aversive continuum (El-

liot, 2008; Corr, 2013), where animals are motivated to
approach things that sustain them (e.g., rewarding or
pleasurable stimuli) and to avoid things that threaten them
(e.g., harmful or painful stimuli). Approach-avoidance
conflict arises in situations where these drives are incom-
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Significance Statement

Approach-avoidance conflict is implicated in many psychiatric syndromes. Previous fMRI studies of this
important process have potential biases caused by overlooking individual differences in the evaluation of
reward and threat in their analyses. We present a method to model individual differences in approach-
avoidance conflict and demonstrate how to incorporate this model into fMRI analyses. We found our
approach to have greater specificity than previous studies, which highlights the importance of capturing
large variability in participant behavior.

Methods/New Tools

July/August 2019, 6(4) ENEURO.0115-19.2019 1–12

http://orcid.org/0000-0003-3868-7453
http://orcid.org/0000-0002-7772-1143
https://doi.org/10.1523/ENEURO.0115-19.2019


patible, such as when the approach toward reward also
increases the possibility of danger. Approach-avoidance
conflict is an important phenomenon as it is thought to be
core to the etiology and maintenance of psychiatric dis-
orders including depression and anxiety (American Psy-
chiatric Association, 2013).

In recent years, many studies have investigated the
neural substrates underlying approach-avoidance conflict
using electrophysiology in rodents (Friedman et al., 2015)
and non-human primates (Amemori et al., 2015) and neu-
roimaging in humans (Talmi et al., 2009; Park et al., 2011;
Bach et al., 2014; Aupperle et al., 2015; O’Neil et al., 2015;
Schlund et al., 2016; Loh et al., 2017). The results of the
human neuroimaging literature have implicated a diverse
collection of brain structures in approach-avoidance
conflict including cortical structures such as the anterior
cingulate, insula, orbitofrontal cortex, and dorsolateral
prefrontal cortex (dlPFC), and subcortical structures in-
cluding the amygdala, hippocampus, and striatum. There
is considerable heterogeneity in these findings, however,
such that none of the aforementioned brain structures are
consistently identified as being involved in approach-
avoidance conflict across these studies. This naturally
prompts the question of where some of the variability
might stem from.

One possibility is that the heterogeneity reflects vari-
ability in approach-avoidance behavior across partici-
pants. Approach-avoidance tendencies are naturally
varying across individuals (Carver and White, 1994), such
that there are robust individual differences in the valuation
of reward and threat cues. As such, the point of maximal
approach-avoidance conflict is unlikely to be the same
across participants. Ignoring these individual differences
and averaging across them, however, has been shown to
reduce contrast statistics in fMRI group level analysis
(Ahn et al., 2011). One solution is to explicitly model
individual differences in approach-avoidance conflict,
such as with hierarchical Bayesian modeling (HBM;
Kruschke, 2015), and incorporate trial-by-trial esti-
mates of approach-avoidance conflict into the fMRI
analysis to align participants along a latent evaluation
space (O’Doherty et al., 2007; Ahn et al., 2011). In doing
so, we are less likely to average out conflict-related
changes in BOLD signal.

A second possibility is that the heterogeneity in findings
directly reflects variability in previous modeling of conflict-
related changes in BOLD signal. A hallmark feature of
approach-avoidance conflict is prolonged reaction times.
Interpreting changes in BOLD signal between two condi-
tions that also involve differences in response times is
challenging, however, due to the time-on-task effect (Tay-
lor et al., 2014). Because the BOLD signal sums approx-
imately linearly as a function of stimulation duration (Dale
and Buckner, 1997), brain structures not directly involved
in the representation of approach-avoidance conflict may
still show increases in BOLD signal by virtue of prolonged
processing of the constitutive elements of conflict (e.g.,
rewarding or threatening stimuli). Controlling for response
time is necessary then to identify brain structures that are
directly involved in the processing of approach-avoidance
conflict (brain regions that show increased intensity of
activity, not just prolonged activity). With the exception of
Talmi et al. (2009), the neuroimaging studies of approach-
avoidance conflict cited above do not document having
incorporated response times into their fMRI analyses.

In the present study, we investigated the neural signa-
tures of human approach-avoidance conflict with func-
tional neuroimaging controlling for the issues discussed
above. We measured changes in the fMRI BOLD signal as
participants completed an approach-avoidance conflict
task. In the task, participants repeatedly chose between a
risky option, returning greater reward at the risk of poten-
tial electrical stimulation, and a safe option, returning a
much smaller reward but no risk of electrical stimulation.
Using a novel HBM, we estimated participants’ per-trial
approach-avoidance conflict and used these to inform our
fMRI analyses. Moreover, we controlled for the time-on-
task effect using the variable epoch method (Grinband
et al., 2008) to identify brain structures that showed
greater intensity of activity, rather than prolonged activity,
during approach-avoidance conflict. We found that using
these methods increased the specificity of the structures
responding to conflict.

