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3 Electroencephalography and High-Density
Electrophysiological Source Localization

DIEGO A. PIZZAGALLI

1. INTRODUCTION

In 1924, Hans Berger, a German psychiatrist, performed
the first electroencephalographic (EEG) recording in
humans (Berger, 1929), a discovery that was initially
greeted with great skepticism by the scientific community.
By recording from one electrode placed over the forehead
and one over the occipital cortex, Berger discovered the
existence of rhythmic activity oscillating at approximately
10 Hz, particularly during relaxed wakefulness and in the
absence of sensory stimulation or mental activity. In this
landmark discovery, Berger described for the first time
what would become known as alpha waves. As a result,
Berger was among the first to suggest that the periodic fluc-
tuations of the human EEG may be associated with mental
processes, including arousal, memory, and consciousness.
Over the years, developments in data collection and analy-
ses transformed EEG into one of the prime techniques for
studying the human brain. Table 3.1 summarizes selected
landmark discoveries and developments that have con-
tributed shaping the EEG field throughout the century.

The past two decades in particular have witnessed
unparalleled progress in our ability to image human brain
function noninvasively. Different imaging techniques are
currently available to investigate brain function based
on hemodynamic (functional magnetic resonance imag-
ing, fMRI), metabolic (positron emission tomography,
PET), or electromagnetic (electroencephalography, EEG;
magnetoencephalography, MEG) measurements. In order
to investigate spatiotemporal dynamics of brain activity,
methods that directly assess neural activity are required.
By measuring electrical activity of neuronal assemblies
with millisecond temporal resolution, EEG and MEG,
unlike hemodynamic techniques, offer the possibility of
studying brain function in real time. Unfortunately, as
will be discussed in this chapter, the spatial resolution
afforded by EEG/MEG is constrained by several factors.
The most important of these factors are the distorting
effects of the head volume conductor,1 low signal-to-noise

1 Volume conduction refers to the process of current flow from the
electrical generator to the recording electrode (Fisch, 1999).

ratios, and limited spatial sampling due to practical limits
on the numbers of electrodes that can be utilized. More
importantly, it soon became evident that the neuroelectro-
magnetic “inverse problem” (the attempt to identify gen-
erating sources of measured, scalp-recorded EEG signals)
is fundamentally ill-posed. As first described in 1853 by
Helmholtz, there are an infinite number of source con-
figurations that can explain a given set of scalp-recorded
potentials. Thus, at a first glance, the quest for the devel-
opment of methods combining millisecond temporal res-
olution with millimeter spatial resolution appears to be a
lost cause. Fortunately, solutions to the inverse problem
can be found by postulating physiologically and anatomi-
cally sound assumptions about putative EEG sources and
by mathematically implementing established laws of elec-
trodynamics.

The main purpose of the present chapter is to review
recent advances in the EEG field (event-related potentials,
ERPs, will not be discussed here, as they are reviewed else-
where in this volume.) To understand these developments
it will first be necessary to detail the physiological basis
of the EEG signal. Subsequently, important issues associ-
ated with data acquisition, signal processing, and quanti-
tative analyses will be discussed (see Davidson, Jackson, &
Larson, 2000; Pivik et al., 1993; Gasser & Molinari, 1996;
Nunez et al., 1997; Nuwer et al., 1999; Thakor & Tong,
2004 for more comprehensive reviews of these topics). The
largest portion of the chapter will be devoted to reviewing
emerging source localization techniques that have been
shown to localize EEG activity without postulating a pri-
ori assumptions about the number of underlying sources
(Baillet et al., 2001; Michel et al., 2004). As we will discuss,
perhaps the greatest advancements in the EEG field in the
last 5–10 years have been achieved in the development of
these localization techniques, in particular when used in
concert with high-density EEG recording, realistic head
models, and other functional neuroimaging techniques.
The picture emerging in light of these achievements reveals
that the spatial resolution of the EEG may be substantially
higher than previously thought, thus opening exciting
and new opportunities for investigating spatiotemporal
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Table 3.1. Selected historical landmarks in electroencephalography (adapted from Maurer & Dierks, 1991 and
Neidermeyer, 1993)

Year Name Description

1875 R. Caton First tracing in animals of fluctuating potentials that constitute the EEG

1924 H. Berger First human EEG measurement

1929 H. Berger First human EEG publication in Archive für Psychiatrie und Nervenheilkunde

1932 J. T. Toennies First ink-writing biological amplifier

1932 G. Dietch First application of Fourier analyses on human EEG

1934 F. Gibbs First systematic application of the EEG to epilepsy

1935 A. L. Loomins First systematic application of the EEG to sleep

1936 W. G. Walter Discovery of slow (delta) activity in the presence of tumors

1942 K. Motokawa First EEG brain map

1943 I. Bertrand and R. S. Lacape First book on EEG modeling

1947 American EEG Society is founded

1947 G. D. Dawson First demonstration of human evoked potential responses

1949 Electroencepahlography and Clinical Neurophysiology, the first EEG journal, is launched

1952 A. Remond and F. A. Offner First topographic analyses of occipital EEG

1952 M. A. B. Brazier and
J. U. Casby

Introduction of auto- and cross-correlation function

1955 A. Remond Application of topographical EEG analyses

1958 H. Jasper Introduction of 10–20 system for standardized electrode placement

1960 W. R. Adley Introduction of Fast Fourier Transformation (start of computerized spectral analyses)

1961 T. M. Itil Application of EEG analyses for classification of psychopharmacological agents

1963 N. P. Bechtereva Localization of focal brain lesions by EEG

1965 J. W. Cooley and J. W. Tukey Introduction of fast Fourier algorithm

1968 D. O. Walter Introduction of coherence analyses for the human EEG

1970 B. Hjorth Development of new quantitative methods, including source derivation

1971 D. Lehmann First multichannel topography of human alpha EEG fields

1973 M. Matousek and I. Petersen Development of age-corrected EEG spectral parameter for detecting pathology (qEEG)

1977 E. R. John Introduction of “neurometrics” (standardized qEEG analyses with normative databases)

1978 R. A. Ragot and A. Remond EEG field mapping

1979 F. H. Duffy Introduction of brain electrical activity mapping (BEAM)

dynamics of brain mechanisms underlying mental pro-
cesses and dysfunctions in psychopathology, bringing us
closer to fulfillment of Berger’s dream that EEG will open
a “window to the mind.”

2. PHYSIOLOGICAL BASIS OF THE EEG

2.1. EEG generation: I. The role of post-synaptic
potentials in cortical pyramidal neurons

In the central nervous system, when a neuron is activated
by other neurons through afferent action potentials, exci-
tatory post-synaptic potentials (EPSPs) are triggered at its
apical dendrites. When this occurs, the membrane of the

apical dendrites becomes depolarized and electronegative,
compared to the cell soma (Baillet et al., 2001; Speckmann,
Elger, & Altrup, 1993). As a consequence of this transient
potential difference, current flows from the nonexcited
soma to the excited apical dendritic tree, and a negative
polarity emerges at the surface (Speckmann et al., 1993).2

In the opposite case, with excitation of the soma, the cur-
rent flow will have inverse direction.

2 Negative potentials at the surface can arise either due to (a) super-
ficial EPSPs (i.e., excitation at apical dendrites) or (b) deep IPSPs
(i.e., inhibition of the soma). Conversely, positive potentials at the
surface can arise either due to (a) superficial IPSPs (i.e., inhibition
at apical dendrites) or (b) deep EPSPs (i.e., excitation of the soma;
Speckmann et al., 1993).
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Figure 3.1. Neurophysiological basis of EEG generation. Scalp-
recorded EEG oscillations generated by summation of excitatory
and inhibitory post-synaptic potentials in cortical pyramidal neu-
rons. (A) A coronal slice of the human brain is shown, with corti-
cal gray matter highlighted in grey color. (B) An expanded view of
cerebral gyri and sulci (see inset in A) is shown in relations to the
scalp, skull, and cerebral spinal fluid (CSF). (C) A schematic illus-
tration of cortical pyramidal cells within the cortical mantle (see
inset in B) is shown. In this example, an excitatory post-synaptic
potential (EPSP) is generated at the cell soma; local excitation
(+ and −) leads to a tangential current flow (solid lines). The
closed loops (dashed lines) represent the summation of extracel-
lular currents produced by the postsynaptic potentials at cortical
pyramidal cells, whose dendritic trunks are parallel to each others
and perpendicular to the cortical surface. The deep EPSP shown
in the example would produce a positive field potentials at the
cortical surface (Speckmann et al., 1993).

Scalp-recorded EEG oscillations are hypothesized to be
generated by the summation of excitatory and inhibitory
post-synaptic potentials in cortical pyramidal neurons
(Speckmann et al., 1993; Figure 3.1). In the generation of
an EEG oscillation, tens of thousands of synchronously
activated pyramidal cortical neurons are assumed to
be involved. The coherent orientation of their dendritic
trunks (parallel to each others and perpendicular to the

cortical surface) allows summation and propagation to
the scalp surface (Nunez & Silberstein, 2000). Accord-
ingly, although subcortical contributions to scalp-recorded
EEG have been reported (e.g., Llinas, Ribary, Jeanmonod,
Kronberg, & Mitra, 1999), cortical macrocolums are
thought to be the main contributors of EEG signals (Fisch,
1999; Baillet et al., 2001).

2.2. EEG generation: II. The role of
thalamo-cortical networks

Although mechanisms underlying EEG generation are not
fully understood, interactions between thalamic and cor-
tical networks are assumed to play a key role in various
rhythmical EEG activities (Steriade, 1993). In animals,
neurophysiological evidence has shown that several thala-
mic, thalamocortical, and cortical neurons display intrin-
sic oscillatory patterns, which in turn generate rhythmic
EEG oscillations. The thalamus, in particular, has been
described as a key player in the generation of alpha and
beta oscillations. Accordingly, thalamic oscillations in the
7.5–12.5 Hz frequency range have been shown to activate
the firing of cortical neurons (Steriade, 1993). The asso-
ciated depolarization, which mainly occurs in the corti-
cal layer IV, in turn creates a dipolar source with negativ-
ity in layer IV and positivity in superficial layers. Placing
electrodes at the scalp allows measurement of small but
reliable far-field potentials representing the summation of
these potential fluctuations. In humans, thalamic contri-
butions to alpha oscillations were investigated in a study
integrating positron emission tomography (PET) and EEG
recordings (Larson et al., 1998). Cortical alpha power was
found to be inversely correlated to glucose metabolism in
the thalamus, consistent with the assumption that thala-
mic activity in response to sensory or cortical input may
lead to alpha suppression.

