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Anhedonia — diminished pleasure and/or decreased reactivity

to pleasurable stimuli — is a core feature of depression that

frequently persists after treatment. As a result, extensive effort

has been directed toward characterizing the psychological and

biological processes that mediate dysfunctional reward

processing in depression. Reward processing can be parsed

into sub-components that include motivation, reinforcement

learning, and hedonic capacity, which, according to preclinical

and neuroimaging evidence, involve partially dissociable brain

systems. In line with this, recent findings indicate that

behavioral impairments and neural abnormalities in depression

vary across distinct reward-related constructs. Ultimately,

improved understanding of precise reward-related

dysfunctions in depression promises to improve diagnostic and

therapeutic efforts in depression.
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Introduction
More than 40 years have passed since reduced reward

function was first mentioned as a diagnostic criterion for

depression [1]. Ever since, progress in three discrete lines

of inquiry has deepened our understating of reward

processing and highlighted the significant contribution

of anhedonia to depression. First, following the concep-

tualization of reward processing as a broad psychological

construct, impaired behaviors in depression have been

characterized across distinct reward-related processes,

including motivation, reinforcement learning, and hedon-

ic capacity. Second, abundant preclinical and growing

neuroimaging evidence has suggested that these separa-

ble reward-related psychological processes are supported

by dissociable brain systems. Third, and most important-

ly, those efforts were driven by increased recognition that

current treatments often fail to address anhedonia in

depression. Taken together, the convergence of these

three lines of evidence strongly suggests that a better
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understanding of dysfunctional reward processing in de-

pression may aid clinical practice.

Dysfunctional reward-related behaviors in
depression
Because the traditional definition of anhedonia empha-

sizes reduced pleasure, preclinical studies have often

used the sucrose preference test as a measure of anhedo-

nia-like behaviors in rodents. Similarly, early behavioral

studies in humans compared the performance of de-

pressed and healthy individuals in the ‘sweet taste test’,

during which participants are asked to rate the pleasant-

ness of different sucrose concentrations. Somewhat sur-

prisingly, however, those studies consistently found

equivalent pleasure ratings between depressed and

healthy individuals [2,3]. In contrast to these null find-

ings, more recent behavioral studies probing other re-

ward-related constructs have highlighted impaired

performance in depressed individuals. For example, un-

medicated depressed individuals failed to develop a

response bias toward a more frequently rewarded stimu-

lus in a probabilistic task, indicating a deficit in reinforce-

ment learning [4]. Such impairment was also found in

healthy individuals with high levels of anhedonia and

euthymic individuals with a history of depression [5,6�]. A

meta-analysis of six studies that implemented a probabi-

listic reward task concluded that depression, as well as

sub-clinical anhedonia in healthy cohorts, was specifically

associated with reduced reward sensitivity rather than

impaired learning per se [7]. More recently impaired

reward learning was demonstrated in both medicated

and unmedicated depressed individuals relative to con-

trols [8]. Interestingly, medication was found to reduce

learning from negative feedback but had no effect on

depression-related impairments in learning from positive

feedback [8].

Motivation is another reward-related behavioral construct

that has been recently investigated with regard to depres-

sion. The ‘effort expenditure for rewards task’ (EEfRT)

was specifically designed to quantify motivation by in-

volving a series of trials during which participants may

choose to expend more or less effort (number of button

presses) for the opportunity to win varying amounts of

monetary rewards. In this task, depressed individuals

were less willing to expend effort for rewards than con-

trols, and were also less able to effectively use information

about the magnitude and probability of rewards to guide

their choice behavior [9�]. This finding was recently

replicated using a task in which effort was operationalized

as the strength with which participants squeezed a hand-

grip [10]. Interestingly, in this latter study, depressed
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individuals’ ratings of perceived effort increased for high

rewards as if they subjectively felt that they tried harder

yet objectively failed to do so [10]. Similarly, depressed

but not healthy individuals exhibited a dissociation be-

tween how much they liked an image and the amount of

effort (clicking on a moving square) they were willing to

exert in order to view it [11]. Collectively, these findings

suggest that anhedonia in depression is not expressed by

reduction in pleasure per se, but rather by an impaired

ability to modify behavior as a function of positive rein-

forcement, as well as by dissociation between pleasure

and the amount of effort invested in order to achieve it.

