
iological
sychiatry
Archival Report B

P
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ABSTRACT
BACKGROUND: Increased sensitivity to stress and dysfunctional reward processing are two primary characteristics
of major depressive disorder (MDD) that may persist after remission. Preclinical work has established the pivotal role
of the striatum in mediating both stress and reward responses. Human neuroimaging studies have corroborated
these preclinical findings and highlighted striatal dysfunction in MDD in response to reward but have yet to
investigate striatal function during stress, in particular in individuals with recurrent depression.
METHODS: A validated mild psychological stress task involving viewing of negative stimuli during functional
magnetic resonance imaging was conducted in 33 remitted individuals with a history of recurrent major depressive
disorder (rMDD) and 35 matched healthy control subjects. Cortisol and anxiety levels were assessed throughout
scanning. Stress-related activation was investigated in three striatal regions: caudate, nucleus accumbens, and
putamen. Psychophysiologic interaction analyses probed connectivity of regions with central structures of the neural
stress circuitry, such as the amygdala and hippocampus.
RESULTS: The task increased cortisol and anxiety levels, although to a greater extent in rMDD individuals than
healthy control subjects. In response to the negative stimuli, rMDD individuals, but not controls, also exhibited
significantly potentiated caudate, nucleus accumbens, and putamen activations and increased caudate-amygdala
and caudate-hippocampus connectivity.
CONCLUSIONS: The findings highlight striatal hypersensitivity in response to a mild psychological stress in rMDD,
as manifested by hyperactivation and hyperconnectivity with the amygdala and hippocampus. Striatal hyper-
sensitivity during stress might thus constitute a trait mark of depression, providing a potential neural substrate for the
interaction between stress and reward dysfunction in MDD.
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Major depressive disorder (MDD) is a highly recurrent psychi-
atric condition and thus a significant public health problem (1).
According to the “kindling/sensitization” theory, recurrence of
depression may stem from sensitization of the stress
response, rendering remitted individuals particularly suscep-
tible to the effects of minor daily stressors (2,3). Indeed, stress
was found to be a robust predictor of depression relapse rates
(4). In addition to increased stress susceptibility, remitted
individuals continue to exhibit reduced response to positive
stimuli, a cardinal symptom of MDD (5,6). Critically, animal
(7–11) and human (12–16) studies provided converging evi-
dence that stress can disrupt behavioral responses to
rewards, suggesting that dysfunctional interactions between
stress and reward may underlie anhedonia and MDD (17).

Extensive preclinical evidence has established the media-
ting role of the ventral (i.e., nucleus accumbens [Nacc]) and
dorsal (i.e., caudate, putamen) striatum in both reward and
stress processing (18,19), raising the possibility that the
striatum might be a structure in which stress and reward
processing interact. Specifically, electrophysiologic studies in
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nonhuman primates showed that striatal (and midbrain) dop-
amine (DA) signaling track reward-related prediction errors
(20–22), whereas stressors (e.g., foot shock, social defeat)
were shown to elicit robust DA release in the rat striatum and
medial prefrontal cortex (23–25). Findings from human neuro-
imaging studies have corroborated the key role of the striatum
within the reward circuitry (26,27), and abnormal striatal
responses have been described that might account for
dysregulated reward processing in current (28–34) and remit-
ted (35,36) MDD. However, less attention has been devoted to
striatal function in humans during acute stress, particularly in
individuals with recurrent depressive episodes. Most of the
human neuroimaging stress literature focuses on the amyg-
dala and hippocampus as pivotal mediators of the stress
response (37,38) and its regulation (39). Along those lines,
individuals with current MDD (40–43) and remitted individu-
als (44–48) exhibited hyperactive amygdala and hippocampus
in response to negative affective stimuli and stress,
including in a subgroup of female subjects from the present
sample (49).
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Table 1. Demographic and Clinical Characteristics of
Remitted Individuals with a History of rMDD and Healthy
Control Subjects

Healthy Control
Group (n 5 35)

rMDD Group
(n 5 33)

Characteristic Mean SD Mean SD

Age (Years)a 45.7 2.7 47.4 1.8

Parental SESb 6.2 1.8 5.7 1.9

Education (Years) 14.5 2.4 13.5 2.0

Estimated Full Scale IQc,d 110.7 13.5 107.6 12.5

Age at Onset of Major
Depression (Years)

— — 24.5 8.8

Duration of Illness (Years) — — 21.6 9.3

Number of Prior Major Depressive
Episodes

— — 5.0 2.3

Duration of Remission (Years) — — 7.3 6.3

Hamilton Depression Rating Scale
(17-Item)

— — 4.2 4.2

No. % No. %

Female 16 45.7 17 51.5

Caucasian 35 100 33 100

Handedness (Right)d 34 97.1 32 96.9

Current Psychotropic Medicatione — — 13 39.4

Comorbid Diagnosis

Currentf — — 18 54.6

Pastg 11 30.6 24 72.7

rMDD, recurrent major depressive disorder; SES, socioeconomic
status.

aSignificant difference between groups (p , .05).
bParental SES was a composite index of family income, education,

and occupation and ranged from .0 (low) to 9.5 (high).
cFull Scale IQ estimated using the sum of age-scaled scores from

the Wechsler Adult Intelligence Scale–Revised Vocabulary and Block
Design subtests and the conversion table C-37 from Sattler JM (1992):
Assessment of Children, 3rd ed. San Diego: Jerome M. Sattler, 851.

dData missing for one subject from the rMDD group and one
subject from the HC group.

eIn the rMDD group, 13 subjects (6 men) were currently taking the
following medications: fluoxetine (n 5 3); citalopram (n 5 2); citalopram
1 alprazolam (n 5 1); duloxetine 1 trazodone (n 5 1); fluoxetine 1
clonazepam (n 5 1); clozapine (n 5 1); quetiapine (n 5 1); sertraline 1
methylphenidate 1 clomipramine 1 gabapentin (n 5 1); sertraline 1
buproprion (n 5 1); venlafaxine 1 bupropion (n 5 1).