Corticocortical and thalamocortical interactions during
information processing have also been postulated in the
generation of oscillations at higher frequencies, including
the beta band (13–30 Hz). Notably, the thalamus has been
also implicated in the generation of delta waves (1–4 Hz),
which might arise through interactions between deep cor-
tical layers and the thalamus that are normally inhibited
by afferents from the ascending reticular activating sys-
tem. In addition, the septohippocampal system and var-
ious limbic regions (e.g., hippocampus, cingulate cortex)
have been implicated in the generation of theta oscillations
(Vinogradova, 1995; Bland & Oddie, 1998).

In sum, EEG oscillations appear to be dependent on
interactions between the cortex and the thalamus, which
both produce intrinsically rhythmical activities. Whereas
the thalamus has been critically implicated in the pacing of
such rhythmical activities, the cortex provides the coher-
ent output in response to thalamic input and generates
the vast majority of oscillations that can be recorded at
the scalp (Fisch, 1999).
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2.3. EEG generation: III. The role of local-scale
and large-scale synchronization

As mentioned above, at any given moment in time, the
signal recorded at the scalp is due to spatial summation
of current density induced by synchronized post-synaptic
potential occurring in large clusters of neurons. Consid-
ering that the diameter of EEG electrodes (∼10 mm) is
several orders of magnitude larger than single neurons
(∼20 μm) and that the area of an electrode covers approxi-
mately 250,000 neurons (Baillet et al., 2001), it is clear that
many neurons must be activated synchronously in order
to detect an EEG signal at the scalp.

Consistent with this notion, animal studies have
described substantial synchronization among neighbor-
ing neurons (“local-scale synchronization”; e.g., Llinas,
1988), as well as between neuronal assemblies of dis-
tant brain regions (“large-scale synchronization”; e.g.,
Bressler & Kelso, 2001). Thus, synchronization of oscil-
lations is a key mechanism for neuronal communication
between spatially distributed brain networks (see Schnit-
zler & Gross, 2005 for a recent review). Emerging ani-
mal evidence indicates that oscillatory processes might
(a) bias input selection, (b) temporally bind neurons into
assemblies, and (c) foster synaptic plasticity (Buzsaki &
Draguhn, 2004). Intriguingly, higher frequency oscillations
(e.g., gamma) appear to originate from smaller neuronal
assemblies, whereas low frequency oscillations (e.g., theta)
span larger neuronal populations (Buzsaki & Draguhn,
2004). Large-scale neuronal synchronization plays an
important role in various cognitive processes that rely
on distributed neuronal networks (e.g., language process-
ing; Weiss & Mueller, 2003), and can be studied through
EEG coherence analysis, as will be discussed further in
Section 5.3.

3. NORMATIVE EEG ACTIVITY

The millisecond temporal resolution of EEG allows sci-
entists to investigate not only fluctuations of EEG activ-
ity (i.e., increases/decreases) as a function of task demand
or subject samples but also to differentiate between func-
tional inhibitory and excitatory activities. As a general
rule, low frequencies (e.g., delta and theta) show large
synchronized amplitudes, whereas high EEG frequencies
(e.g., beta and gamma) show small amplitude due to high
degree of desynchronization in the underlying neuronal
activity. In adults, the amplitude of normative EEG oscil-
lations lies between 10 and 100 μV (more commonly
between 10 and 50 μV; Niedermeyer, 1993). In the fol-
lowing section, a brief review of various EEG bands and
their putative functional roles will be presented. For a
review of the molecular and physiological basis underlying
the generation of various EEG oscillations, the interested
reader is referred to Steriade (1993) and Speckmann et al.
(1993).
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Figure 3.2. Reciprocal relation between delta activity and glucose
metabolism. In a recent study integrating concurrently recorded
electric (28-channel scalp EEG) and metabolic ([18F]-2-fluoro-2-
deoxy-D-glucose positron emission tomography, FDG-PET) mea-
sures of brain activity, melancholic depression was characterized
by (A) significantly increased delta current density (see yellow-
red colors), as assessed with LORETA (see Section 8.2.3.); and
(B) significantly decreased glucose metabolism (see blue col-
ors). Statistical maps are thresholded at P < .05 (corrected) and
displayed on a representative structural MRI. In psychiatrically
healthy subjects, a significant negative correlation between delta
current density and glucose metabolism in the subgenual pre-
frontal cortex emerged (C). Adapted from Pizzagalli et al. (2004)
with permission.

3.1. Delta band (1–4 Hz)

Delta oscillations reflect low-frequency activity (1–4 Hz)
typically associated with sleep in healthy humans and
neurological pathology. In adults, delta power has been
shown to increase in proximity of brain lesions (Gilmore
& Brenner, 1981) and tumors (Fernandez-Bouzas et al.,
1999), during anesthesia (Reddy, Moorthy, Mattice, Dier-
dorf, & Deitch, Jr., 1992), and during sleep (Niedermeyer,
1993). Moreover, inverse relationships between delta activ-
ity and glucose metabolism have been reported in both
pathological (e.g., dementia; Szelies, Mielke, Kessler, &
Heiss, 1999) and normal (Pizzagalli et al., 2004) condi-
tions. In our own study, an inverse relationship between
delta current density (assessed via an EEG distributed
source localization technique) and glucose metabolism
(assessed via PET) was found within the subgenual pre-
frontal cortex (Figure 3.2). Delta is also the predominant
activity in infants during the first two years of life. Ontolog-
ically, slow delta and theta activity diminish with increas-
ing age, whereas the faster alpha and beta bands increase
almost linearly across the life span (e.g., John et al., 1980).
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Collectively, these findings suggest that delta activity is
mainly an inhibitory rhythm.

3.2. Theta band (4–8 Hz)

Theta activity refers to EEG activity within the 4–8 Hz
range, prominently seen during sleep. During wakefulness,
two different types of theta activity have been described
in adults (Schacter, 1977). The first shows a widespread
scalp distribution and has been linked to decreased alert-
ness (drowsiness) and impaired information processing.
The second, the so-called frontal midline theta activ-
ity, is characterized by a frontal midline distribution
and has been associated with focused attention, mental
effort, and effective stimulus processing. Recent studies
have implicated the anterior cingulate cortex (ACC) as a
potential generator of frontal midline theta activity (e.g.,
Asada, Fukuda, Tsunoda, Yamaguchi, & Tonoike, 1999;
Luu, Tucker, Derryberry, Reed, & Poulsen, 2003; Onton,
Delorme, & Makeig, 2005). Consistent with these find-
ings, in a recent study integrating electrical (EEG) and
metabolic (PET) measurements of brain activity, we found
that the ACC (Brodmann area 24/32) was the largest region
with significant positive correlations between theta cur-
rent density and glucose metabolism (Pizzagalli, Oakes, &
Davidson, 2003).

Physiologically, the septo-hippocampal system has been
strongly implicated in the generation of theta oscilla-
tions, although theta has also been recorded in numerous
other limbic regions, including the ACC, entorhinal cor-
tex, and the medial septum, among others (Vinogradova,
1995; Bland & Oddie, 1998). In rodents, generation of hip-
pocampal theta activity is crucially dependent on afferents
from the medial septum/vertical limb of the diagonal band
of Broca complex (MS/vDBB), which is considered the
pacemaker of hippocampal theta (Vertes & Kocsis, 1997).
Additional evidence suggests that theta can be generated
in the cingulate cortex independently of the hippocam-
pal system (e.g., Borst, Leung, & MacFabe, 1987). In light
of the observation that these oscillation facilitates trans-
mission between different limbic structures, it has been
speculated that theta activity may subserve a gating func-
tion on the information processing flow in limbic regions
(Vinogradova, 1995).

3.3. Alpha band (8–13 Hz)

The alpha rhythm refers to EEG activity within the 8–
13 Hz range. In healthy adults, alpha activity typically
has amplitude between 10 and 45 μV, and can be easily
recorded during states of relaxed wakefulness, although
large individual differences in amplitudes are not uncom-
mon (Niedermeyer, 1993). Topographically, alpha rhythms
show their greatest amplitude over posterior regions, par-
ticularly posterior occipito-temporal and parietal regions,
and can best seen during resting periods in which the sub-
jects has his/her eyes closed. In fact, alpha rhythm can be

greatly diminished or abolished by eye opening, sudden
alerting, and mental concentration, a phenomenon known
as alpha blockage or alpha desynchronization. The alpha
rhythm can also be attenuated when alertness decreases to
the level of drowsiness; this attenuation is, however, often
accompanied by a decrease in frequency.

The physiological role of alpha rhythm remains largely
unknown. Traditionally, the posterior distribution of these
oscillations and the observation of alpha blockade with
eye opening have been interpreted as suggesting that alpha
may be associated with visual system functions emerging
in the absence of visual input (Fisch, 1999). Indeed, some
authors have expanded upon this notion by suggesting that
alpha synchronization may represent an electrophysiologi-
cal correlate of cortical “idling” or cognitive inactivity (e.g.,
Pfurtscheller, Stancak, Jr., & Neuper, 1996). In recent years,
this conjecture has been heavily debated in the literature,
particularly in studies investigating evoked EEG activity,
in which alpha synchronization has been described dur-
ing information processing (e.g., Cooper, Croft, Dominey,
Burgess, & Gruzelier, 2003; Klimesch, 1999). Further com-
plicating the physiological interpretation of alpha, emerg-
ing evidence indicates that different alpha sub-bands may
be functionally dissociated, in particular with increasing
task demands (Fink, Grabner, Neuper, & Neubauer, 2005).
Specifically, in cognitive tasks, lower alpha (e.g., 8–10 Hz)
desynchronization (suppression) has been associated with
stimulus-unspecific and task-unspecific increases in atten-
tional demands (e.g., Klimesch, 1999). Upper alpha (e.g.,
10–12 Hz) desynchronization, on the other hand, appears
to be task-specific, and it has been linked to process-
ing of sensory-semantic information, increased semantic
memory performance, and stimulus-specific expectancy
(Klimesch, 1999).