Materials and Methods
Subjects

Thirty-six individuals (13 females, 23 males, age: mean
� 33.94 years, SD � 8.80) were recruited from the Greater
Boston area to participate as healthy volunteers in a
research program to develop novel deep brain stimulation
(DBS) technologies (Widge et al., 2017). All participants
reported being right-handed and without a current or past
diagnosis of a psychiatric or neurologic disorder and were
in the normal healthy range for the Mini-International Neu-
ropsychiatric Interview (MINI; Sheehan et al., 1998).
Women were scanned at or near the ovulation phase of
their menstrual cycles (when estradiol is lowest) to mini-
mize potential gender confounds (Zeidan et al., 2011). The
study was approved by the Partners Health care System
Human Research Committee, and all participants pro-
vided written informed consent before enrollment. Partic-
ipants were paid $600 for the successful completion of
the larger study protocol.
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Eight individuals were excluded from analysis: five due
to technical complications (see Task below), two for miss-
ing responses for �20% of trials, and one due to cor-
rupted DICOMs. This resulted in a final sample of 28
participants (10 females, 18 males).

Task
We employed a modified version of the aversion-reward

conflict (ARC) task (Sierra-Mercado et al., 2015). During
this task, participants make a series of choices between
two options: a safe option or a risky option (Fig. 1).
Selecting the safe option returns a reward of $0.01, and
the participant never receives electrical stimulation. In
contrast, selecting the risky option returns a reward be-
tween $0.05 and $0.95, and the participant receives elec-
trical stimulation with probability 10%, 50%, or 90%, as
indicated by a bar in the center of the screen. This re-
quired participants to evaluate their preference for a
greater reward with a risk of electrical stimulation relative
to a lesser reward with no risk of electrical stimulation.
Participants were instructed to choose as fast as possible
without choosing randomly and were informed that their
choices would be reflected in their final study payment. (In
fact, each participant was compensated with a generous
flat payment.) Before starting the task, participants were
asked to report back the instructions so that their com-
prehension could be verified. Next, participants com-
pleted ten practice trials to become accustomed to the
timing of the task.

This ARC task had three levels of risk: 10%, 50%, and
90% likelihood of electrical stimulation. Rewards were
sampled from all cent values between $0.05 and $0.95.

Trials were counterbalanced such that there were an
equal number of trials at each risk level, while rewards
were uniformly and equally sampled within each risk level.
Each participant completed 108 total trials and the order
of trials was kept constant for all the participants. Long
intertrial intervals of 10.5 � 0.875 s separated sequential
trials in the task (a slow event-related design). The dura-
tion of the full task was 28.5 min.

Electrical stimulation was administered to the ankle
through a Coulbourn Aversive Finger Stimulator (Harvard
Apparatus, E13-22; maximum level of stimulation � 4.0
mA). The amperage of electrical stimulation was cali-
brated individually for each participant before performing
the ARC task. Participants experienced increasing levels
of stimulation until they reported reaching a subjective
threshold qualified as “highly annoying but not painful.”
For five participants this threshold could not be estab-
lished because the highest stimulation setting of 4.0 mA
was too painful, but penultimate 2.3-mA setting was not
experienced as annoying. These participants did not ex-
hibit behavioral variation (i.e., they always accepted the
risky choice) and consequently these participants were
excluded from the analysis.

Behavioral analysis
Our aim was to infer the level of approach-avoidance

conflict experienced by each participant during every trial.
We devised a novel HBM that predicts participants’
choices (safe or risky option) and response times. The
decision to model response times was motivated by well-
documented relationship between decision conflict and
prolonged response times and prior demonstrations that

Figure 1. Aversion-reward conflict (ARC) task. Participants are presented with a safe choice (blue) and a risky choice (orange). The
safe choice pays a guaranteed small reward ($0.01) and no aversive stimulation. The risky choice pays a guaranteed larger reward
($0.05–$0.95), and a probability of stimulation as indicated by the centered white bar. Participants decide whether to accept a higher
payout at risk of aversive stimulation.
Figure Contributions: Darin Dougherty, Thilo Deckersbach, Alik Widge, and Samuel Zorowitz designed the task. Sam Zorowitz created
the figure.
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including response times in behavioral models improved
the accuracy of single-trial parameter estimation (Prerau
et al., 2009; Pedersen et al., 2017). The model is com-
posed of a logistic regression on the choice data and a
gamma regression on the response times. We assume the
binary choice responses, y � (0 � safe choice, 1 � risky
choice) are drawn from the Bernoulli distribution:

p�yij��ij� � �ij
yij(1 � �ij)1�yij,

where �ij is the likelihood-of-take for trial i and participant
j, and is itself estimated from:

�ij � logistic��0j
� ��njxnij�.

Here, �0j
is the intercept for participant j; the remaining

�nj regression coefficients reflect the modulatory influence
of independent variables, X, on the baseline likelihood-of-
take. In this model, there are three independent variables:
50% risk��1�, 90% risk��2�, and reward��3�. The 50% risk
��1� and 90% risk ��2�, coefficients are binary predictors,
whereas reward ��3� is a continuous predictor that was
normalized to have mean � 0 and SD � 1. The intercept
term, �0, thus reflects the likelihood of take for 10% risk
and $0.50 reward offer.