fCurrent comorbid Axis I diagnoses in the rMDD group included two
subjects with dysthymic disorder; two subjects with obsessive-com-
pulsive disorder; three subjects with anxiety disorder, not otherwise
specified; one subject with posttraumatic stress disorder; five subjects
with panic disorder, without agoraphobia; two subjects with attention-
deficit/hyperactivity disorder, not otherwise specified; one subject with
alcohol dependence; and two subjects with social phobia.

gPast comorbid Axis I diagnoses in the rMDD group included two
subjects with panic disorder, with agoraphobia; three subjects with
alcohol dependence; nine subjects with alcohol abuse; two subjects
with cocaine dependence; one subject with cannabis dependence;
three subjects with cannabis abuse; two subjects with opioid depen-
dence; one subject with sedative dependence; and one subject with
anxiety disorder, not otherwise specified. In the healthy control group,
past Axis I diagnoses included one subject with dysthymic disorder,
two subjects with alcohol dependence, one subject with uncompli-
cated alcohol withdrawal, two subjects with cannabis abuse, one
subject with hallucinogen abuse, three subjects with alcohol abuse,
and one subject with caffeine-induced anxiety disorder.
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To fill this gap in the literature, we evaluated activation
and connectivity of striatal regions during stress in healthy
and remitted individuals with recurrent major depressive
disorder (rMDD). In the context of the kindling/sensitization
theory, suggesting that remitted individuals are particularly
susceptible to the effects of minor stressors (2,3), we
exposed 32 remitted individuals with a history of rMDD and
35 matched healthy control subjects to a mild psychological
stress task during functional magnetic resonance imaging
(fMRI), focusing on striatal activation. Furthermore, psycho-
physiologic interaction (PPI) (50–52) connectivity analyses
were performed to investigate stress-specific changes in
striatal connectivity with core stress circuitry regions, such
as the amygdala and hippocampus. In light of 1) stress
hypersensitivity in rMDD, 2) hyperactivity in amygdala and
hippocampus in response to negative stimuli in rMDD (44–
49), and 3) preclinical evidence indicating that acute stres-
sors elicit robust DA release in striatum (23–25), which has
been linked to increased fMRI responses (53), we hypothe-
sized that during stress the rMDD group would exhibit
increased striatal activation and increased connectivity with
the amygdala and hippocampus.

METHODS AND MATERIALS

Participants

Participants were offspring of women who took part in the
large (N 5 17,741) Boston and Providence Collaborative
Perinatal Project, also known as the New England Family
Study (54). Structured Clinical Interview for DSM performed in
a subsample of these offspring identified 205 individuals with a
diagnosis of recurrent episodes of MDD and 706 healthy
control individuals. From this group, 33 individuals with a
diagnosis of rMDD were recruited for neuroimaging based on
current mood status and magnetic resonance imaging eligi-
bility criteria. Remission was defined as not meeting DSM-IV-R
criteria for MDD for 30 days before scanning. In addition, on
the morning of the study visit, participants in the rMDD group
completed the 17-item Hamilton Depression Rating Scale
(HAM-D17) (55) to assess depressive symptoms (Table 1).
Among the rMDD group, HAM-D17 scores ranged from 0
(reported by n 5 13 [39.4%]) to 10 (reported by n 5 2 [6.1%]).
Full remission was confirmed in 27 of the 33 rMDD individuals
(81.2%) who had a HAM-D17 score #7. The mean HAM-D17

score was 4.2 (SD 5 4.2).
We also recruited 35 healthy control subjects matched with

regard to sex, ethnicity, handedness, parental socioeconomic
status (SES), education, general intelligence, and mean men-
strual cycle day for female subjects (Table 1). No woman was
taking oral contraceptives or hormone replacement therapy or
was menopausal. At the time of the study, 13 participants of
the rMDD group were taking psychotropic medication, and no
participants in the control group were taking psychotropic
medication (Table 1). Comorbid current or past Axis I diag-
noses are also reported in Table 1. Given that the rMDD group
was slightly older than the control group, participants’ age and
SES were added as covariates in all analyses. Participants
received payment for their time and provided written informed
consent to a protocol approved by the Committee on the Use
68 Biological Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journal
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of Human Subjects in Research at Harvard University and
Brown University.

Stress Task

The task and its ability to evoke mild psychological stress
response have been described and validated in multiple
studies and populations (49,56–58). Briefly, 144 International
Affective Picture System images were selected and sorted into
two sets, one of negative valence/high arousal and the other of
neutral valence/low arousal. A set of fixation images was
created by applying Fourier transforms on the neutral valence/
low arousal images. Each image was presented for 5 sec
within a 30-sec block consisting of six images of unified
content (negative/high arousal or neutral/low arousal or fix-
ation). For each content, 12 blocks were presented during
scanning in a counterbalanced order, yielding three 6-min
functional scans. To maintain attention to the stimuli, partic-
ipants were asked to press a button each time the picture
changed, regardless of its content.

Stress Response Assessment

After the scan, participants rated the negative and neutral
images for arousal and valence using Self-Assessment Manikin
scales (59). Anxiety levels before and after scanning were
assessed using the state form of the Spielberger State-Trait
Anxiety Inventory (60). Cortisol stress response was assessed
using serial blood samples collected during fMRI. To account for
the potential effects of the scanning environment, baseline
cortisol level was defined using an in-scanner draw, conducted
approximately 5 min after the subject was introduced into the
magnet (after the first few set-up scans) and just before the start
of the first stress functional scan (time 0). Two in-scanner blood
samples were drawn: between the second and the third func-
tional scan of the stress paradigm (time 15 min) and at time 30
min after task presentations (timed for pituitary responses). Two
out-of-scanner blood samples were drawn in a quiet room
(times 60 min and 90 min) to assess steroid hormone responses
to stress. Subjects remained inside the bore of the magnet
during in-scanner blood draws. Table S2 in Supplement 1
provides further details and a complete list of absolute cortisol
values. Given significant variability in baseline (prestress) cortisol
levels, individuals’ cortisol response to stress was calculated as
percentage of change from time 0 (i.e., controlling for baseline
level in scanner).