3.4. Beta band (13–30 Hz)

Traditionally, lower-voltage oscillations within the 13–
30 Hz frequency range have been referred to as beta. In
adults, beta activity has amplitudes between 10–20 μV,
presents mainly a symmetrical fronto-central distribution,
and typically replaces alpha rhythm during cognitive activ-
ity. Consistent with this view, beta rhythm has been shown
to increase with attention (Murthy & Fetz, 1992) and
vigilance (Bouyer, Montaron, Vahnee, Albert, & Rougeul,
1987), for example. Collectively, these findings suggest that
beta increases generally reflect increased excitatory activ-
ity, particularly during diffuse arousal and focused atten-
tion (Steriade, 1993).

3.5. Gamma band (36–44 Hz)

Gamma oscillations have been associated with attention,
arousal, object recognition, top-down modulation of sen-
sory processes, and, in some cases, perceptual binding (i.e.,
the brain’s ability to integrate various aspects of a stimu-
lus into a coherent whole; Engel, Fries, & Singer, 2001).
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Various findings indicate that gamma activity is directly
associated with brain activation. First, human intracorti-
cal EEG studies have reported increased gamma oscilla-
tions during various mental processes, including percep-
tion (Rodriguez, Lachaux, Martinerie, Renault, & Varela,
1999) and learning (Miltner, Braun, Arnold, Witte, & Taub,
1999). Second, dose-dependent decreases of gamma activ-
ity have been described during anesthesia (Uchida et al.,
2000). Third, systematic decreases in gamma activity have
been described throughout the sleep-wake cycle (high-
est during wakefulness, intermediate during REM sleep,
and lowest during slow wave sleep; Gross & Gotman,
1999). A recent study from our laboratory using concurrent
EEG and PET measurements provided further support for
the notion that gamma is a direct indicator of activation
because this band had the highest number of positive cor-
relations between current density and glucose metabolism
(Oakes et al., 2004).

Although the functional role of gamma oscillations
needs to be more fully elucidated, these oscillations are
assumed to reflect large-scale integration of and synchrony
among widely distributed neurons, particularly in states of
diffusely increased vigilance (e.g., Mann & Paulsen, 2005;
Steriade, 1993). Physiologically, various mechanisms have
been implicated in the generation of gamma oscillations,
including: (1) intracortical circuitries, in particular those
involving distant brain regions; (2) synaptic interactions
among the cortex, thalamus, and limbic structures; and
(3) brainstem-thalamic cholinergic activation (Steriade,
1993). Notably, recent animal and human findings have
shown that gamma and theta oscillations can be function-
ally coupled both during activated (task-related) and rest-
ing (task-free) states (e.g., Fell et al., 2003; Mann et al.,
2005; Schack, Vath, Petsche, Geissler, & Moller, 2002).
In general, these studies have shown that gamma bursts
occur within periods of the theta phase (Buzsaki, 1996
for review). Consistent with this notion, in a recent 128-
channel source localization EEG study (Pizzagalli, Pecco-
ralo, Davidson, & Cohen, 2006), we found significant posi-
tive correlations between resting theta and gamma current
densities within various subdivisions of the ACC (correla-
tion range: 0.51–0.59).

4. DATA ACQUISITION AND SIGNAL ANALYSIS

In the following sections, a selected discussion will be pre-
sented of issues associated with data acquisition and signal
processing (for more in-depth reviews, see Davidson et al.,
2000; Pivik et al., 1993; Gasser & Molinari, 1996; Nuwer
et al., 1999; Thakor et al., 2004).

4.1. Electrodes

4.1.1. Electrode locations and high-density recordings
EEG signals always represent the potential difference
between two electrodes, an active electrode and the so-
called reference electrode. Accordingly, it is clear that the

Figure 3.3. Electrode positions and labels in the International
10–20 System. Black circles denote electrode positions and labels
from the 10–20 system; gray circles denote additional elec-
trode positions and labels introduced with the 10–10 system.
Reprinted from Clinical Neurophysiology, Vol. 112, Oostenveld,
R. & Praamstra, P., The five percent electrode system for high-
resolution EEG and ERP measurements, pp. 713–719, Copyright
(2001), with permission from International Federation of Clinical
Neurophysiology.

quality of EEG signals is dependent on the integrity of
the electrode-electrolyte-skin interface (for a summary of
clinical and experimental electrodes, see Fisch, 1999). Irre-
spective of their material, EEG electrodes should not atten-
uate signals between 0.5 and 70 Hz. To allow comparisons
among studies it is important to adhere to standardized
electrode locations. For many years, the accepted system
for electrode placement has been the International 10–
20 system proposed by Jasper (1958). The name refers to
the fact that electrodes are placed at sites 10% and 20%
from four fiduciary points (nasion, inion, left, and right
mastoids); this placement schema allows positioning of
19 electrodes homogenously across the scalp. In recent
years, this system has been extended to the so-called 10–10
system (American Electroencephalographic Society, 1991)
and the 5–5 system (Oostenveld & Praamstra, 2001), in
which intermediate positions between those of the 10–20
system have been derived (Figure 3.3).

In recent years, high-resolution EEG systems with num-
bers of electrodes ranging from 64 up to as many as 256
have been introduced, with the goal of increasing the spa-
tial sampling of the EEG (e.g., Gevins et al., 1994; Tucker,
1993). In one particular dense-array system (Tucker, 1993),
scalp abrasion prior to the application of EEG electrodes
is not necessary, reducing (a) the electrode application
time (e.g., 15-min time for applying a 128-channel EEG
net); (b) subject’s discomfort; and (c) risk of infections.
Instead, these systems are simply soaked in a saline
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(electrolyte) solution and then applied directly to the head
(but see Greischar et al., 2004 for potential issues asso-
ciated with electrolyte spreading in high-density record-
ings). The use of high-input impedance (200 M�) ampli-
fiers allows the recording of reliable EEG traces with
impedances one order of magnitude higher than the tradi-
tional 5 K�.

Studies using simulated as well as real EEG data have
suggested that an electrode distance of 2–3 cm is required
to prevent distortions of the scalp potential distribution,
and thus allow resolution of spatially focal EEG patterns
(e.g., Srinivasan et al., 1998). In addition, recent studies
assessing the role of spatial density (i.e., number of elec-
trodes) on source reconstructions have clearly shown an
improved spatial resolution with high-density recordings.
In a simulation study, Lantz, Grave, Spinelli, Seeck, &
Michel (2003) reported that the source localization accu-
racy increased linearly from 25 to 100 electrodes but
reached a plateau after 100 electrodes. In the same study,
Lantz and coworkers also showed a marked improvement
in localization precision of the epileptic sources when
increasing electrodes from 31 to 63; again, at least in the
case of spatially focal sources in epileptic patients, the
improvements in localization accuracy were less dramatic
when going from 63 to 123. Similar findings were reported
by Luu et al. (2001), who investigated the role of elec-
trode density in the ability to localize scalp abnormali-
ties associated with acute cerebral ischemia. Using sensor
downsampling (128, 64, 32, and 19 electrodes), the authors
found that only 64 and 128 electrode arrays were capable
of resolving spatially localized EEG abnormalities. As in
Lantz et al., minimal gain was achieved when moving from
64 to 128 electrodes. Note however that, because Lantz
et al. used a source localization technique (EPIFOCUS;
Grave de Peralta, Gonzalez, Lantz, Michel, & Landis, 2001)
that assumes a single focal source, distributed source local-
ization techniques (see Section 8.2) may benefit from the
additional spatial sampling achieved with >100 electrodes.
Consistent with this hypothesis, Michel et al. (2004) found
that source imaging with 128-channel EEG epileptic spike
data led to correct localization (to the order of the affected
lobe) in 93.7% of the focal epileptogenic area, as indepen-
dently assessed through presurgical assessments.

Regardless of the number of electrodes utilized, uniform
and homogenous coverage of the scalp is of paramount
importance for reliable measurements of the scalp poten-
tial field, a critical prerequisite for any source localization
technique (Michel et al., 2004). Moreover, measurements
of exact 3-D electrode position with a digitizer (if avail-
able) may provide important information to account for
individual differences in electrode positioning (e.g., Towle
et al., 1993). Recently, a solution based on photogrammatic
measurements has been developed for quick and accurate
measurement of electrode positions in high-density EEG
system (Russell, Jeffrey, Poolman, Luu, & Tucker, 2005).
In this approach, multiple cameras are used to record the
location of individual sensors, allowing for the reconstruc-

tion of the 3-D sensor positions. In sum, both simulation
and experimental studies suggest that at least 60 (prefer-
ably more) equally distributed electrodes are required for
accurate spatial sampling of scalp activities.

4.1.2. Electrode interpolation
The importance of spatial sampling for source localiza-
tion is associated with the issue of how best to deal with
electrodes with corrupted EEG signals due to excessive
artifacts or technical malfunction. As mentioned above,
source localization strongly relies on the scalp potential
distribution, which itself can be distorted by uneven spatial
sampling. Consequently, simply omitting corrupted elec-
trodes is not a feasible solution, and interpolation methods
are needed. Broadly speaking, two interpolation methods
have been utilized: linear (nearest neighbor) and spline
interpolation methods (e.g., Perrin, Pernier, Bertrand, &
Echallier, 1989). In the first method, corrupted activity is
reconstructed through a weighted average using data from
neighboring electrodes (the weights are proportional to the
Euclidian distance between the electrodes). With the spline
interpolation method, information from all sensors is used
to represent the overall potential distribution on the entire
scalp, and thus to reconstruct the activity at missing chan-
nels. Although mathematically simpler, linear interpola-
tions have the disadvantage that (a) edge electrodes can-
not be accurately estimated; (b) only a few electrodes are
used; and (c) maxima and minima of activity are always
located at electrode sites (Maurer & Dierks, 1991). Empir-
ical evidence indicates that non-linear spline interpolation
methods achieve greater accuracy (Soufflet et al., 1991).