Neural network underlying dysfunctional
reward processing in depression
Neuroscience aims to identify the neural substrates asso-

ciated with specific emotional/cognitive processes, thus

allowing a mechanistic explanation of behavior. Within

the reward domain, influential discoveries have emerged

from the work of Schultz (1998), who used single cell

recordings in primates to link a highly localized neural

operation with a specific reward-related behavior

[12]. Specifically, Schultz showed that the receipt of an

unpredicted reward was associated with increased firing

rate of dopaminergic (DA) neurons in the midbrain and

striatum (the largest recipient of midbrain DA projections),

resulting in increased phasic DA release in these regions. In

contrast, when an expected reward was omitted, firing in

DA neurons was suppressed. Most importantly, learning

that an auditory tone predicted subsequent reward was

accompanied by DA neuronal firing in response to the

predictive tone, but not the (now expected) reward

[12]. Since then, extensive evidence has accumulated from

preclinical studies implementing self-stimulation, pharma-

cological, physiological, and behavioral manipulations to

expand our understanding of midbrain-striatal (i.e., meso-

limbic) DA reward signaling [13��,14]. Similarly, human

neuroimaging studies have used [11C]-labeled raclopride

positron emission tomography (PET) scans, in which

displacement of the tracer can be taken as an indirect

demonstration of endogenous DA release, to demonstrate

striatal DA release in healthy individuals in response to

monetary rewards [15], and while listening to pleasurable

music [16].

The well-established role of the striatum in reward pro-

cessing has guided functional magnetic resonance imag-

ing (fMRI) studies to explore putative differences in

striatal function between healthy and depressed individ-

uals in response to specific reward-related processes, such

as anticipation versus consumption of monetary reward

[17,18], sight and flavor of primary reward (i.e., food) [19],

motivation to obtain reward [20], and reinforcement

learning [21]. Interestingly, hypo-function of striatal

regions in depression was a common finding across all

different reward-related processes, implicating striatal

hypo-function as a major neural mediator of dysfunctional
www.sciencedirect.com 
reward processing in depression. Moreover, the excellent

spatial resolution of fMRI enabled to identify regionally

specific striatal alterations that may mediate distinct

aspects of dysfunctional reward processing in depression.

Specifically, reduced activation of the three striatal nuclei

— nucleus accumbens, caudate, and putamen — was

associated with impaired pleasure, reward learning, and

reward prediction in depression, respectively (see

[22��,23] for extensive reviews). These human imaging

findings mirrored animal data that have highlighted func-

tional localization within the striatum by showing separa-

ble striatal ‘hotspots’ for pleasure versus motivation [24].

Although findings implicating various striatal regions in

MDD have been influential, current models of reward

circuitry suggest that reward processing involves a corti-

cal-striatal network, in which frontal brain regions also

play important roles, in particular the orbital frontal cortex

(OFC) and anterior cingulate cortex (ACC) [25]. Consis-

tent with this, a recent PET study demonstrated that

engagement in a reward learning task was accompanied

by DA release in the OFC and ACC in healthy volunteers

[26]. In depression, fMRI has been used to link reward-

related impairments to cortical-striatal connectivity ab-

normalities. For example, Heller et al. (2009) found that

the inability of depressed individuals to sustain positive

affect was coupled with both reduced cortical-striatal

connectivity and blunted striatal activation [27]. Similarly,

by analyzing task-specific changes in striatal functional

connectivity, a recent study demonstrated that depression

was characterized by context-dependent abnormal striatal

connectivity with the dorsal ACC (dACC). Specifically,

relative to healthy controls, depressed individuals exhib-

ited stronger striatal-dACC connectivity in response to

monetary losses, but weaker striatal-dACC connectivity

in response to monetary gains [28�]. Of note, a baseline

composite score of these two connectivity metrics pre-

dicted 36% of the variance in changes of depressive

symptoms after an eight-week treatment [28�].