fMRI Data Analysis

See Supplement 1 for magnetic resonance imaging
data acquisition parameters. The fMRI data were pre-
processed using statistical parametric mapping (SPM8;
Wellcome Department of Cognitive Neurology, London,
United Kingdom) and included realignment and geometric
unwarping of echo-planar imaging images using magnetic
field maps, correction for head motion, nonlinear volume-
based spatial normalization (Montreal Neurological Institute
template MNI-152), and spatial smoothing with a Gaussian
filter (6 mm [full width at half maximum]). Additional software
(http://web.mit.edu/swg/software.htm) was used to identify
and exclude outliers in the global mean image time series
(threshold 3.5 SD from the mean) and movement (threshold
Biolog
.7 mm; measured as scan-to-scan movement, separately
for translation and rotation) parameters.

Hemodynamic responses were modeled using a gamma
function and convolved with onset times of negative, neutral,
and fixation blocks to form the general linear model at
the single subject level. Outlier time points and the six rigid-
body movement parameters were included in the general
linear model as covariates of no interest. To test a priori
hypotheses targeting striatal activations during stress, we
conducted region of interest (ROI) analyses in which activa-
tions (beta weights) were extracted from anatomic masks of
the caudate, Nacc, and putamen for each participant sepa-
rately for negative and neutral conditions relative to baseline.
Anatomical masks for the ROI were defined using a manually
segmented MNI-152 brain and implemented as overlays on
the SPM8 canonical brain (Figure 2A). For each participant and
ROI, activations from the left and right mask were entered into
a mixed analysis of variance (ANOVA) with group (control vs.
rMDD) and gender (male vs. female) as between-subject
factors, side (left vs. right) and condition (negative vs. neutral)
as repeated measures, and with or without age and SES as
covariates.

Given the lack of laterality effects on activations in any ROI,
the left and right masks of each ROI were merged to create a
single bilateral mask, from which time courses were extracted
for PPI analyses. For each participant, subject-level general
linear models were constructed as described earlier, with the
addition of the bilateral seed time course as a regressor and
two additional PPI regressors (the interaction of the seed time
course with the regressors for negative and neutral condition).
These interaction regressors are orthogonal to the task and
seed regressors and describe the contribution of the inter-
action above and beyond the main effects of the task and
seed time course. In addition, the orthogonality of the task and
PPI regressors ensures that seed ROI activation and PPI
connectivity are independent (52).

Striatal connectivity was measured at the single subject
level by estimating the difference between the interaction of
the seed time course with the regressor for negative versus
neutral pictures (each relative to baseline), and this was done
separately for each ROI. Single subject activation maps were
entered into second-level random effects analysis to probe
group differences in striatal connectivity during negative
versus neutral condition. Given extensive prior evidence for
hyperactive amygdala and hippocampus in response to
negative stimuli and stress in rMDD (44–49), striatal con-
nectivity was investigated by applying small volume correc-
tion on anatomic masks of the amygdala and hippocampus.
False-positive findings were controlled using family-wise
error (FWE) correction. Average connectivity (beta weights
of PPI regressors) in amygdala and hippocampal clusters that
survived FWE correction was extracted and entered into a
mixed ANOVA with group (control vs. rMDD) and gender
(male vs. female) as between-subject factors, condition
(negative vs. neutral) as the repeated measure, and with or
without age and SES as covariates. Finally, exploratory
whole-brain analyses probed group differences in activation
and connectivity outside a priori ROIs, with age and SES as
covariates, and at uncorrected p , .005 in .10 contiguous
voxels.
ical Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journal 69
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Figure 1. Stress response assess-
ment. Both groups rated the negative
stimuli as (A) more arousing and (B)
more negative compared with the
neutral stimuli, and both experienced
an increase in (C) anxiety and (D)
cortisol levels (60 min after stress
onset relative to baseline) following
the mild stress paradigm. Relative to
healthy control subjects, remitted
individuals with a history of recurrent
major depressive disorder exhibited
overall significantly higher anxiety
and cortisol response (60 min and
90 min after stress onset relative to
baseline). Bars 6 1 SEM. *p , .05,
**p , .001. HC, healthy control group;
rMDD, recurrent major depressive dis-
order group; STAI-S, Spielberger
State-Trait Anxiety Inventory.
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RESULTS

Stress Response Assessment

The ANOVA on subjective ratings of neutral and negative
stimuli revealed the expected main effect of condition on
arousal [F1,63 = 300.42, p , .001] and valence [F1,63 = 185.46,
p , .001] scales, with no group by condition interaction
(arousal, p = .242; valence, p = .579). The ANOVA of anxiety
before and after scanning (Spielberger State-Trait Anxiety
Inventory) revealed a significant main effect of time [F1,57 =
8.11, p = .006] and Group [F1,57 = 9.23, p = .004] but no group
by time interaction (p = .92). These results indicate that
participants across groups rated the negative stimuli as more
arousing and more negative compared with the neutral stimuli
and experienced increased anxiety after the task; however,
rMDD individuals exhibited overall significantly higher anxiety
than control subjects (Figure 1A–C).

The ANOVA of cortisol response across the five time points
revealed a main effect of Time [F3,168 5 2.72, p 5 .047], owing
to an overall increase in cortisol levels 60 min after the onset of
the stress task compared with baseline (p 5 .012). Critically, a
significant Group by Time interaction emerged [F3,168 5 3.63,
p 5 .014], due to higher cortisol response in rMDD individuals
compared with control subjects both 60 min (p 5 .006) and 90
min (p , .001) after stress onset (Figure 1D). Similarly,
classifying participants according to whether they demon-
strated an increase (responders) or decrease (nonresponders)
in cortisol levels from baseline to the expected peak response
time (60 min after stress onset) resulted in 69% (22 of 32 with
full data) of rMDD individuals being classified as responders
compared with 27% (8 of 29 with full data) of control subjects
classified as responders. This classification was significantly
different between groups (χ2 5 10.3; p 5 .001), indicating
greater cortisol responsivity to stress in rMDD individuals
70 Biological Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journa
compared with controls. Accordingly, cortisol data confirmed
that the task elicited a stress response across participants and
that rMDD individuals experienced a more marked response to
this mild stressor.