4.1.3. Recording reference choice
As mentioned in Section 4.1.1, EEG waveforms repre-
sent the differential voltage between a given electrode
and the recording reference. It is therefore clear that the
choice of reference completely determines EEG wave-
forms (Lehmann, 1987; Dien, 1998), an important method-
ological consideration that all too often is still not recog-
nized in the EEG literature. For example, recording with a
vertex (Cz) reference would lead to small EEG deflections
in the proximity of Cz due to potential synchronization of
firing activities within closely spaced brain regions and vol-
ume propagation of the EEG signal. Similarly, recording
with mastoid or linked ears montage would lead to rather
small waveforms at electrodes positioned over temporal
brain regions (Pivik et al., 1993).3

Ideally, the reference electrode should be electrically
inactive, allowing the measurement of an absolute EEG
value. Both cephalic and noncephalic references are never
electrically inactive, and thus contribute to recorded EEG
signals. Understanding this point is particularly important
when deciding the location to the recording reference in

3 Note, however, that information contained in the reference (e.g.,
Cz) is not permanently lost, but can be recovered by recomputing
the EEG data against a different reference electrode.
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order to avoid situations in which the reference itself is
contaminated by noncephalic activity (e.g., muscle or elec-
trocardiogram artifacts). In these circumstances, because
the potential difference is measured between the active and
reference electrodes, substantial artifacts would be intro-
duced in all EEG channels.

Due to the fundamental issue of reference-dependency
of EEG waveforms, reference-free transformations have
been proposed for an unbiased assessment of EEG mea-
sures. In particular, the use of an average reference
(Lehmann, 1987), radial current flow (Hjorth, 1975), and
current source density (Perrin, Bertrand, & Pernier, 1987)
have attracted substantial interest. With the average refer-
ence approach, at each moment in time, EEG signals are
re-derived against the average value across all electrodes.
In the Hjorth’s method, also known as source derivation
or Laplacian transformation, the average potential differ-
ence between each electrode and the nearest four elec-
trodes is computed.4 By computing the density of local
radial currents, this approach acts as a spatial high pass
filter and emphasizes shallow cortical generators. Finally,
current source density (also known as surface Laplacian)
is computed as the second derivative of the voltage sur-
face; by acting also as a spatial filter, surface Laplacians
can be helpful in identifying focal patterns (Nunez & Pil-
green, 1991). Although these reference-free methods have
been successfully used in the literature for an unbiased
assessment of EEG signals, it is important to stress that
they often require a relatively high number of electrodes
(e.g., 32 electrodes or above), as well as homogenous elec-
trode distribution across the scalp for reliable estimates
(Pivik et al., 1993).

Although the choice of the reference electrode greatly
influences waveform analyses, it is important to note that
the reference choice is completely irrelevant for any source
localization. In fact, the spatial configuration of the scalp
potential distribution is independent of the reference elec-
trode (the reference merely affects the zero line; Lehmann,
1987). As source localization relies on the spatial distribu-
tion of the scalp EEG and ERP, different reference mon-
tages (e.g., average reference, linked mastoids) lead to
identical estimates of intracerebral sources.

4.2. Recording: Filters and sampling rate

The bandwidth of the EEG signal is 0.1–100 Hz in fre-
quency, although most studies focus on frequencies below
30 Hz (or below 50 Hz if gamma activity is investi-
gated). Although a comprehensive review of calibration,
filtering, and digitization of EEG signals is beyond the
scope of this chapter (see Davidson et al., 2000; Pivik

4 For instance, assume that a researcher wishes to compute the Lapla-
cian transformation at electrode Cz, which has a potential value of
10 μV, and that the four neighboring electrodes Fz, C3, Pz, and C4
have potentials of 3, 5, 12 and 5 μV, respectively. The new source-
derivation value for Cz would be 3.75, i.e., [(Cz-Fz) + (Cz-F3) +
(Cz-Pz) + (Cz-C4)]/4.

et al., 1993; Dumermuth & Molinari, 1987 for excellent
reviews), some points should be emphasized here. First,
the extent to which the digital signal under investigation
accurately reflects the physiological (analog) signal com-
pletely depends on the sampling rate. As a general rule,
the sampling rate should be at least twice the highest fre-
quency present in the signal under investigation. This rule,
also known as the Nyquist Theorem, prevents the introduc-
tion of spurious low-frequency components into the sig-
nal, a phenomenon called aliasing (Dumermuth & Moli-
nari, 1987). Aliasing occurs when a signal is sampled at a
rate that is too low, and introduces irreparable distortion
to the digital waveform (Figure 3.4). Two methods can be
used to avoid aliasing. First, frequencies higher than half
the sampling rate should be removed from the EEG before
digitization occurs (e.g., by using an analog or hardware
filter). Second, high sampling rates (e.g., four-fold greater
than the filter cutoff frequency) could be used. Because the
EEG signals of interest is typically between 1 and <60 Hz,
a sampling rate of 250 Hz with an analog 0.1–100 Hz filter
are appropriate for most EEG studies. If contamination of
low frequency artifacts is an issue, the high pass analog fil-
ter can be set as high as 1 Hz (Nuwer et al., 1999). Higher
sampling rate is required to investigate early sensory ERP
components or high-frequency EEG patterns.

4.3. Artifacts

When recorded, the raw EEG signal is virtually always con-
taminated by various sources of noise and artifacts. In gen-
eral, biological and non-biological artifacts can be differ-
entiated (see pp. 107–121 in Fisch, 1999 for illustrations of
most common artifacts). The former mainly derive from
subject’s movements, muscle activities, blinks, eye move-
ments, heartbeat, and sweating. As will be discussed later,
concurrent recording of the electrocardiogram (ECG),
electrooculogram (EOG), and electromyogram (EMG) can
be very important for a proper detection and removal
of these artifacts. Nonbiological artifacts primarily derive
from interferences from power lines (50/60 Hz), additional
electrical noise, poor subject grounding, and poor elec-
trode contact. One common source of 50/60 Hz noise stems
from fluorescent lights. Use of notch filters (50/60 Hz),
proper subject grounding, and shielding of the recording
system can greatly diminish the influence of nonbiological
artifacts. Proper grounding, in particular, can substantially
improve the quality of the EEG signals and avoid leakage
of current from the EEG system to the subjects.5 Often, a
midforehead electrode is used for this purpose.

Visual and, increasingly more often automatic, offline
artifact detection is essential before any EEG analyses,
and substantial expertise is required for a proper differen-
tiation of normal and contaminated EEG activity. Drowsi-
ness can introduce a substantial confound in baseline EEG

5 Grounding can be achieved by connecting participants to the
ground of the amplifier system.
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Figure 3.4. Example of aliasing due to insufficient sampling rate. A 10 Hz sine waveform is digitized
at two different sampling rates. (A) The sampling rate (50 Hz) is greater than twice the waveform
frequency, which results in (B) an appropriate digital representation of the analog signal. (C) The
sampling rate (16 Hz) is less than twice the waveform frequency, yielding (D) a false (aliased) repre-
sentation of the analog signal. Note how undersampling introduces an irreparable lower frequency
component in the digital signal. Modified after Fisch (1999).
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recording due to a global change in the functional brain
state. Typically, EEG slowing over anterior regions, slow-
ing and subsequent decrease of alpha activity, and slow eye
movement (particularly horizontal), are associated with
subject’s drowsiness. When this pattern is detected, it is
recommended to exclude these periods of EEG (Pivik et al.,
1993).

Removal of ECG and EOG artifacts is particularly impor-
tant, because these artifacts overlap in frequency and
amplitude with the EEG. In humans, normal ECG is within
the 1–1.5 Hz range, suggesting that its second-order har-
monics (2–3 Hz) is within the delta range (Thakor et al.,
2004). Blinks and eye movements mostly generate activ-
ity within the delta and theta range (i.e., <7.5 Hz). Blinks,
which typically last 200–400 ms and can generate artifacts
with an amplitude up to 800 μV, can however also affect
the alpha band (and to a lesser extent the beta band),
in particular at anterior sites (Hagemann & Naumann,
2001). For proper detection of ocular artifacts, it is essen-
tial to utilize additional channels to record vertical and
horizontal eye movements. To record vertical eye move-
ment, two electrodes are affixed below and above one eye;
for horizontal movements, two electrodes are affixed at
the extremities of an eye. Over the years, several methods
have been described in the literature to detect and correct
both sources of noise (see Croft, Chandler, Barry, Cooper,
& Clarke, 2005 for a recent review and comparison of the
most widely used EOG correction algorithms).

Artifacts originating from muscle activity can contam-
inate a broad range of EEG frequencies because the pri-
mary energy in EMG signals is between 10 and 200 Hz
(Tassinary & Cacioppo, 2000). Due to this overlap with
EEG frequencies, occurrence of these artifacts are partic-
ular problematic for EEG analyses. Contamination from
muscle activity can be troublesome for studies interested
in gamma activity, which can be easily influenced by non-
cephalic, myogenic sources. Considering the explosion in
interest in the functional role of gamma activity in men-
tal processes, it is clear that proper attention must be
devoted to the issue of EMG contamination to the gamma
band. Due to frequency overlap, removing muscle arti-
facts through filtering can greatly distort real EEG signals.
Accordingly, several authors proposed the use of regression
approaches for dealing with this issue (e.g., Allen, Coan, &
Nazarian, 2004; Davidson et al., 2000). In this approach,
activity in higher frequencies (e.g., 50–70 Hz) is typically
taken as a marker of muscle artifact, and its variance is
removed using regression analyses or entered as covariate
in analyses of variance (ANOVA).

In recent years, the method of independent component
analysis (ICA) has been increasingly used for removal
of ECG and other artifacts (see Makeig, Bell, Jung, &
Sejnowski, 1996 for a tutorial). In view of the fact that
artifacts typically do not occur time-locked to a given event
or evoked response, ICA is ideally suited to remove such
interfering signals. Consistent with this notion, ICA works
best when applied to unaveraged (raw) EEG data. In the

case of ECG, contaminated EEG is entered into the ICA,
which separates the EEG and EOG components. In a sub-
sequent step, the ECG component is set to zero in the coef-
ficient matrix leading to a removal of ECG artifacts. ICA
approaches have been also used to remove EOG artifacts
(Thakor et al., 2004).