The continuous response times, z, are assumed to be
drawn from the gamma distribution:

p�Zij�kj, 	ij� � Gamma�kj,
kj

	ij
�,

where kj is the shape parameter for participant j and 	ij is
the mean of the distribution predicted by:

	ij � 
0j � 
1j·dij.

We chose a gamma distribution because it is well-
suited for characterizing response times and other strictly
positive data with a long rightward tail (Yousefi et al.,
2015). Here, 
0jwas the average response time for partic-
ipant j and 
1j was the slope term determining how much
response time increased with conflict. We represent con-
flict, dij, as the inverse of the distance-to-decision bound-
ary of trial i for participant j, represented as:

dij � 0.25 � (0.5 � �ij)2.

This measure, d, has the shape of an inverted parabola.
It is greatest when � � 0.5, or when a participant is equally
likely to select the safe or risky option. It is smallest when
� � 0.0 or � � 1.0, or when a participant is most likely to
select the safe or risky option, respectively. Therefore, d
reflects the degree of conflict a participant experienced
during the evaluation phase of a given trial. The model fit
then identified the set of parameters that maximized the
joint likelihood of both the choice and response time data
due to the relationship between � and d.

As a hierarchical model, each of the participant-level regres-
sion parameters defined above (e.g., 
0j, 
1j, �0j, �1j, �, �nj) are
drawn a corresponding group-level distribution, centered at
group-level means (e.g., 
0G, 
1G, �0G, �1G, �, �nG). Thus, the

model simultaneously estimates group- and participant-
level parameters, partially pooling the data so as to min-
imize the influence of outliers. Figure 2 presents a detailed
diagram of the model which includes the choice of priors.
We assumed Student’s t distribution priors on the choice
��� regression coefficients to ensure robust logistic re-
gression (Gelman et al., 2008; Ghosh et al., 2018) using
the recommended degrees of freedom, � � 5 (Stan De-
velopment Team, 2017).

The behavioral model was fit using Hamiltonian Monte
Carlo (HMC) sampling in Stan v2.15 (Carpenter et al.,
2017) with four chains of 2000 steps each (1000 burn-in,
thinning � 4), yielding 1000 posterior samples total. The
convergence of the chains was computed using the R̂
statistic (Gelman et al., 2014), which measures the degree
of variation between chains relative to the variation within
chains. The Stan development team recommends as a
rule of thumb that all parameters have R̂ statistics no
�1.1. All parameters in our showed good convergence
�R̂ � 1�. Similarly, the number of effective samples ap-
proached 1000 for most parameters indicating that the
chains exhibited low autocorrelation. Once fitted, per-trial
estimates of d were generated by multiplying the ob-
served trial features (risk level and reward value) by the
modal individual-level parameter estimates.

Image acquisition and preprocessing
All MRI scans were completed at the Athinoula A. Mar-

tinos Center for Biomedical Imaging. Of the 28 partici-
pants included in this analysis, 20 were scanned using a
3T Siemens Trio scanner, and eight were scanned using a
3T Siemens Prisma scanner (scanner type was entered as
a covariate in the analyses). All participants were scanned
with a 32-channel head coil. Foam cushions were used to
restrict head movements. Task images were projected
using a rear projection system and PsychToolbox (V3)
stimulus presentation software (Kleiner et al., 2007).

For each participant, both structural and functional im-
ages were collected. The structural sequences involved a
high-resolution, four-multiecho, T1-weighted, magnetization-
prepared, gradient-echo image (TR � 2510 ms, TE � 1.64
ms, flip angle � 7°, voxel size � 1.0 � 1.0 � 1.0 mm; van
der Kouwe et al., 2008). Functional images were acquired
using a multiband SMS-3 T2�-weighted echoplanar im-
aging (EPI) sequence sensitive to BOLD contrast (TR �
1750 ms, TE � 30 ms, flip angle � 75°, voxel size � 2.0
� 2.0 � 2.0 mm, PAT � GRAPPA, accelerated factor TE
� 2). Sixty-three interleaved slices were aligned perpen-
dicular to the plane intersecting the anterior and posterior
commissures, and the whole brain was imaged (FOV �
220 mm). For the purpose of EPI-dewarping, a fieldmap
was also collected for each participant (63 interleaved
slices, TR � 500 ms, TE 1 � 3.41 ms, TE 2 � 5.87 ms, flip
angle � 55°, voxel size � 2.0 � 2.0 � 2.0 mm).