Striatal Activation During Stress

The ANOVAs comparing group activations for negative and
neutral conditions separately for each striatal ROI yielded no
main effect of group or gender. In the caudate and putamen,
there was a significant main effect of condition attributed to
overall increased striatal response to negative compared with
neutral stimuli (caudate, [F1,60 5 10.63, p 5 .002]; putamen,
[F1,60 5 21.19, p , .001]). Relevant to the study hypotheses, a
significant group by condition interaction emerged for all three
ROIs (caudate, [F1,60 5 9.84, p 5 .003]; Nacc, [F1,60 5 4.51,
p 5 .038]; putamen, [F1,60 5 7.58, p 5 .008]), owing to the fact
that the increase in striatal response to negative compared
with neutral stimuli was present in the rMDD group but not the
control group (caudate, p , .001; Nacc, p 5 .013; putamen,
p , .001) (Figure 2B–D). For the caudate, there was also a
significant group difference such that rMDD individuals exhib-
ited increased caudate activation compared with control
subjects in response to negative, but not neutral, stimuli
(p 5 .03). Analogous analyses accounting for age and SES
as covariates confirmed the significant group by condition
interactions (caudate, p 5 .006; Nacc, p 5 .042; putamen,
p 5 .019).

Finally, regression analyses highlighted a significant positive
correlation between caudate activation in response to negative
stimuli and peak cortisol release (60 min after stress onset
relative to in-scanner baseline) in the rMDD group (r 5 .412, p 5

.036), but not the control group (r 5 2.058, p 5 .765) (Figure 3),
and these independent correlations were significantly different
(Z 5 1.952, p 5 .05). Thus, in parallel with their elevated
l
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Figure 3. Caudate activation during stress and cortisol release. For
remitted individuals with a history of recurrent major depressive disorder
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activation in remitted individuals with a history of recurrent major depressive
disorder (r 5 2.13, p 5 .54; r 5 .05, p 5 .79) or healthy control subjects (r 5
.21, p 5 .38; r 5 2.12, p 5 .60). HC, healthy control group; rMDD, recurrent
major depressive disorder group.
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Figure 2. Striatal activation during stress. (A) Location of anatomically defined masks for the caudate (blue), nucleus accumbens (yellow), and putamen
(turquoise). Mask volumes were 169 voxels and 195 voxels for the left and right caudate, 25 voxels and 34 voxels for the left and right nucleus accumbens,
and 226 voxels and 239 voxels for the left and right putamen. Remitted individuals with a history of recurrent major depressive disorder, but not healthy
control subjects, exhibited significantly increased activation in all three striatal regions, the (B) caudate, (C) nucleus accumbens, and (D) putamen, in response
to the negative stimuli compared with the neutral stimuli. Bars 6 1 SEM. *p , .05, **p , .001. HC, healthy control group; rMDD, recurrent major depressive
disorder group; Nacc, nucleus accumbens.
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behavioral and hormonal responses to the mild stress challenge,
rMDD individuals, but not control subjects, exhibited significantly
increased activations in all three striatal regions in response to
the negative stimuli, and such increased activation in the caudate
correlated with stress-induced cortisol release.

Striatal Connectivity During Stress

The PPI analyses were focused on group differences in striatal
connectivity with the amygdala and hippocampus in response
to negative versus neutral stimuli. These analyses revealed
two clusters, one in left amygdala and one in left hippo-
campus, which showed greater functional connectivity with
the caudate in rMDD individuals compared with control
subjects (pFWE-corrected , .05) (Figure 4A and Table 2). To
investigate these results further, connectivity values for each
condition (negative vs. neutral) were entered into an ANOVA
with group (control vs. rMDD) and gender (male vs. female) as
between-subject factors. Main effects of condition, group, and
gender were not significant; however, a significant group by
condition interaction emerged for both caudate-amygdala and
caudate-hippocampus connectivity [F1,63 5 10.92, p 5 .002;
F1,63 5 9.18, p 5 .004]; or p 5 .003 and p 5 .023 when
controlling for Age and SES). Mirroring the activation results,
these interactions stemmed from the fact that rMDD individ-
uals, but not control subjects, exhibited increased caudate-
amygdala (p 5 .013) and caudate-hippocampus (p 5 .009)
connectivity in response to the negative versus neutral stimuli
(Figure 4B,C). In addition, for caudate-amygdala connectivity,
Biolog
there was a significant group difference such that rMDD
individuals exhibited increased connectivity compared with
control subjects in response to the negative, but not the
neutral, stimuli (p 5.033). Similar analyses conducted with
ical Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journal 71
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disorder group.
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respect to Nacc and putamen connectivity also revealed
greater functional connectivity with clusters in left amygdala
and left hippocampus in rMDD individuals compared with
control subjects during stress; however, none survived
Table 2. Striatal Connectivity Abnormalities During Stress in R

Contrast Region No. of Voxels Xa

Negative vs. Neutral Stimuli
(rMDD Group . HC Group) L amygdala 60 215

L hippocampus 22 233 2

L amygdala 18 227 2

L hippocampus 20 230 2

L amygdala 9 224

L hippocampus 33 224 2

FWE, family-wise error; HC, healthy control; L, left; Nacc, nucleus accu
aCoordinates are presented in Montreal Neurological Institute space.
bWithin an anatomic region of interest, results identified using small vo

uncorrected for multiple comparisons.
cFalse-positive findings controlled using FWE correction. Even at a libe

hippocampus showed stronger striatal connectivity in the healthy control g
dResults are reported as significant only if they met the peak-level thres