5. QUANTITATIVE SCALP ANALYSES

The introduction of computers has enabled the develop-
ment of several methods to investigate EEG signals with
respect to various parameters, including waveform fre-
quencies, amplitudes, phase, and coherence. Quantita-
tive EEG (qEEG) analyses can be divided into linear and
nonlinear approaches. Among the most widely used lin-
ear methods to quantify spontaneous or task-related EEG
activity are spectral and coherence analyses, which typ-
ically assume that the EEG signals are stationary pro-
cesses.6 Nonlinear approaches, which often incorporate
higher order statistics, information theory, or chaos the-
ory, started to emerge in the 1990s, and have demon-
strated their usefulness particularly when applied to tran-
sient and irregular EEG patterns (see Thakor et al., 2004
for a review).

5.1. Spectral analyses

Spectral analyses are based on the notion that any oscilla-
tory activity can be characterized by the sum of different
sinusoidal waves with distinct frequencies and amplitude
(see Figure 3.5 for a simulation). The goal of spectral anal-
yses, which are often performed using the Fast Fourier
Transform (FFT), is to estimate the contribution of various
frequencies on the measured EEG signal. Commonly, spec-
tral estimates are computed for discrete frequencies (e.g.,
8.5–10 Hz for lower alpha). For a given frequency or dis-
crete EEG band, the root-mean-square average amplitude
or the power (the square of the amplitude) is used to quan-
tify its contribution to the measured EEG signal. Mathe-
matically, the Fourier coefficients indicate the strength of
the signal at a given frequency.

In a typical EEG study, all available artifact-free EEG
segments are entered in spectral analyses. When selecting
the length of the artifact-free EEG segments, it is impor-
tant to understand that this variable determines the maxi-
mal frequency resolution available for the analyses. Thus,
selection of 2-sec segments will provide a 0.5 Hz resolu-
tion (i.e., the inverse of 2 sec), allowing to resolve, for
example, 10 and 10.5 Hz frequencies. Note, however, that
spectral analyses assume that the EEG is a stationary sig-
nal. Accordingly, segments entered in FFT analyses cannot
be too long because of potential violation of the station-
arity assumption (Gasser & Molinari, 1996). When rela-
tively short segments are considered (e.g., <3.5 sec), the

6 In simple terms, stationarity implies that the statistical proprieties
of an EEG signal (e.g., mean, variance) do not vary over time.
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Figure 3.5. Simulation of power spectrum computation through Fast Fourier Transformation (FFT).
In (A), (B), and (C), simple sine waves oscillating at 1.5, 7, and 20 Hz are shown. In (D), the sum
of these three sine waves is shown. In (E), the results of an FFT analysis of the complex waveform
displayed in (D) are shown. Not surprisingly, the spectrum identifies frequency peaks at 1.5, 7, and
20 Hz.

stationarity assumption is typically met in spontaneous
EEG recording.

To allow reliable estimation of spectral features and to
reduce the impact of second-to-second variability in EEG
signals, at least 60 sec of artifact-free data should be used
for spectral analyses (Nuwer et al., 1999; Pivik et al., 1993).
Further, to avoid introduction (“leakage”) of spurious fre-

quencies arising from abrupt changes in EEG signals at the
beginning and the end of the EEG segments, a so-called
taper transformation should be used. For this purpose,
the Hanning (cosine) window has been commonly utilized.
This window tapers the beginning and end of the EEG seg-
ment to zero, whereas the middle of the segment retains
100% of its amplitude (see Dumermuth & Molinari, 1987
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for a review of various windowing approaches). Because
the use of windowing reduces the amount of data that can
be analyzed within a segment, overlapping segments (e.g.,
50%) are often used to restore the amount of data for spec-
tral analyses.

Although we refer to prior reviews for a comprehensive
discussion of spectral analyses (e.g., Gasser & Molinari,
1996; Davidson et al., 2000, several important methodolog-
ical points should be emphasized here. First, an under-
appreciated issue is that the frequency range for a given
oscillatory activity (e.g., alpha activity) can show substan-
tial individual differences. Klimesch (1999) has long advo-
cated the use of individually defined frequency ranges and
has shown in several experimental situations that this
choice can have substantial effects on the findings. Sec-
ond, measures of absolute or relative power can be derived
from spectral analyses. Whereas absolute power reflects
the amount of a given frequency within the EEG, relative
power is calculated as the amount of EEG activity in a
given frequency band divided by the total power. In gen-
eral, absolute power should be preferred because it can be
more easily interpreted. Third, when dealing with power
data, transformations (e.g., log) are often used before sta-
tistical analyses to approximate a Gaussian distribution
(Davidson et al., 2000). Finally, ratios or difference scores
are often computed between different electrodes in an
attempt to draw inferences about differential hemispheric
activation. Conceptual and methodological considerations
concerning these asymmetry metrics are discussed next
(for reviews, see Allen et al., 2004; Coan and Allen, 2004;
and Davidson et al., 2000).

5.1.1. Asymmetry metrics
In many experimental situations, psychophysiologists are
interested in investigating whether the two brain hemi-
spheres are differentially involved in specific cognitive and
affective processes, personality traits, or various forms of
psychopathology. Although many metrics have been used
to investigate hemispheric differences (Pivik et al., 1993),
the alpha power asymmetry index has been among the
most commonly used. This index is derived from subtract-
ing the natural logarithm of the left hemisphere power
value from the natural logarithm of the right hemisphere
power value (ln R – ln L). Because alpha power is con-
sidered to be inversely related to brain activation, positive
numbers on this index indicate relatively greater left activ-
ity, whereas negative numbers denote relatively higher
right activity.

The investigation of frontal EEG asymmetry has
received particular attention, and over 80 studies have
examined its role in emotion, motivation, and psy-
chopathology (for a recent review, see Coan & Allen,
2004). In general, the picture emerging from this liter-
ature is that frontal EEG asymmetry is associated with
(a) state-dependent emotional reactivity; (b) individual dif-
ferences in emotional reactivity; and (c) individual differ-

ences in risk for a variety of emotion-related disorders
(e.g., depression, anxiety). Conceptually, it has been pro-
posed that left prefrontal regions might be implicated in
a system that facilitates appetitive behavior and certain
forms of affect that are approach-related. Conversely, right
prefrontal regions have been implicated in withdrawal-
related, negative affect (Davidson, 2004).

From a methodological perspective, the use of asym-
metry metrics has several advantages. First, they allow
researchers to control for individual differences in skull
thickness, a variable that can artificially cause individ-
ual differences in scalp power values. Second, asymmetry
metrics can increase statistical power by reducing indi-
vidual differences in overall activity, and limit the number
of statistical tests performed. Third, the internal reliabil-
ity of the alpha power frontal asymmetry index is high,
ranging from 0.76 to 0.93 across studies, and the test-
retest reliability is acceptable (e.g., 0.69–0.84 across three
weeks) (Allen et al., 2004). When asymmetry scores are
reported, however, follow-up analyses assessing the unique
contribution of each hemisphere to the asymmetry index
should be presented. For example, a finding of relatively
increased right frontal activity in a given patient popu-
lation, although an important first step, should be sub-
jected to further analyses to ascertain whether this pat-
tern is due to (1) an increase of right frontal activity; (2) a
decrease of left frontal activity; or (3) a combination of the
above. From a statistical perspective, a laterality effect can
only be claimed if the Group × Hemisphere or Condition
× Hemisphere interaction is significant (Allen et al., 2004;
Davidson et al., 2000).

5.2. Time-frequency analyses

From the last section it is clear that spectral analyses
can provide important information about the frequency
compositions of EEG oscillations. Spectral analyses can-
not, however, provide any information about when in
time such frequency shifts occur. Because the EEG is
a dynamic, time-varying, and often non-stationary phe-
nomenon, approaches allowing the investigation of tran-
sient changes in the frequency domain appear particularly
important. To achieve this goal, various time-frequency
analyses methods have been developed, including (a)
short-time Fourier Transform (STFT), which allows to
compute an FFT-based time-dependent spectrum (so-
called spectrogram); and (b) wavelet analyses, which allow
a more adaptive time-frequency approach affording flexi-
ble resolution. Wavelet analyses, in particular, have gained
popularity in recent years due to their ability to accurately
resolve EEG waveforms into specific time and frequency
components (see Samar, Bopardikar, Rao, & Swartz, 1999
for a nontechnical tutorial). In this approach, EEG signals
are viewed as shifted and scaled versions of a particular
mathematical function (the wavelet), rather than a compo-
sition of sine waves with varying frequencies as in the FFT.
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5.3. Coherence analyses

As summarized in Section 2.3., neurophysiological stud-
ies have demonstrated the presence of both local-scale
synchronizations (i.e., synchronization among neighbor-
ing neurons) as well as large-scale synchronizations (i.e.,
synchronization among distant regions; e.g., Bressler &
Kelso, 2001; Llinas, 1988). In EEG studies, the investiga-
tion of large-scale neuronal synchronization appears par-
ticularly important in experimental situations hypothe-
sized to recruit distributed neuronal network. In order
to quantitatively measure the dynamic functional interac-
tions among EEG signals recorded at different scalp loca-
tions, coherence measures can be computed (Nunez et al.,
1997).

Coherence is a frequency-dependent measure, mathe-
matically obtained by dividing the cross-spectrum between
two time series by the root of the two spectra (this compu-
tation is similar to a correlation; Schack et al., 2002). Cross-
power spectrum is obtained by multiplying the Fourier
transform of one signal with the complex conjugate of
another signal, thus allowing the quantification of relation-
ships between different EEG signals. Accordingly, coher-
ence can range from 0, indexing the absence of any syn-
chrony, to 1, indicating maximal synchrony between the
frequency components of two signals, irrespective of their
amplitudes.

Intriguingly, increased synchronization among distant
regions has been observed within low-frequency oscilla-
tions (e.g., theta), whereas increased local synchronization
has been observed for high-frequency oscillations (e.g.,
gamma; Buzsaki & Draguhn, 2004; von Stein & Sarn-
thein, 2000). In general, brain regions that are co-activated
during a given cognitive process are assumed to show
increased coherence (“neuronal synchronization”) within
specific EEG frequency bands, depending on the nature
and difficulty of the task (Weiss & Mueller, 2003). For
some authors, such coherence measurements have been
interpreted as reflecting cortical interactions or connec-
tivity (e.g., Thatcher, Krause, & Hrybyk, 1986). Consistent
with this speculation, increased coherence has been gener-
ally observed with increased task complexity and efficient
information processing, whereas pathological conditions
characterized by dysfunctional networks (e.g., demen-
tia, dyslexia) are characterized by decreased coherence
(Leoncani & Comi, 1999; Weiss & Mueller, 2003).