Anatomic reconstructions of each participant’s brain were
generated from the T1 structural image using Freesurfer v5.3
(Fischl, 2012). The functional data were first corrected for
slice timing using the Fourier phase shift interpolation from
SPM8 and then for B0 using FSL’s epidewarp (https://
surfer.nmr.mgh.harvard.edu/fswiki/epidewarp.fsl). FS-FAST
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v5.3 was used for subsequent preprocessing with their de-
fault settings: coregistration with the corresponding Free-
surfer anatomic reconstruction; motion correction to the
first acquisition using the AFNI motion correction tool
(http://afni.nimh.nih.gov/afni/); normalization to fsaver-
age/Montreal Neurologic Institute (MNI) space; and
smoothing using 6-mm FWHM kernel.

fMRI modeling and analysis
Neuroimaging analyses were limited to a priori regions

of interest in line with the literature (Talmi et al., 2009; Park
et al., 2011; Bach et al., 2014; Aupperle et al., 2015; O’Neil
et al., 2015; Schlund et al., 2016; Loh et al., 2017). Spe-
cifically, a cortical mask was constructed for left and right

hemispheres using the Mindboggle atlas (Klein and Tour-
ville, 2012) consisting of areas encompassing the cingu-
late cortex, dorsomedial PFC (dmPFC), orbitofrontal
cortex, dlPFC and ventrolateral PFC, and insular cortex
(Fig. 3). Similarly, a subcortical mask was constructed
using the automated subcortical segmentation stan-
dard in Freesurfer (Fischl et al., 2002) consisting of the
bilateral striatum (caudate, putamen), hippocampus,
and amygdala.

In the first level analysis, we modeled the deliberation
phase (time to response) using the variable epoch method
(Grinband et al., 2008). The deliberation phase was mod-
eled using two sets of boxcar regressors: one control
regressor and one parametric modulation regressor. For

Figure 2. A Kruschke-style diagram of the hierarchical model. The � symbol indicates stochastic dependency, whereas the � symbol
indicates a deterministic dependency. Ellipses indicate the indices over which the dependency applies. The parameter of most
interest is d, the inverse distance-to-decision-boundary, which measures the estimated conflict experienced on a given trial. Figure
Contributions: Samuel Zorowitz created the model.

Figure 3. A priori cortical regions of interest. Regions (Freesurfer labels) were selected from the Mindboggle atlas (https://
mindboggle.info/data.html) based on the diffuse locations of activations previously reported in the approach-avoidance decision-
making literature.
Figure Contributions: Samuel Zorowitz chose the regions of interest based on prior literature and created the figure.
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both regressors, the boxcar for each trial was scaled in
duration according to that trial’s observed response time.
The boxcar for each trial in the parametric modulation
term was scaled in amplitude according to estimated
decision conflict (d) for that trial. The parametric modula-
tion boxcars corresponding to trials with missing re-
sponses were scaled to zero amplitude. Additionally,
several separate control analyses were performed with
the same procedure to determine the effect of (1) using
the variable epochs method, (2) using an HBM to model
individual differences, and (3) using conflict as the para-
metric modulator over and above using risk or reward as
the parametric modulator. For the first control analysis,
fixed epochs were used instead of variable epochs, where
the trial duration was not scaled and instead was uniform;
from the presentation of the first stimulus (the risk bar) to
3.5 s after that time when subject responses were cutoff.
For the second control analysis, an equivalent non-
hierarchical model was used (i.e., estimating only group
parameters, excluding participant-level parameters) to
model the conflict parametric modulator. For the third set
of control analyses, risk and reward were used, in sepa-
rate analyses, to parametrically modulate the delibe-
ration-phase regressor instead of conflict, and, in another
separate analysis, risk, reward and conflict were all used
as parametric modulators with three parametrically mod-
ulated deliberation-phase regressors in the same first-
level analysis. All regressors were convolved with the
SPM hemodynamic response function. All estimated re-
gression coefficients in first level analysis were converted
to percentage signal change (PSC; Pernet, 2014).

The fMRI data were preprocessed using a high-pass
filter, nuisance regressors and motion scrubbing. A dis-
crete cosine transform basis set was added to high-pass
filter the data at 0.01 Hz. The six possible directions of
motion were incorporated into the first-level analyses (af-
ter being demeaned, detrended, and orthogonalized) as
nuisance regressors. Finally, motion scrubbing was used
to mitigate the impact of high-motion acquisitions on the
data (Siegel et al., 2014). Volumes for which the calculated
framewise displacement (Power et al., 2012) exceeded
0.9 mm were excluded from analyses, and the first four
acquisitions were discarded.

In the second level analysis, the beta coefficients esti-
mated for each participant were submitted to a weighted
least squares (WLS) regression where F-contrasts were
computed for the control and parametrically modulated
regressors. Scanner type (Trio vs Prisma) was entered as
a secondary nuisance regressor. Five thousand permuta-
tions of the WLS model were also computed following the
Freedman–Lane procedure (Winkler et al., 2014). Every
statistical map, both observed and permuted, was sub-
mitted to threshold-free cluster enhancement (Smith and
Nichols, 2009; Gramfort et al. 2013, 2014) using the rec-
ommended parameters (H � 2, E � 0.5, step � 0.1).
Finally, the permutation maps were used to compute
family-wise error (FWE) corrections (
 � 0.05) for each
voxel (Winkler et al., 2014). Any resulting clusters were
discarded if they covered �100 mm2 on the surface or
fewer than 20 contiguous voxels of the volume.