72 Biological Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journa
FWE correction (Table 2). Finally, even at a liberal threshold
of uncorrected p , .05, no clusters in the amygdala or
hippocampus showed stronger striatal connectivity in control
subjects compared with rMDD individuals.
emitted Individuals with a History of rMDD

Ya Za Z Score T Value
Uncorrected
P Valueb

FWE-Corrected
P Valuec

Caudate Connectivity

27 220 3.24 3.39 .001 .022d

19 214 3.34 3.51 .000 .038d

Nacc Connectivity

13 214 2.43 2.49 .008 .162

16 214 2.59 2.67 .005 .263

Putamen Connectivity

27 226 2.69 2.77 .004 .098

28 211 3.01 3.13 .001 .108

mbens; rMDD, recurrent major depressive disorder.

lume correction with voxel-wise peak-level height threshold: p , .05,

ral threshold of uncorrected p , .05, no clusters in the amygdala or
roup compared with the rMDD group during stress.
hold of FWE-corrected p , .05.

l
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Exploratory Whole-Brain Analyses

In addition to the striatum, bilateral hippocampus activation
was also increased in rMDD individuals relative to control
subjects in response to negative stimuli. No brain regions were
more active in control subjects than rMDD individuals in
response to negative stimuli. Whole-brain analyses examining
caudate connectivity in response to negative stimuli in rMDD
individuals relative to control subjects revealed, as expected, a
large cluster encompassing the left amygdala and hippo-
campus and a cluster in the left fusiform gyrus; see
Supplement 1 (Figure S1A, B and Table S1 in Supplement 1).
No regions were more connected to the caudate in control
subjects than rMDD individuals in response to negative stimuli.

Control Analyses

Correlational analyses revealed no associations between
HAM-D17 scores among the rMDD group and striatal activa-
tion or connectivity magnitudes (all p . .22), indicating that the
current findings were not modulated by residual depressive
symptoms.
DISCUSSION

The goal of the present study was to probe striatal activation
and connectivity during mild stress in healthy and remitted
individuals with recurrent depression. Affective and endocri-
nologic findings confirmed a mild psychological stress
response, as intended, in both the healthy and the remitted
group; however, rMDD individuals exhibited a stronger stress
response than controls. The fMRI results indicated that
heightened stress responsivity in rMDD individuals was
accompanied by increased activation to negative stimuli in
three key striatal regions, the caudate, Nacc, and putamen; a
pattern that was not found in control subjects. PPI analyses
further revealed increased caudate connectivity with both the
amygdala and the hippocampus in response to the negative
stimuli in rMDD individuals, but not control subjects. Collec-
tively, the findings suggest that rMDD is characterized by
striatal hypersensitivity during a mild stressor.

Group differences in cortisol response between rMDD
individuals and healthy control subjects fit with previous reports
that hypothalamic-pituitary-adrenal axis dysregulation persists
after remission from depression. Interestingly, while basal
cortisol response seems to be consistently increased after
remission from depression (61), stress reactivity studies com-
monly report reduced cortisol responses in rMDD individuals
relative to control subjects, potentially as a result of adaptation
to previous stress exposure (62–64), but see also (65). Notably,
those studies implemented a relatively potent stressor [e.g., the
Trier Social Stress Test (66)], known to elicit robust increases in
cortisol levels in healthy humans, which are considered adap-
tive (67,68). The demonstrated increase in cortisol release in
response to mild stress in rMDD individuals relative to control
subjects may therefore suggest that remitted individuals are
particularly susceptible to the effects of minor stressors; such
“hypersensitive” physiologic response to a mild stress chal-
lenge is consistent with the kindling/sensitization theory of
depression (2,3). Indeed, enhanced cortisol reactivity in rMDD
individuals in response to a minor laboratory stressor, but not to
Biolog
a more potent stressor, was found to predict depression
relapse in a longitudinal study (69).

Animal work has shown that stress-induced corticosteroid
release can modulate DA striatal signaling (70–72). Similarly,
human positron emission tomography studies revealed a
positive association between cortisol increase and DA release
in the ventral striatum and putamen (73,74). Although fMRI
cannot be used to infer DA signaling, pharmacologic and
metabolic evidence suggests that fMRI blood oxygen level–
dependent signal from the striatum is indicative of striatal DA
release (53,75–77). Our results thus may be regarded as
supportive of a potential relationship between cortisol and
striatal function by showing that elevated cortisol release in
the rMDD group was accompanied by increased striatal
activations and connectivity during stress and furthermore
that caudate reactivity and stress-induced cortisol release
were positively correlated in the rMDD sample. Along similar
lines, positron emission tomography studies found stress-
induced striatal DA release in individuals with low parental care
(73) or at risk for affective (78,79) or mood disorders (80), but
not in healthy control subjects (81,82), again consistent with
our results. Findings from animal work suggest that stress-
induced striatal DA release may amplify the incentive salience
of stimuli (19). In humans, such enhanced saliency may
translate to increased attention or emotional engagement
during presentation of negative cues, processes that were
shown to involve the striatum as well as the amygdala and
hippocampus. Over time, striatal hypersensitivity in rMDD,
through its association with chronic exposure to high gluco-
corticoid levels, may sensitize the mesolimbic DA system (76),
resulting in increased susceptibility to mild stressors.

Striatal hypersensitivity during stress may be particularly
detrimental for the encoding of subsequent rewards, given
shared reliance of stress and reward responses on striatal DA
signaling (18,19). In support of this possibility, reductions in
hedonic behavior after various forms of stress have been
reported in the animal (7–11) and human (12–16) literature.
Moreover, individuals with heightened cortisol response to
stress were found to be specifically vulnerable to the disruptive
effect of an acute stressor on reward sensitivity (83). Finally,
recent fMRI studies demonstrated reduced reward-related
striatal activation in healthy individuals after acute laboratory
stress (84,85) and after prolonged combat stress (86), with the
latter also linking reward-related striatal blunting with greater
severity of depressive symptoms (86). Altogether, when seen in
the context of emerging evidence, the current findings suggest
that striatal hypersensitivity during stress may play a crucial role
in the interaction between increased sensitivity to mild stressors
and dysfunctional reward processing, two primary character-
istics of MDD that persist after remission.