Finally, it is important to note that, although coherence
analyses assess the degree of synchronization between
different brain regions, they cannot inform us about
the causality of these interactions or the direction and
speed of the information transferred. Only in recent years,
advanced methods for assessing these important aspects of
brain function have been described, including the Directed
Transfer Function (DTF), the Directed Mutual Informa-
tion (DMI), and the partial directed coherence (PDC) tech-
niques (Thakor et al., 2004 for a review). In a recent

study, Astolfi et al. (2005) presented a promising approach
to estimate connectivity by applying structural equation
modeling and DTF to cortical signals derived from high-
resolution EEG recordings.

5.4. Quantitative EEG (qEEG)

In qEEG studies, also known as “neurometrics” (John
et al., 1980), various variables derived from spectral
and coherence analyses of multi-channel EEG record-
ings (e.g., absolute power, relative power, interhemispheric
and intrahemispheric coherence, asymmetry scores) are
entered into large normative, age-dependent databases in
conjunction with demographic and clinical information.
Age-regression qEEG equations and Z-scores are then uti-
lized to (1) identify patterns of abnormal EEG patterns
associated within specific neurological or psychiatric dis-
orders; and (2) provide supportive evidence for differential
diagnoses and treatment decisions (for a recent review, see
Hughes & John, 1999). Recent studies have confirmed the
ability of qEEG approaches of detecting abnormal EEG
patterns in pathological conditions but also some of their
limitations, which might in part derive, however, from the
fact that clinical conditions are far from being homoge-
nous entities. Thus, whereas abnormal qEEG patterns
were found in 83% of 340 psychiatric patients but only
in 12% of 67 controls, no EEG abnormality was specific
to a given clinical entity, and patients with the same diag-
nosis often showed different EEG abnormalities (Coutin-
Churchman et al., 2003).

5.5. EEG mapping and space-oriented
EEG analyses

The advent of multi-channel EEG systems has fostered
the development of EEG mapping techniques (Lehmann,
1987; Duffy, Burchfiel, & Lombroso, 1979 for seminal
reviews). Conceptually, at a given moment in time, this
method considers values at each electrode and through
interpolation display the field distribution of brain elec-
tric activity. Unlike traditional EEG waveform approaches,
EEG mapping considers data in the spatial domain first,
and then in the temporal domain, providing a display of the
constantly changing spatial distribution of bran activity
(see Maurer & Dierks, 1991 for a tutorial). For topographic
mapping, at minimum the complete 10–20 system should
be used (i.e., >19 electrodes; Nuwer et al., 1999). One of the
main advantages of space-oriented EEG analysis is that,
at any given time point, activity from all electrodes is con-
sidered simultaneously. A second main advantage is that,
unlike waveform analyses, space-oriented analysis is inde-
pendent from the reference electrodes. In fact, the spa-
tial configuration or landscape of a map does not change
when a different reference is used. In a manner analogous
to a geographical map, the topographical features, such
as the location of maximum or minimum potential or the
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potential gradients, are not affected by the chosen refer-
ence that defines the zero line.

Critically, when examining the unfolding of momen-
tary potential distributions over time, one observes that
these maps tend to remain relatively constant for some
periods of time, and are then abruptly interrupted by the
emergence of new landscapes (Lehmann, 1971). Lehmann
(1990) called these temporal segments of quasi-stable map
landscapes “microstates” and considered them the build-
ing blocks of human information processing. Note that
different configurations of scalp potentials are assumed to
index different functional brain states because (a) different
scalp potential distribution must have been generated by
different neural sources (Fender, 1987); and (b) different
neural sources likely subserve different functions.

Consistent with this assumption that microstates index
different functional brain states, studies have shown
that different mental processes (Lehmann, Henggeler,
Koukkou, & Michel, 1993) or arousal states (Cantero,
Atienza, Salas, & Gomez, 1999) are associated with differ-
ent microstate classes. Further converging evidence comes
from the notable observations that different age groups
can be characterized by distinctive patterns of changes in
microstate durations and preponderance (Koenig et al.,
2002). Such age-dependent microstate changes mirror
comparable transitional stages classically described by
developmental psychologists. Likewise, psychopatholog-
ical conditions characterized by dysfunctional mental
states, such as schizophrenia (e.g., Lehmann et al., 2005)
or dementia (e.g., Strik et al., 1997), showed short-
ened durations for specific microstates. Intriguingly, in a
recent study, Lehmann et al. (2005) reported that acute,
medication-naı̈ve, first-episode schizophrenic subjects had
different “microstate syntax” (i.e., different microstate
concatenations and transitions) as well as truncated dura-
tion for some microstates, raising the interesting possi-
bility that this disease may be characterized by differ-
ent concatenations of mental operations and precocious
termination of information processing for certain types
of mental operations. For methodological details about
microstate analyses of EEG data, see Koenig et al. (2002)
and Lehmann et al. (2005).

Although EEG mapping represents a powerful and
unambiguous approach for scalp EEG data, it is impor-
tant to stress that this technique does not provide any addi-
tional information about the generating sources underly-
ing scalp measurements (Pivik et al., 1993). In Section 8,
source localization techniques required for localization of
intracerebral sources will be reviewed.

6. SURFACE-SOURCE IMAGING APPROACHES

6.1. Scalp Laplacian mapping

As mentioned in the Introduction, the spatial resolution
of scalp EEG is limited by the blurring effects of the head

volume conductor. In fact, the head acts as a low-pass spa-
tial filter, transmitting to the scalp broad, as opposed to
focal, spatial patterns of activity (Srinivasan et al., 1998).
Scalp Laplacian mapping can be used to restore high-
frequency spatial information of brain electric activity that
has been distorted by the low-conductivity skull (Hjorth,
1975; Nunez et al., 1997; Perrin et al., 1987). The sur-
face Laplacian approach does not solve the inverse prob-
lem (i.e., it is not a 3-D source localization technique);
rather it allows source mapping directly over the scalp
surface. As reviewed by He (1999), surface Laplacian is
thought to represent an approximation of the local cur-
rent density flowing perpendicularly to the skull into the
scalp (for this reason, it has been also called current source
density or scalp current density). A further advantage of
surface Laplacian methods is that they are reference-
independent.

The scalp Laplacian was first introduced for EEG data
by Hjorth (1975), who proposed a difference estimation
scheme to calculate local Laplacian by using the poten-
tials at surrounding electrodes (see Footnote 4). Although
computationally easy to implement, this so-called local
approach was found to have some limitations, includ-
ing inaccurate estimation for large interelectrode dis-
tances and for border electrodes (He, 1999). To overcome
these drawbacks, Perrin et al. (1987) introduced a global
approach based on the mathematical modeling of the
global scalp surface and a curvilinear coordinate system.
In their implementation, Perrin and coworkers assumed
that the scalp surface can be approximated by a sphere.
Later, Babiloni et al. (1996) presented a solution called
“realistic Laplacian estimator” that can be applied to any
arbitrarily shaped scalp.

6.2. Cortical imaging

To increase the spatial resolution of the EEG, the cortical
imaging approach can also be used to deconvolve the low-
pass spatial filtering effects of head volume conduction
(Gevins et al., 1994). In this approach, biophysical models
of the passive conducting features of the head are used to
deconvolve a scalp potential distribution into estimation of
potentials or current dipole distribution at the superficial
cortical surface (for review, He, 1999). Gevins and cowork-
ers (1994), for example, presented a deblurring technique
based on a realistic biophysical model of the passive con-
ducting properties of the head to estimate the potential
distribution at the cortical surface. To this end, a finite ele-
ment model (see Section 7.1) based on MRI-reconstructed
scalp, skull, and cortical surfaces was used. Conceptually,
the rationale for this approach stems from the empirical
observation that cortical pyramidal cells oriented perpen-
dicularly to the cortical surface mainly contribute to the
recorded scalp EEG signal (Speckmann et al., 1993). Note
that neither the scalp Laplacian nor the cortical imaging
approach are source localization techniques and thus are
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unable to reconstruct sources in 3-D space. This important
topic will be discussed next.

7. THE NEUROELECTROMAGNETIC FORWARD
AND INVERSE PROBLEM

The “forward problem” refers to the process of estimating
scalp potentials from intracranial current sources (Koles,
1998). If the configurations of intracranial sources and
the conductivity proprieties of the tissues are known,
then the scalp potential distribution can be calculated
using basic physical principles. Therefore, the forward
problem can be unambiguously solved. In contrast, the
“inverse problem,” the estimation of sources underlying
scalp-recorded EEG data, is ill-posed. Although record-
ing of the human EEG was first reported by Berger in
1929, it soon became evident that scalp-recorded electro-
magnetic measurements do not contain sufficient infor-
mation about the 3-D distribution of the electric neuronal
activity. As early as the mid-nineteenth century, Helmoltz
(1853) had already described the nonuniqueness of this
type of electromagnetic inverse problem: the current dis-
tribution inside a conducting volume cannot be uniquely
determined by the field and potential information outside
it. Thus, scalp-recorded EEG/MEG measurements can be
explained by an infinite number of different generating
distributions, even with an infinite numbers of recording
electrodes (Fender, 1987). To understand this concept, con-
sider that the inverse problem can be mathematically rep-
resented as:

D = GX + n (3.1)

where D is a vector representing the scalp-recorded poten-
tials, X is an unknown vector representing the generat-
ing sources (the current density vector), n is noise, and G
is the transfer matrix, which mathematically implements
both the electromagnetic (e.g., conductivity values for the
brain, skull, and scalp) and geometrical (e.g., shape) fea-
tures of the solution space considered in the inverse solu-
tion (“the head volume conductor model”). The inverse
problem refers to finding X given known D. Specifically,
the main goal is to minimize the following function:

O(X) = ||D − GX||2 → min (3.2)

In general terms, it is not possible to determine which
solution among the infinite possibilities corresponds to
the actual solution; consequently, the quest for developing
an electromagnetic tomography appears, at first, hopeless.
Fortunately, the EEG and MEG follow certain electrophys-
iological and neuroanatomical constraints, which when
combined with the laws of electrodynamics, provide an
approximate solution of the inverse problem (Baillet et al.,
2001; Michel et al., 2004; Pascual-Marqui, Esslen, Kochi, &
Lehmann, 2002). When considering Equation 1 it becomes
immediately evident that the localization accuracy of any
source localization technique is critically dependent on:
(1) the head model used to compute the inverse solution;

and (2) the inverse solution itself (Michel et al., 2004). In
the following section, these two important aspects will be
reviewed, followed by a description of various solutions to
the inverse problem currently used in the EEG literature.