Code accessibility
All data and analysis scripts are available online at

https://openneuro.org/datasets/ds001814 and https://
github.com/mghneurotherapeutics/DARPA-ARC, respec-
tively. The data and scripts are freely available at these
locations with instructions for access and suggested ci-
tation included.

Results
Behavioral results

Participants exhibited the expected response trends for
the ARC task: greater risk of electrical stimulation de-
creased on average the likelihood of selecting the risky
option, whereas increasing reward increased the likeli-
hood of selecting the risky option (Fig. 3). The 95% high-
est density intervals (HDIs) of the posterior distribution for
the group-level parameters showed decreases in risky-
choice taking for the 50% (�1 � –1.922, 95% HDI:
[–2.606, –1.139]) and 90% risk (�2 � –4.180, 95% HDI:
[–5.273, –3.257]) conditions. In contrast, increases in
risky-choice taking were observed in response to increas-
ing reward (�3 � 10.652, 95% HDI: [8.239, 12.887]).Thus,
risk biased choice behavior toward avoidance (i.e., select-
ing the safe option), and reward biased choice behavior
toward approach (i.e., selecting the risky option), indicat-
ing that the ARC task elicited the intended behavioral
effects.

At the subject level, the 95% HDIs of the posterior
estimates for the 50% risk (�1) and 90% risk ��2) coeffi-
cients were strictly negative for 19/28 participants and
24/28 participants, respectively. The 95% HDIs for the
reward coefficients (�3) were strictly positive for 27/28
participants. No participants exhibited an increase in
choice preference for the risky option with increasing risk
and no participants exhibited an increase choice prefer-
ence for the safe option with increasing reward. In sum-
mary, all the participants had response trends that
matched our expectations for the ARC task, and most
participants’ behavior was modulated by both risk and
reward.

For the response time component of our HBM, we
found that approach-avoidance conflict was positively
correlated with response times (Fig. 4B). At the group-
level, the 95% HDI of the posterior distribution on the
conflict-RT slope parameter was strictly positive (
1 �
0.456, 95% HDI: [0.388, 0.528]). The model estimated an
average increase in response times of 0.456 s at maximal
conflict. Thus, the ARC task was also successful in elic-
iting this hallmark behavioral signature of increased re-
sponse times during approach-avoidance conflict.

It is important to note we observed considerable vari-
ability in the choice preferences of our participants (Fig.
5). The most approach-biased participant selected the
risky option on almost all trials (93%), whereas in contrast
the most avoidance-biased participant selected the safe
option on almost all trials (16%). This strongly demon-
strates the notion that the points of maximal approach-
avoidance conflict are unlikely to be the same across
participants and reinforces the need for methods like
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HBMs that explicitly take into consideration these large
individual differences.

Importantly, posterior predictive checks showed that
our model accurately captured participants’ choice be-
havior (Fig. 5). The root-mean-square error between pre-
dicted and observed average risky choice was 0.023. To
assess the possibility of model overfitting, we compared
the widely applicable information criterion (WAIC; Wa-
tanabe, 2013; Vehtari et al. 2017) of our HBM to an
equivalent non-hierarchical model (i.e., estimating only
group parameters, excluding participant-level parame-
ters). WAIC scores are reported here on deviance scale
where lower scores denote greater fitness. The hierarchi-
cal model (WAIC � 1319.4) was strongly preferred to its
non-hierarchical equivalent (WAIC � 2611.5) despite its
greater complexity. We also compared our hierarchical
model to a secondary hierarchical model that included
interaction terms between risk and reward. This model
performed slightly worse than the main effects-only
model (WAIC � 1320.8). As such, we proceeded with
the more parsimonious model with main effects only for
fMRI analysis.

In summary, the ARC task successfully elicited ap-
proach, avoidance, and approach-avoidance conflict be-
haviors from all participants. Specifically, participants
were (1) more likely to select the risky option with increas-
ing reward; (2) more likely to select the safe option with
increasing risk of electrical stimulation; and (3) slower to
respond with increased approach-avoidance conflict.
Moreover, participants exhibited large individual differ-
ences in their choice preferences, which were accurately
captured by our HBM. It is worth reiterating that ignoring
these differences can reduce contrast effects in fMRI
analysis by averaging over the neural correlates of dis-
similar cognitive processes (Ahn et al., 2011).

Imaging results
For the control regressor (i.e., measuring the average

BOLD signal change during the deliberation phase, with-
out modulation by conflict), we found activations within
the a priori cortical and subcortical regions of interest (Fig.
6) that were selected based on prior literature (see Re-
sults, fMRI modeling and analysis). Peak voxels and their
corresponding statistics are reported in Table 1. Large,

Figure 4. Group-level behavior results. A, The estimated likelihood of choosing the risky option for each risk level and across rewards.
The model estimated decreases in risky decision-making at both 50% risk (�1 � –1.922, 95% HDI: [–2.606, –1.139]) and 90% risk
(�2 � –4.180, 95% HDI: [–5.273, –3.257]). In contrast, the model estimated increases in risky decision-making in response to
increasing reward (�3 � 10.652, 95% HDI: [8.239, 12.887]). B, The estimated linear component of deliberation time as a function of
decision conflict, d. The model estimated an increase in deliberation time with decision conflict (
1 � 0.456, 95% HDI: [0.388, 0.528]).
Shaded regions denote the 95% HDI.
Figure Contributions: Samuel Zorowitz, Katherine Link, and Alexander Rockhill performed the behavioral analysis.