Additional studies are needed to validate this novel idea
and address limitations of the present work. First, throughout
this article, we refer to the striatum in general since all three
striatal regions (caudate, Nacc, and putamen) exhibited similar
activation patterns. Increased connectivity with the amygdala
and hippocampus was also consistent across striatal nuclei;
although group differences were significant only for the
caudate. Nevertheless, work in animals and humans has
demonstrated that the function and connections of different
striatal nuclei and their subcomponents vary greatly and
ical Psychiatry July 1, 2015; 78:67–76 www.sobp.org/journal 73
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include many signaling pathways (87,88). Future studies
should delineate the specific involvement of each striatal
nuclei in response to stress in both healthy control and rMDD
samples. Second, some of the rMDD participants were taking
psychotropic medication and presented with current or past
comorbidities (or both). Importantly, however, with the excep-
tion of Nacc activation, all group differences in activation and
connectivity during stress remained significant when analyses
were repeated with only rMDD individuals who were not taking
psychotropic medication (n = 20) or without comorbid diag-
noses (n = 15), suggesting that medication and comorbidities
did not affect our main findings; for more details, see Figures
S2 and S3 in Supplement 1. Nevertheless, Nacc results should
be regarded with caution given the insignificant group differ-
ences in Nacc activation in these subsamples and the
observation that group differences in Nacc activation at the
whole-sample level may have been partially driven by reduced
activation in response to the neutral condition in rMDD. Finally,
our study did not include a stress-free control group or a
measure of reward sensitivity, and thus we cannot test the
specificity of our findings or the effects of stress on reward
function. By combining stress and reward manipulations in a
single design as well as a stress-free control group, future
studies could test whether rMDD individuals require a lower
stressor to observe perturbation in reward processing. It would
also be useful to compare reward function and stress sensi-
tivity directly among remitted individuals with a history of MDD
and individuals with current MDD. For example, a recent study
found that both adolescent daughters with current depression
of mothers with a history of MDD and daughters with no
history of depression of mothers with a history of MDD exhibit
reduced striatal response to reward compared with control
daughters with no maternal history of psychopathology (89),
strengthening the claim that reward dysfunction represents a
promising endophenotype of depression. Future studies
directly comparing individuals with current MMD and remitted
individuals with a history MDD are needed to evaluate whether
similar patterns are evident in adult cohorts.

In conclusion, compared with healthy control subjects,
remitted individuals with a history of recurrent depression
exhibited potentiated cortisol responses and striatal hyper-
sensitivity in response to a mild psychological stress, as
manifested by hyperactivation and hyperconnectivity with the
amygdala and hippocampus. Striatal hypersensitivity during
stress might constitute a trait mark of MDD, providing a
potential neural substrate for the interaction between stress
and reward dysfunction in depression.
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Supplementary Methods and Materials 

MRI Data Acquisition 

MRI scanning was conducted using a Siemens Tim Trio 3T MR scanner with a 12-channel 

head coil. One hundred eighty functional volumes were acquired using a T2-weighted spin echo 

planar imaging sequence [repetition time = 2000 ms; echo time = 40 ms; field of view = 200 x 200 

mm; matrix = 64 x 64; in-plane resolution = 3.125 mm; slice thickness = 5 mm; 23 contiguous 

slices aligned to the AC–PC plane].  

Whole Brain Analyses Probing Group Differences in Activation and Connectivity during 

Stress 

Single subject activation maps in response to the negative stimuli vs. baseline were entered 

into second-level random effects analysis to probe group differences in activation at the whole brain 

level (while masking out striatal regions), with Age and SES as covariates, and at p < 0.005 

uncorrected in more than 10 contiguous voxels. Similarly, whole brain second-level random effects 

analysis were conducted to examine group differences with regard to caudate connectivity in 

response to negative stimuli vs. baseline, at a significance level of p < 0.005 uncorrected in more 

than 10 contiguous voxels. 

Analyses to Control for Medication and Comorbidity in rMDD Sample 

Because some of the rMDD participants in the current sample were taking psychotropic 

medication and presented current and/or past comorbidities, control analyses investigating group 
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differences in activation and connectivity during stress were conducted solely with rMDD 

individuals who were not taking psychotropic medication (n = 20) or without comorbid diagnoses 

(n = 15). Analyses on those sub-samples were conducted identically to the ones described in the 

main text with the entire sample. Specifically, group differences in striatal activation were probed 

by entering activations from the left and right mask for each participant and ROI into a mixed 

ANOVA with Group (HC vs. rMDD) and Gender (Male vs. Female) as between-subject factors, 

Side (Left vs. Right) and Condition (Negative vs. Neutral) as repeated measures, and Age and SES 

as covariates. Connectivity was assessed by entering caudate connectivity magnitude with the 

amygdala and hippocampal into a mixed ANOVA with Group (HC vs. rMDD) and Gender (Male 

vs. Female) as between-subject factors, Condition (Negative vs. Neutral) as the repeated measure, 

and Age and SES as covariates. 

 

Supplementary Results 

Whole Brain Analyses Probing Group Differences in Activation and Connectivity during 

Stress 

Two clusters emerged as being more active in rMDD relative to HC in response to negative 

stimuli, located in the left and right hippocampus (Figure S1A and Table S1). No brain regions were 

more active in HC than rMDD in response to the negative stimuli. Whole brain connectivity 

analyses revealed, as expected, a large cluster encompassing the left hippocampus and amygdala 

which was more connected to the caudate in rMDD than HC, as well as a cluster in the left fusiform 

gyrus (Figure S1B and Table S1). No brain regions were more connected to the caudate in HC 

compared to rMDD in response to the negative stimuli.  
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Striatal Activation and Connectivity during Stress in Unmedicated rMDD Individuals vs. 