7.1. Head volume conductor model

The head volume conductor model plays a critical role in
source localization because it determines the way intrac-
erebral sources give rise to the scalp-recorded signal. As
indicated above, the head model mathematically imple-
ments both the electromagnetic and geometrical proper-
ties of the solution space. Over the years, three head mod-
els have been used: (1) three-spherical head model (e.g.,
Ary, Klein, & Fender, 1981); (2) a boundary element model
(BEM; e.g., Hamalainen & Sarvas, 1989); and (3) a finite
element model (FEM; e.g., Miller & Henriquez, 1990). In
terms of complexity and computational burden, the spher-
ical model represents the simplest, the BEM the interme-
diate, and the FEM the most complex model. BEM and
FEM models are typically developed from high-resolution
structural MRI scan of individual subjects and can better
account for individual anatomical differences, providing
therefore more realistic head models.

The three-spherical head model, which has been most
frequently used, approximates the head as a set of nested
concentric and homogenous spheres, in which the skull,
scalp, and brain are modeled as different layers with dif-
ferent conductivity. Typically, standard conductivity val-
ues, which have been measured in separate studies from
excised tissue, are used for the different compartments, but
in recent years attempts to assess conductivities through
diffusion tensor MR imaging have begun to emerge (e.g.,
Tuch, Wedeen, Dale, George, & Belliveau, 1999). In gen-
eral, spherical models can provide appropriate localiza-
tion in superior regions of the brain, where the head shape
approximates a sphere.

The BEM, in contrast, approximates different compart-
ments of volume conductor models (e.g., skin, skull, cere-
bral spinal fluid) through closed triangle meshes with
different conductivity values and dimension and thus
attempts to take into account realistic geometry. Although
the BEM clearly represents an improvement and more
realistic model than the three-spherical head model, this
model assumes homogeneity and isotropy within the head
and brain. To cope with this potential issue, FEM models
have been developed.

The FEM, unlike other methods, can account for the
actual head shape and tissue discontinuities, and accom-
modate anisotropic tissue7 in the conductivity model of the
head volume, allowing detailed 3-D information on tissue
conductivity for each region. This approach models cur-
rent flow in an inhomogeneous volume by representing
the conductor as a complex assemblage of many equally
sized cubes or tetrahedrons. The use of tetrahedrons can

7 Anisotropy refers to the property of having different values when
measured in different directions.
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accommodate elements that vary in size, thus allow mod-
eling of the head geometry and anisotropy precisely. For
several authors, the high computational efficiency of the
BEM makes this model a valuable compromise between
the oversimplifying sphere head volume model and the
computationally intensive FEM model (He, 1999).

8. SOURCE LOCALIZATION TECHNIQUES

Estimating the sources of scalp-recorded electromagnetic
activity has attracted considerable interest, and various
solutions have been described in the literature. In gen-
eral these solutions can be divided into two broad cate-
gories, equivalent dipole approaches and linear distributed
approaches. The first approach typically assumes that
EEG/MEG signals are generated by a relatively small num-
ber of discrete and focal sources, which can be modeled as
single, fixed, or moving dipoles (e.g., Scherg & Ebersole,
1994). Through an iterative process, locations, orienta-
tions, and strength of these equivalent current dipole
(ECD) are selected to minimize the difference between the
predicted and the actual EEG measurements. The solu-
tion derived through this approach strongly relies on the
numbers of dipoles; unfortunately, in many experimental
situations, the numbers of dipoles cannot be determined a
priori (e.g., Phillips, Rugg, & Friston, 2002a).

Distributed approaches, in contrast, consider all pos-
sible source locations simultaneously. In addition to
the advantage conferred when no a priori assumptions
about the numbers of sources are required, distributed
approaches typically allow researchers to limit the solu-
tion space by means of anatomical and functional con-
straints. As will be discussed in the next section, anatom-
ical constraints assume that some specific compartments
(e.g., gray matter) or regions of the brain (e.g., cortical
structures) have a higher likelihood of generating scalp-
recorded EEG signals than others, and are thus essen-
tial for narrowing the search for a “unique” solution. In
the following sections, a non-technical survey of various
source localization techniques will be presented (for more
technical reviews, see Baillet et al., 2001; Hamalainen &
Ilmoniemi, 1994; Grave de Peralta & Gonzalez Andino,
2000; Phillips et al., 2002a; Phillips et al., 2002b; Pascual-
Marqui et al., 2002; Trujillo-Barreto et al., 2004).

8.1. Equivalent dipole approaches
(Dipole Source Modeling)

The equivalent current dipole (ECD) model is the most
basic source localization technique and assumes that scalp
EEG potentials are generated by one or few focal sources
(for review, see Fuchs, Ford, Sands, & Lew, 2004). A dipole
does not reflect the presence of a unique and discrete
source but it is rather a mathematically convenient repre-
sentation (i.e., the center of gravity) of synchronized acti-
vation of a large number of pyramidal cells likely extending
larger patches of gray matter (Baillet et al., 2001). In fact,

a dipole is assumed to represent a patch of cortical gray
matter layer containing approximately 100,000 pyramidal
cells oriented in parallel to each other and activated simul-
taneously (Fuchs et al., 2004). Heuristically, the position
of a dipole can provide clues about the extent and con-
figuration of the activated cortical area (Lopes da Silva,
2004): superficial dipoles typically reflect localized corti-
cal activity, whereas deeper dipoles reflect the activity of
an extended cortical area.

In this approach, focal sources are modeled by an ECD
through six parameters: three location parameters (X, Y,
Z), two orientation parameters, and one strength (ampli-
tude) parameter. Depending on the experimental proce-
dures and/or a priori hypotheses, moving, fixed, or rotat-
ing dipoles can be used. Using an iterative procedure and
nonlinear multidimensional minimization procedures, the
inverse problem is solved by attempting to identify dipole
parameters that best explain the observed scalp potential
measurements (Fuchs et al., 2004). In its simplest terms,
initial dipole parameters are selected, the forward solu-
tion is computed, and a least-square comparison between
estimated and actual measurements is calculated. This
process is continued until the difference between esti-
mated and actual measurements is minimized. Without
a priori assumption, one of the main concerns with this
approach is that it can get trapped in local minima (Michel
et al., 2004). Additionally, depending on the spatial config-
uration of the underlying sources, a dipole can sometimes
be found at physiologically implausible locations, such as
within white matter or even outside of the brain.

Over the years, various dipole source models have been
developed, including the moving dipole model, rotat-
ing dipole model, regional dipole model, fixed (coher-
ent) dipole model, and fixed (multiple signal classification
or MUSIC) model (see Fuchs et al., 2004 for a review).
Another interesting approach, called EPIFOCUS, has been
recently proposed by Grave de Peralta et al. (2001). EPI-
FOCUS assumes a single focal source, but unlike sin-
gle dipole modeling, does not assume that this source is
spatially restricted to a single point. The moving dipole
model assumes only one dipole at the time and allows
all parameters to vary. The rotating dipole model con-
strains location to a single point but allows orientations
and strength to vary. The fixed dipole model, in contrast,
holds position and orientation constant within a given
interval and it estimates the dipole strength for each time
point. These subtle differences in these models, which
are the ones most frequently used, underscore the need
to incorporate prior neuroanatomical and neurophysio-
logical knowledge to guide the selection of the physi-
ologically most plausible model, making source recon-
struction a hypothesis-driven process. In general, some
caution should be exerted when interpreting dipole mod-
eling solutions because user’s interventions and decisions
about the number of underlying sources are required in
dipole fitting. To cope with this issue, Mosher, Lewis,
and Leahy (1992) developed a mathematical approach
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aimed to estimate the likely number of underlying sources.
This method, called multiple signal classification (MUSIC),
attempts to decompose the signal to identify underlying
components in the time series data (see Mosher & Leahy,
1998 for further improvements).

In recent years, substantial progress has been made to
extend the original dipole fitting approach implemented
using simplified spherical head models to more realistic
geometry head model constructed from single subject’s
MRI images, in particular using boundary element meth-
ods (BEM) or finite element methods (FEM). Not surpris-
ingly, simulation and experimental studies have shown
that a more accurate localization can be achieved by using
realistic head models (e.g., Fuchs, Wagner, & Kastner,
2001). In a recent study (Cuffin, Schomer, Ives, & Blume,
2001), the best average localization that could be achieved
with spherical head model was 10 mm. In addition to
improved localization capability, co-registration with MRI
images can be used to visualize the dipole location coor-
dinates relative to brain anatomy, facilitating comparisons
with other functional imaging modalities. Studies combin-
ing electrophysiological and hemodynamic measures have
further extended dipole source localization approaches by
using PET- or fMRI-identified activation loci to seed the
iterative optimization procedure, providing clues about
the putative location of sources (e.g., Heinze et al., 1994).
As will be discussed in Section 9, the relationship between
electrophysiological changes measured by EEG/MEG and
hemodynamic changes measured by PET/fMRI is not fully
understood (Nunez & Silberstein, 2000), posing some chal-
lenges in situations in which fMRI activations are used
to choose the number and location of potential sources.
A more promising (and potentially less biased) approach
involves independent EEG/MEG source modeling, which
is then weighted based on hemodynamic findings to select
the most likely solution (e.g., Liu, Belliveau, & Dale, 1998).

In summary, although dipole source modeling has been
successfully used to localize spatially restricted and focal
sources (e.g., early sensory evoked potentials), its main
limitation is that the exact number of dipoles often can-
not be determined a priori. Further, because intracranial
recordings have provided very little support for the notion
that only a few sites in the brain are active in generat-
ing ERP or spontaneous EEG recording (e.g., Towle et al.,
1998), dipole fitting results should be interpreted with
caution.