Figure 5. Individual differences in behavior. Participants in the ARC task exhibited large individual differences in behavior. A, Participants
varied in their approach-avoidance preferences (although the majority was approach biased). B, Participants varied in the extent to which
their deliberation increased in response to decision conflict (but all participants showed increased response times during conflict). Each
point represents one participant. The horizontal axis denotes the observed behavior (proportion of risky choices, A; response time
increases, B), and the vertical axis denotes the model predicted behavior. Proximity to the diagonal indicates goodness of fit.
Figure Contributions: Samuel Zorowitz, Katherine Link, and Alexander Rockhill performed the behavioral analysis.
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significant BOLD signal increase was observed in bilateral
dorsal anterior cingulate cortex (dACC) and dmPFC
(dACC/dmPFC; BA 32), midcingulate cortex (BA 23/24),
pre-supplementary motor area (pre-SMA; BA 6), anterior
insula (BA 13), and dlPFC (BA 46). Among subcortical
structures, the control deliberation regressor was posi-
tively correlated with BOLD signal activation in bilateral
dorsal hippocampus and striatum (caudate, putamen).
Smaller, significant activations were also detected in the
right lateral orbitofrontal cortex (OFC; BA 11) and right
putamen. These results corroborate the distributed net-
work of neural structures previously reported to be re-
cruited during approach-avoidance conflict tasks (Talmi
et al., 2009; Park et al., 2011; Bach et al., 2014; Aupperle
et al., 2015; O’Neil et al., 2015; Schlund et al., 2016; Loh
et al., 2017).

Significant change in BOLD signal for approach-
avoidance conflict regressor was observed in a much
more restricted set of structures (Fig. 7). Approach-
avoidance conflict was positively correlated with BOLD
signal activation only in bilateral rostral inferior frontal
gyrus (IFG; pars orbitalis; BA 47), right dlPFC (BA 46), and
right dmPFC/pre-SMA (BA 32). No significant positive
activations were detected in subcortical structures, and
no negative activations were detected in any a priori
region of interest. In contrast to the aforementioned pre-
vious literature, our results suggest that only a select set
of cortical structures tracked approach-avoidance con-
flict. Interestingly, our analysis revealed conflict represen-
tations in the right IFG, a structure previously unreported
in the approach-avoidance conflict literature.

The control analyses showed the difference between
these results and results from analyses with fixed epochs,

Figure 6. PSC during deliberation. The control regressor measures changes in the BOLD signal during deliberation (independent of
approach-avoidance conflict). Positive activation was found in cortical and subcortical regions including the lateral and medial PFC,
striatum, and hippocampus. All voxels corrected for multiple comparisons through 5000-iteration permutation testing and voxel-wise
FWE corrections (
 � 0.05). LH, left hemisphere; RH, right hemisphere.
Figure Contributions: Samuel Zorowitz and Alexander Rockhill performed the fMRI analysis. Samuel Zorowitz, Alexander Rockhill, and
Kristen Kellard collected the data.

Table 1. Coordinates and statistics of peak BOLD activations

Deliberation phase (control)

ROI x y z PSC F
dACC/dmPFC: LH –12 22 36 0.08 352.92
RH 7 15 24 0.09 462.05
MCC: LH –7 –22 29 0.15 328.72
RH 7 –15 31 0.18 529.27
pre-SMA: LH –9 7 51 0.10 419.56
RH 10 14 47 0.10 373.34
dlPFC: LH –36 9 24 0.12 223.96
RH 36 18 25 0.11 312.87
Anterior insula: LH –31 27 9 0.2 351.91
RH 31 27 8 0.16 413.00
Lateral OFC: RH 13 38 –24 0.07 95.60
Pre-motor: LH –37 –2 43 0.14 291.16
RH 36 –3 44 0.14 333.73
Caudate: LH –10 7 3 0.07 28.42
RH 10 11 5 0.06 25.16
Putamen: LH –20 5 1 0.05 29.04
RH 34 –7 –7 0.04 22.15
Hippocampus: LH –14 –39 –3 0.09 34.95
RH 14 –39 –1 0.10 34.47
Deliberation phase (conflict)
IFG: LH –39 45 7 0.05 56.53
RH 42 45 –6 0.05 55.10
dlPFC: RH 42 27 31 0.04 68.02
pre-SMA: RH 9 27 46 0.04 59.55