A growing number of studies are beginning to recognize

the role of the lateral habenula, a small structure located at

the posterior end of the thalamus, within the neural reward

circuitry. Matsumoto and Hikosaka (2007), who used a

similar setup of single cell recording in primates as Schultz

[12], were the first to report habenula involvement in

reward processing by demonstrating that habenula neurons

are excited by target predicting no rewards and inhibited

by a reward-predicting target [29]. This response pattern,

which is opposite to that of midbrain DA neurons, was

interpreted as suggesting that the lateral habenula contrib-

utes to reinforcement learning through inhibitory action on

midbrain DA neurons [29]. More recently and specifically

relevant to depression, lesions of the lateral habenula [30]

and attenuation of midbrain-habenula signaling [31] were

found to reduce depression-like behaviors in rat models of

depression. In humans, depression was associated with
Current Opinion in Psychology 2015, 4:114–118



116 Depression
smaller habenula volume [32], and acute administration of

antidepressant was found to reduce glucose metabolism in

the habenula [33�].

Finally, recent evidence also implicates neurotransmit-

ters other than DA in reward processing, including gam-

ma amino butyric acid (GABA), glutamate, serotonin, and

oxytocin. In particular, animal studies have demonstrated

that the rewarding properties of social interactions require

the coordinated activity of oxytocin and serotonin in the

ventral striatum [34�]; blockade of glutamate uptake in

the frontal cortex can produce anhedonia [35]; and finally,

habenula inhibition on midbrain DA neurons is partly

mediated via glutamatergic and GABA-ergic release

[36�]. In humans, recent studies have associated depres-

sion with reduced serotonin receptor binding potential in

the striatum [37], as well as reduced glutamate [38] and

GABA [39] concentration in the prefrontal cortex, with

the latter study implicating reduced GABA specifically in

anhedonic depression. Collectively, these findings high-

light promising pathways that go beyond monoaminergic

dysfunction as potential treatment targets for depression.

Clinical implications
Currently up to 60% of depressed patients fail to respond to

treatment [40]. Notably, common treatments (e.g., selec-

tive serotonin reuptake inhibitors, SSRIs) often do not

address reward-related symptoms in depression, such as

loss of pleasure, interest, or energy [41�], and, in some cases,

might even worsen them [42]. Conversely, explicitly en-

couraging patients to engage in rewarding activities during

treatment has been found effective in alleviating depres-

sion [43], potentially by affecting striatal response to reward

[44]. Therefore, increased attention to dysfunctional reward

processing within the therapeutic process may improve

clinical outcomes. In fact, depressed patients report that

their remission is linked to reinstatement of positive feel-

ings such as optimism and self-confidence [45�].

Clearly, a considerable gap still needs to be bridged

before the body of work reviewed above could be used

to directly guide clinical procedures. Nevertheless, neu-

roimaging evidence has already informed deep brain

stimulation (DBS), an invasive neurosurgical procedure

for highly treatment-resistant patients in which electro-

des are implanted in specific brain regions. Interestingly,

DBS targeting core reward circuitry regions such as the

ventral striatum [46] and lateral habenula [47] provided

significant symptomatic improvement in these severely

depressed and highly refractory patients. The clinical

relevance of reward dysfunction was further demonstrat-

ed by recent findings that blunted reward learning [48]

and abnormal cortical-striatal connectivity [28�] predicted

antidepressant treatment outcome in depression. Taken

together, accurate identification of specific reward-related

dysfunctions and their neural underpinnings holds

promise for individually tailored localization of DBS
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targets and treatment selection. Finally, altered response

to reward was recently demonstrated even in young

healthy individuals who are at risk for depression by

virtue of their mothers’ history of depression [49], sug-

gesting that improved understanding of dysfunctional

reward processing may also facilitate identification of

depression vulnerability.

Conclusion
Dysfunctional reward processing is central to the patho-

physiology of depression, yet its exact manifestation and

pathophysiology vary across specific reward-related con-

structs. Substantial preclinical and clinical evidence has

implicated a distributed network of brain regions and

pathways in reward processing, with dopaminergic signal-

ing in the striatum playing a major role in these processes.

Ultimately, improved understanding of precise depres-

sion-related dysfunctions in reward processing, as well as

their mediating neural pathways, may aid both diagnostic

and therapeutic efforts required to address current unmet

needs associated with this prevalent disorder.
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