Controls 

Repeated measure ANOVAs comparing group activations for negative and neutral 

conditions separately for each striatal ROI yielded no main effect of Group or Gender. In the 

caudate and putamen there was a significant main effect of Condition attributed to overall increased 

striatal responses to negative compared to neutral stimuli (Caudate, F1,54 = 5.89, p = 0.019; 

Putamen, F1,54 = 19.87, p < 0.001). Similar to the results with the entire rMDD sample, a significant 

Group by Condition interaction emerged for the caudate and putamen (Caudate, F1,54 = 5.38, p = 

0.024; Putamen, F1,54 = 7.10, p = 0.010), due to the fact that the increase in striatal responses to 

negative compared to neutral stimuli was present in the rMDD, but not control, group (Caudate, p < 

0.001; Putamen, p < 0.001). The Group by Condition interaction in the Nacc was not significant 

(F1,54 = 2.28, p = 0.137). For the caudate, there was also a significant group difference such that 

rMDD exhibited increased caudate activation compared to controls in response to negative but not 

neutral stimuli (p = 0.02) (Figure S2 A-C).  

Repeated measure ANOVAs comparing group connectivity values for negative and neutral 

conditions revealed a significant Group by Condition interaction for both caudate-amygdala and 

caudate-hippocampus connectivity (F1,54 = 6.67, p = 0.013; F1,54 = 7.52, p = 0.008, respectively), 

due to the fact that rMDD exhibited increased connectivity compared to controls in response to the 

negative but not neutral stimuli (p = 0.011; p = 0.023, respectively) (Figure S2D & E).  

Striatal Activation and Connectivity during Stress in Non-comorbid rMDD Individuals vs. 

Controls 

Repeated measure ANOVAs comparing group activations for negative and neutral 

conditions separately for each striatal ROI yielded no main effect of Group or Gender but a 
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significant main effect of Condition in the caudate and putamen, attributed to overall increased 

striatal response to negative compared to neutral stimuli (Caudate, F1,49 = 8.63, p = 0.005; Putamen, 

F1,49 = 22.06, p < 0.001). Similar to the results with the entire rMDD sample and with the 

unmedicated rMDD individuals, a significant Group by Condition interaction emerged for the 

caudate and putamen (Caudate, F1,49 = 8.06, p = 0.007; Putamen, F1,49 = 9.56, p = 0.003), due to the 

fact that the increase in striatal responses to negative compared to neutral stimuli was present in the 

rMDD, but not control, group (Caudate, p = 0.001; Putamen, p < 0.001). The Group by Condition 

interaction in the Nacc was not significant (F1,49 = 2.07, p = 0.157). For the caudate, there was also a 

significant group difference such that rMDD exhibited increased caudate activation compared to 

controls in response to negative but not neutral stimuli (p = 0.008) (Figure S3 A-C).  

Finally, for both caudate-amygdala and caudate-hippocampus connectivity, repeated 

measure ANOVAs yielded a significant Group by Condition interaction even when only non-

comorbid rMDD individuals were included (F1,49 = 3.91, p = 0.049; F1,49 = 7.08, p = 0.011, 

respectively). As before, those results were driven by increased connectivity in rMDD compared to 

controls in response to the negative but not neutral stimuli (p = 0.024; p = 0.029, respectively) 

(Figure S3D & E).  
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Figure S1. Whole brain analyses probing group differences in activation and connectivity 
during stress. (A) Two clusters emerged as being more active in rMDD relative to healthy controls 
in response to the negative stimuli while masking out striatal regions. Those clusters were located in 
the left and right hippocampus. (B) Whole brain psychophysiological interaction connectivity 
analyses revealed, as expected, a large cluster encompassing the left hippocampus and amygdala 
which was more connected to the caudate in rMDD than healthy controls in response to the negative 
stimuli, as well as a cluster in the left fusiform gyrus. No brain regions were more active or more 
functionally connected to the caudate in healthy controls than rMDD in response to the negative 
stimuli. rMDD, remitted individuals with a history of recurrent major depressive disorder. 
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Figure S2. Striatal activation and connectivity during stress in unmedicated rMDD 
individuals vs. healthy controls. Unmedicated rMDD individuals (n = 20), but not controls (n = 
35), exhibited significantly increased activation in the (A) caudate and (C) putamen, but not the (B) 
Nacc, as well as (D) increased caudate-amygdala and (E) caudate-hippocampus connectivity in 
response to the negative stimuli compared to the neutral stimuli. Bars ±1 SEM. *p < 0.05, **p < 
0.001. rMDD, remitted individuals with a history of recurrent major depressive disorder; HC, 
healthy controls; Nacc, nucleus accumbens. 
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Figure S3. Striatal activation and connectivity during stress in non-comorbid rMDD 
individuals vs. healthy controls. Non-comorbid rMDD individuals (n = 15), but not controls (n = 
35), exhibited significantly increased activation in the (A) caudate and (C) putamen, but not the (B) 
Nacc, as well as (D) increased caudate-amygdala and (E) caudate-hippocampus connectivity in 
response to the negative stimuli compared to the neutral stimuli. Bars ±1 SEM. *p < 0.05, **p < 
0.001. rMDD, remitted individuals with a history of recurrent major depressive disorder; HC, 
healthy controls; Nacc, nucleus accumbens. 
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Table S1. Whole brain analyses probing group differences in activation and connectivity 
during stress.  