The reported statistics are the PSC and WLSs contrast against baseline (F)
statistic. The first set of results reflect the unmodulated deliberation and the
second set reflect the contrast between deliberation parametrically modu-
lated by conflict and unmodulated deliberation. All coordinates reported in
the MNI space and reflect the peak of activation. All voxel statistics were
corrected for multiple comparisons through 5000-iteration permutation test-
ing and voxel-wise FWE corrections (
 � 0.05). LH, left hemisphere; RH,
right hemisphere; MCC, midcingulate cortex.
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averaging across subjects and using a simpler risk or
reward only model. As shown in Figure 8, using fixed
epochs caused smaller, more widespread, positive acti-
vations encompassing bilateral striatum and left insula in
addition to the structures activated in the main, variable
epochs analysis. The non-HBM (used in combination with
variable epochs) had no significant activations that corre-
lated with the conflict regressor. Using risk and reward as
regressors in a model with only the non-parametrically
modulated, control deliberation regressor and risk or the
control deliberation regressor and reward also yielded
almost no significant activations with the exception of a
small, negative activation correlated with reward in a
small area of right dlPFC and lateral OFC. When the
risk and reward regressors were modeled in combina-
tion with conflict, not only were there no significant
activations for the risk and reward regressors, but the
significant activations for the conflict regressor was
suppressed.

Discussion
In this study, we investigated the neural basis of human

approach-avoidance conflict while accounting for two
possible sources of heterogeneity in the literature; indi-
vidual approach-avoidance variability and time-on-task.
Using HBM, we controlled for individual differences in
approach-avoidance preference by comparing partici-
pants’ fMRI data according to each participant’s relative
points of maximal approach-avoidance conflict. Using the
variable epochs method in our fMRI analyses, we also
controlled for the time-on-task effect. Thus, we were able
to differentiate brain structures strictly sensitive to
approach-avoidance conflict from those representing in-
formation correlated with deliberation more generally. The
present findings corroborate previous reports of the ana-
tomic correlates of approach-avoidance behavior by our
finding that BOLD signal increased during deliberation
across a broad network of cortical and subcortical brain
structures (dACC/dmPFC, pre-SMA, dlPFC, OFC, insula,

Figure 7. PSC during conflict. The parametric modulation regressor measures changes in BOLD signal during deliberation as a
function of approach-avoidance conflict. Positive activation was detected only in bilateral IFG, and right dlPFC, and pre-SMA. All
voxels corrected for multiple comparisons through 5000-iteration permutation testing and voxel-wise FWE corrections (
 � 0.05).
Figure Contributions: Samuel Zorowitz and Alexander Rockhill performed the fMRI analysis; Samuel Zorowitz, Alexander Rockhill and
Kristen Kellard collected the data.

Figure 8. PSC during conflict for the fixed epochs analysis. In this case, epochs were made from the first stimulus presentation to
the end of the response period instead of ending when the subject responded for each particular trial. A more widespread, less
specific, smaller, positive activation was detected in the same structures as Figure 7 with the addition of activation in bilateral striatum,
left insula as well as greater activation in bilateral dlPFC. All voxels corrected for multiple comparisons through 5000-iteration
permutation testing and voxel-wise FWE corrections (
 � 0.05).
Figure Contributions: Alexander Rockhill performed the fMRI analysis. Samuel Zorowitz, Alexander Rockhill, and Kristen Kellard
collected the data.
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striatum, hippocampus). Importantly, the current findings
deviate from the previous literature insofar that our con-
trolled analyses found conflict-related changes in BOLD
signal only in a select set of structures (i.e., IFG, dlPFC,
and pre-SMA). Collectively, the current findings suggest
the importance of careful methodology in isolating the
neuroanatomical correlates of latent psychological states
such as approach-avoidance conflict.

To examine the effect of using an HBM, we compared
these results to results from the non-HBM analysis. The
HMB methodology was clearly warranted by the large
differences observed between the approach-avoidance
behavior of different participants as shown in Figure 5 and
described in Results, Behavioral results. The need for this
methodology was confirmed by the suppression of any
significant areas of activation when a non-HBM was used.
Thus, accounting for individual differences with an HBM
resulted increased group-level fMRI contrast statistics,
consistent with previous findings (Ahn et al., 2011).

Another important difference between the present
findings and past studies is our use of the variable
epochs method (Grinband et al., 2008), which we in-
cluded so as to control for the time-on-task effect and
minimize the risk of mismodeling the hemodynamic re-
sponse. By controlling for time-on-task, our analysis was
explicitly interested in identifying brain structures that
show an increase in the BOLD signal due to an increase in
the intensity, not duration, of the activity of the underlying
neural populations. One natural question is whether
approach-avoidance conflict is more accurately modeled
as the prolonged, but not increased, engagement of brain
structures. One problem with this view, as noted above, is
that this makes it difficult to disentangle conflict-specific
signals from other correlated but unrelated signals (e.g.,
processing of reward or threat stimuli). As such, we opted
to use a more conservative definition of approach-
avoidance conflict (increase in amplitude of BOLD signal,
above and beyond that expected from prolonged engage-
ment, as measured by our parametric modulation regres-
sor). The conservativeness of this variable epochs method
compared to fixed epochs was confirmed in the control
analyses shown in Figure 8, where areas with significant
activation in the variable epochs analysis were found to
be a subset of areas with significant activation for the
fixed epochs analysis. Thus, our analysis was conserva-
tive but well suited to identify regions specifically impli-
cated in the processing of approach-avoidance conflict.

To control for whether our results relate to approach-
avoidance and not some simpler approach or avoidance
alternative mechanism, we ran three different analyses (1)
with risk as the parametrically modulated regressor, (2)
with reward as the parametrically modulated regressor,
and (3) with three parametrically modulated regressors for
risk, reward and conflict. The first two analyses showed
that risk or reward alone are not capable of explaining the
regions of conflict that had significant activations corre-
lated with conflict (Fig. 7); as described in Results, these
analyses had almost no areas of significant activation. In
the third analysis, the suppression of significant conflict
activations (described in Results) suggested that includ-

ing risk and reward in the same model as conflict caused
the variance to be split between all three variables’ ex-
planatory power. Reward and risk are approach and
avoidance stimuli, respectively, so by definition these
stimuli covary strongly with the approach-avoidance mea-
sure conflict. This control analysis therefore confirms that
the explanatory power of conflict is dependent on risk and
reward and also shows that including regressors with high
covariance can cause a false-negative result.

Another point worth noting is that our analysis assumes
only linear changes in the BOLD response to conflict. The
variable epochs method used here is insensitive to any
nonlinear changes in the BOLD signal that may arise as a
function of response time, raising the possibility of re-
maining biases in the present results. Interestingly, in a
finite impulse response analysis of the hemodynamic re-
sponse during prolonged response times, Yarkoni et al.
(2009) found that structures in the PFC were better de-
scribed by increases in the amplitude of hemodynamic
response but not by changes in its shape. These findings
suggest that not using a finite impulse response analysis
did not bias the hemodynamic response in this present
analysis, but further studies are necessary to answer this
question more definitively.

There were additional discrepancies between the pres-
ent study and previous studies on approach-avoidance
tasks. Though positive BOLD activation was detected
during deliberation in the right OFC, the effect was con-
siderably smaller than previously reported findings (Talmi
et al., 2009; Schlund et al., 2016). This may reflect signal-
to-noise ratio issues particular to surface-based analysis
of the OFC (Stenger, 2006). Additionally, in contrast to
Schlund et al. (2011) and Aupperle et al. (2015), amygdala
activation was not detected during deliberation. In this
study, suboptimal calibration of the stimulation amperage
likely diminished participants’ perception of threat from
the stimulation and consequently their amygdala activa-
tion. Finally, the bilateral hippocampus activations de-
tected during deliberation were located dorsally, rather
than anteriorly/ventrally as have been previously reported
in literature on threat processing (Bach et al., 2014). The
dorsal hippocampus has been associated with cognition
and planning (Fanselow and Dong, 2010), so these acti-
vations could reflect participants’ processing of the con-
ditional structure of the ARC task (e.g., “if safe is chosen,
then 0% chance of electrical stimulation; if risky is chosen,
then X% chance of electrical stimulation”).

This study had several limitations. Due to the equip-
ment issues described above, as well as the use of non-
adaptive rewards, we were unable to calibrate the reward
and risk of the ARC task according to each participant’s
choice preferences. This may be one reason why we
observed an approach-bias on average. This also means
that the present study undersampled trials at or near the
points of participants’ maximal approach-avoidance con-
flict. A consequence of this undersampling is that many of
the high conflict decisions participants made in this task
occurred during high risk trials, making it harder to divorce
conflict from risk. Future approach-avoidance conflict ex-
periments should consider incorporating adaptive design
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optimization (Myung et al., 2013) to titrate the levels of
rewarding and threatening stimuli according to future par-
ticipants’ choices preferences to minimize the influence of
these potential biases.

Finally, it is worth noting that the set of structures we
found correlated with approach-avoidance conflict (i.e.,
IFG, dlPFC, and pre-SMA) share overlap with the putative
response inhibition network (Aron et al., 2004, 2014; Aron
and Poldrack, 2006). One interpretation of the present
results is that approach-avoidance conflict is another pro-
cess requiring response inhibition, wherein the IFG inhib-
its prepotent motor responses to facilitate prolonged
evidence accumulation during difficult choices. This inter-
pretation is consistent with the increased response times
observed in the present experiment. The possible role of
the inhibition network during approach-avoidance conflict
points to a clear direction for future studies; investigating
whether the putative response inhibition network works to
signal response conflict to other brain structures, such as
through the hyperdirect pathway to the basal ganglia
(Frank et al., 2015). Alternately, these structures may be
involved in the resolution of approach-avoidance conflict,
such as by biasing choice toward approach or avoidance.
In either case, the framework that this study presents for
the consideration of individual-level behavioral variation
and the time-on-task effect would likely lead to benefits in
specificity and accuracy of future studies investigating
similar cognitive processes.
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