Contrast Region # of 
voxels Xa Ya Za Z 

score 
T 

value 
Un-corrected   

p valueb 

Negative stimuli 
vs. Baseline 
(rMDD > HC) 

Activation 

L.  Hippocampus 13 -33 -34 -5 2.86 2.97 0.002 

R. Hippocampus 15 33 -34 4 3.07 3.20 0.001 

Caudate Connectivity 

L. Amygdala/ 
Hippocampus 55 -30 -7 -11 3.33 3.49 > 0.001 

L.  Fusiform gyrus 11 -30 -61 -8 3.47 3.31 > 0.001 
a Coordinates are presented in MNI space.  
b Results identified at p < 0.005 uncorrected for multiple comparisons, in more than 10 contiguous voxels.  
L, left; R, right; rMDD, remitted individuals with a history of recurrent MDD; HC, healthy controls. 
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Table S2. Absolute cortisol values per subject per time point. Cortisol stress response was 
assessed using serial blood samples collected during fMRI scanning. Cortisol at T0: In-scanner 
draw, conducted approximately five minutes after the subject was introduced into the magnet 
(after the first few set-up scans) and just prior to the start of the first stress functional scan. 
Cortisol at T15: In-scanner draw, between the second and the third functional scan of the stress 
paradigm. Cortisol at T30: In-scanner draw, post-task presentations. Subjects remained inside the 
bore of the magnet during in-scanner blood draws, which were timed to assess pituitary 
responses. Cortisol at T60 & T90: Out-of-scanner draws, drawn in a quiet room to assess steroid 
hormone responses to stress. Approximately 30 cc of blood were sampled at each time point, 
allowed to clot for 45–60 minutes, spun, aliquoted, stored at -80°C, and analyzed in duplicate 
with a commercial immunoassay kit for cortisol; Immunoradiometric Assay (IRMA), DiaSorin, 
Inc., Stillwater, MN. 

# Group Gender Cortisol at 
T0 

Cortisol at 
T15 

Cortisol at 
T30 

Cortisol at 
T60 

Cortisol at 
T90 

1 HC M 9.15 7.93 6.54 11.31 9.11 
2 HC M 14.73 12.29 11.73 14.73 7.12 
3 HC M 9.08 8.46 6.54 6.14 13.54 
4 HC M 8.72 7.15 7.54 7.24 11.04 
5 HC M 7.82 6.58 8.47 8.95 8.45 
6 HC M 16.05 15.14 13.36 11.3 9.26 
7 HC M 13.7 14.57 13.56 12.17 8.78 
8 HC M 13.38 12.18 9.7 6.94 5.85 
9 HC M 13.7 14.12 10.39 9.75 10.91 
10 HC M 11.45 16.29 13.99 9.65 7.85 
11 HC M 7.26 6.22 4.08 14.06 9.55 
12 HC M 14.7 15.3 11.3 16.9 13.1 
13 HC M 7.44 7.11 9.28 12.47 10.91 
14 HC M 7.68 8.01 8.18 9.95 7.95 
15 HC M 9.28 8.1 7.98 7.55 10.36 
16 HC M 13.93 12.66 11.88 11.73 11.12 
17 HC M 12.4 10.6 14.4 10.3 11.4 
18 HC F 9.06 8.57 7.9 8.2 8.23 
19 HC F 19.1 18.2 16.6 16.8 13.7 
20 HC F 13.76 11.49 9.88 6.84 5.66 
21 HC F 4.51 5.44 5.3 4.37 3.01 
22 HC F 10 7.36 8.32 6.41 5.67 
23 HC F 5.98 5.83 7.15 8.33 8.18 
24 HC F 10.87 10.61 10.2 10 9.12 
25 HC F 9.27 9.1 8.55 8.92 8.19 
26 HC F 7.09 6.37 6.24 8.19 7.928 
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# Group Gender Cortisol at 
T0 

Cortisol at 
T15 

Cortisol at 
T30 

Cortisol at 
T60 

Cortisol at 
T90 

27 HC F 15.33 12.56 12.84 11.06 9.11 
28 HC F 8.36 6.39 5.72 6.41 6.71 
29 HC F 17.1 12.51 12.29 10.21 7.73 
30 rMDD M 13.26 9.978 9.18 9.63 8.66 
31 rMDD M 10.05 9.24 8.16 12.86 6.17 
32 rMDD M 15.55 12.63 11.13 9.73 8.08 
33 rMDD M 11.12 11.99 15.18 14.47 10.75 
34 rMDD M 7.94 5.42 5.33 11.5 7.91 
35 rMDD M 7.44 8.95 7 5.12 4.58 
36 rMDD M 9.13 7.39 6.18 7.64 9.3 
37 rMDD M 5.53 8.41 15.2 16.8 13.52 
38 rMDD M 3.43 2.39 2.3 2.7 6.34 
39 rMDD M 6.33 7.76 9.47 9.4 5.78 
40 rMDD M 6.8 6.78 7.09 8.02 9.48 
41 rMDD M 5.28 4.95 4.58 4.7 4.83 
42 rMDD M 4.51 5.12 4.54 5.94 4.15 
43 rMDD M 3.74 3.48 4.9 15.17 18.49 
44 rMDD M 8.49 14.61 14.43 15.01 10.2 
45 rMDD M 16.17 19.6 17.17 14.58 11.24 
46 rMDD F 10.77 7.74 7.37 13.55 12.75 
47 rMDD F 7.61 6.22 7.42 8.92 9.38 
48 rMDD F 6.01 5.52 7.55 8.24 10.72 
49 rMDD F 8.82 6.33 6.09 10.9 9.85 
50 rMDD F 9.11 10.24 11.96 12.11 12.42 
51 rMDD F 7.54 6.89 6.14 10.26 8.15 
52 rMDD F 5.45 5.36 5.25 5.07 6.69 
53 rMDD F 6.96 9.51 10.62 8.39 10.75 
54 rMDD F 7.66 6.46 6.53 7.26 6.07 
55 rMDD F 5.78 4.75 6.52 6.79 4.15 
56 rMDD F 7.19 5.88 5.55 4.23 16.64 
57 rMDD F 12.4 9.77 15.92 15.4 9.69 
58 rMDD F 8.84 9.41 9.16 9.77 6.38 
59 rMDD F 3.23 3.48 2.98 5.67 5.06 
60 rMDD F 12.23 10.78 9.09 7.31 11.55 
61 rMDD F 11.29 9.44 8.66 16.42 13.53 

rMDD, remitted individuals with a history of recurrent major depressive disorder; HC, healthy controls; F, female; 
M, male. 
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