8.1.1. Dipole source modeling for EEG data:
FFT-dipole-approximation
As reviewed in Section 5, qEEG approaches have been
extensively used in both clinical and experimental settings
to investigate the spectral aspects of scalp-recorded EEG
signals. For many clinical and experimental researchers,
the next step following spectral analysis might be to local-
ize the sources underlying different EEG frequency bands.
Unfortunately, topographic maps of power distributions

derived from traditional scalp spectral analyses cannot be
used for source localization because (1) these maps repre-
sent squared potential values, in which polarity informa-
tion is lost; and (b) power maps are reference-dependent
(Lehmann, 1987). In 1989, Lehmann and Michel published
a method, called FFT-Dipole-Approximation, which allows
computation of intracerebral, three-dimensional location
of single dipole source model in the frequency domain.
Conceptually, this approach reduces multi-channel EEG
data by focusing on the principal features of the spa-
tial organization of brain activity. In assuming a sin-
gle, common phase angle for all generator processes, the
FFT-Dipole-Approximation approach models multichan-
nel brain electric field data in the frequency domain by a
potential distribution map, which contains polarity infor-
mation and consequently can be used for conventional
source modeling.

Analytically, standard frequency analyses via FFT are
computed first. Then, for each artifact-free EEG segment,
the Fourier coefficients for each electrode are plotted in
a sine-cosine diagram, and subsequently projected onto
the straight line given by the first principal component
of the entries. Note that only assessing the first prin-
cipal component of standard FFT result implies a sin-
gle phase-angle modeling (i.e., all phase angles between
recording electrodes are either 0◦ or 180◦), which typi-
cally explains more than 93% of the variance of the orig-
inal baseline EEG data (Michel, Lehmann, Henggeler, &
Brandeis, 1992). For any user-specified EEG frequency
band, the single phase-angle assumption allows the com-
putation of a mean potential distribution map (the FFT
Approximation Map), which can then be subjected to stan-
dard 3-D equivalent dipole source modeling (Lehmann &
Michel, 1989). In a final step, the model source’s loca-
tion coordinates on the anterior-posterior, left-right, and
inferior-superior axes and its strength for conventional
EEG frequency bands, can be compared between exper-
imental conditions or groups.

The FFT-Dipole-Approximation method has several
strengths. First, unlike scalp localization of EEG spectral
value, this approach is completely independent from the
chosen reference electrode location, and thus does not
require any assumptions about an inactive site (Michel
et al., 1992). Second, no assumption is needed about
the orientation of the generating sources, thus allow-
ing an unbiased approximation of the 3-D spatial orga-
nization of brain activity. Physiologically, locations of
the model sources describe the center of gravity of all
neural elements that are active in the brain during a
given recording. Accordingly, different locations of cen-
ters of gravity unambiguously imply different geometry
(i.e., locations and/or orientations) of the underlying neu-
ronal sources between experimental conditions or groups.
The FFT-Dipole-Approximation approach has been suc-
cessfully used to compute intracerebral sources of vari-
ous EEG frequency bands during experimental situations
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or conditions assumed to involve widely distributed brain
systems, including sleep (Tsuno et al., 2002), pathological
conditions (e.g., Alzheimer’s disease; Huang et al., 2000),
and epilepsy (Worrell et al., 2000), among other examples.
In situations, in which the assumption of a single oscillat-
ing dipole generator is unwarranted or unlikely, results are
expected to be less reliable.

8.2. Linear distributed source localization
techniques

Considering the intrinsic limitation of dipole modeling,
and in particular the fact that it is often difficult to deter-
mine a priori the number of underlying sources, it is
not surprising that attempts to develop distributed source
modeling approaches have received considerable atten-
tion. In simple terms, these approaches are based on the
estimation of brain electric activity at each point within a
3-D solution space. Each point, in turn, can be considered
a dipole. Unlike equivalent dipole models, these “dipoles”
have fixed positions (e.g., Pascual-Marqui et al., 1999) and
sometimes fixed orientations (e.g., Phillips et al., 2002a;
Phillips et al., 2002b), which are determined by anatomi-
cal and physiological constraints implemented within the
localization algorithms. As these methods are used to esti-
mate the strengths (and in some cases, the orientation) of
the source, the equations describing distributed solutions
are linear.

Because the number of measurements (electrodes) is
typically <100, and the number of unknowns (electrical
activity at each point in the solution space) is often in
the order of 10,000, it is clear that the inverse problem is
greatly underdetermined (Baillet et al., 2001; Michel et al.,
2004). Mathematically, so-called regularization methods
are needed to limit the range of allowable solutions and
identify the “optimal” or “most likely” solution. Regular-
ization methods can be understood as mathematical rep-
resentations of the physiological/structural assumptions
implemented in a given method. In the literature, vari-
ous regularization methods have been utilized. Some of
the most widely used include minimum norm solution
(Hamalainen & Ilmoniemi, 1994), maximal smoothness
(Pascual-Marqui et al., 1994), structural/functional priors
(Phillips et al., 2002a; Phillips et al., 2002b), and fMRI-
weighted solution space (Dale et al., 2000). Although some
of these methods have received important empirical val-
idation indicating that it is possible to solve the inverse
problem, the severe underdetermined nature of the inverse
problem leads to the consequence that the solutions have
low spatial resolution – their solutions are often blurred. In
the following section, a review of distributed source local-
ization techniques is presented. The LORETA algorithm
has been used extensively by researchers in the field and
by our group (e.g., Pizzagalli et al., 2001; Pizzagalli et al.,
2002; Pizzagalli et al., 2003; Pizzagalli et al., 2004; Pizza-
galli et al., 2006). Therefore, a more extended discussion of

emerging cross-modal validation as well as limitations of
LORETA will be presented in Sections 8.2.3.1 and 8.2.3.3,
respectively.

8.2.1. Minimum norm solutions
The MN solution (Hamalainen & Ilmoniemi, 1994) was
one of the first linear inverse solutions. In the MN
approach, the head model is first mapped onto a 3-D grid,
and three mutually perpendicular dipole current sources
are placed at each grid point (Koles, 1998). The goal of the
MN approach is to estimate the distribution and strengths
of these tens of thousands of dipoles. Among the infinite
possible, the MN approach selects the one that contains
the least energy, that is, minimal overall current density
within the brain. Mathematically, the MN solution esti-
mates the 3-D source distribution with the smallest L2-
norm solution8 that fit the actual data.

MN does not incorporate any prior information. In par-
ticular, unlike other methods (e.g., Pascual-Marqui et al.,
1994; Phillips et al., 2002a; Phillips et al., 2002b), MN
solutions do not impose any spatial correlation among
sources. However, there is no strong physiological evidence
that the solution with the smallest L2-norm is also the
most plausible one. In fact, simulation studies have shown
that the MN solution typically favors weak and localized
activation patterns, and can misplace deep sources onto
the outermost cortex (Pascual-Marqui, 1999). Accordingly,
MN does not completely fulfill the promise of a 3-D source
localization technique. LORETA, as we will see, was the
first approach that successfully extended the good local-
ization properties of the 2-D MN solution to 3-D solution
space.

8.2.2. Weighted minimum norm solutions
To compensate for the depth dependency of MN solution,
in particular the tendency to favor superficial sources, var-
ious weighting factors have been suggested. Two solutions
are mentioned here. The first, known as the weighted MN
solution, uses a lead field normalization for compensating
for the lower representation of deeper sources (e.g., Jeffs,
Leahy, & Singh, 1987). The second, called FOCUSS (Focal
Underdetermined System Solution; Gorodnitsky, George,
& Rao, 1995), is a nonparametric algorithm for solving the
inverse solution, in which the weights are iteratively modi-
fied according to the solution estimated in a previous step.
Specifically, at each step, the weights of grid points with
the lowest current density are reduced, and this process
is repeated until the current density at most of the grid
points is zero (Koles, 1998). Although these weighted MN
approaches gave some promising results for reducing the
low spatial resolution (blurring) of all MN solutions and for
reducing the depth-dependency of sources (Michel et al.,
2004), it is important to point out that weighting is selected

8 In the L2-norm approach, the squared deviation of the data from a
given model is minimized using a least-squares method.
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Figure 3.6. Graphical representation of the LORETA assump-
tions. The core assumptions of the LORETA algorithm are that
(A) neighboring neurons are synchronously activated and dis-
play only gradually changing orientations; and (B) the scalp-
recorded EEG originates mostly from cortical gray matter. These
two assumptions are graphically displayed in the figure. Note that,
in this fictive example, activity generated by the dipolar sources A
and B would not be detected by scalp EEG; in fact, due to the gyral
and sulcal configurations, activity from these opposing dipoles
would cancel out.

based on mathematical operations rather than physiolog-
ical assumptions.

8.2.3. Low-resolution Electromagnetic Tomography
(LORETA)
Low-resolution Electromagnetic Tomography (LORETA)
(Pascual-Marqui et al., 1994), a form of Laplacian-
weighted MN solution, solves the inverse problem by
assuming that: (1) neighboring neurons are synchronously
activated and display only gradually changing orienta-
tions; and (2) the scalp-recorded signal originates mostly
from cortical gray matter (Figure 3.6). The first assump-
tion, which is generally consistent with neurophysiological
studies in animals (e.g., Haalman & Vaadia, 1997), is math-
ematically implemented by computing the “smoothest” of
all possible activity distributions. Note that the smoothest
solution is assumed to be the most plausible one giving
rise to the scalp-recorded EEG signal. The second assump-
tion constrains the solution space to cortical gray mat-
ter (and hippocampi), as defined by a standard brain
template. Mathematically, LORETA selects the solution
with the smoothest spatial distribution by minimizing the
Laplacian (i.e., the second spatial derivatives) of the cur-
rent sources.

In recent implementations (Pascual-Marqui et al., 1999),
LORETA uses a three-shell spherical head model reg-
istered to the Talairach brain atlas (available as digi-
tized MRI from the Brain Imaging Centre, Montreal Neu-
rological Institute (MNI); Evans et al., 1993) and EEG
electrode coordinates derived from cross-registrations
between spherical and realistic head geometry (Towle
et al., 1993). The solution space, that is, the 3-D space
where the inverse problem is solved, is restricted to corti-
cal gray matter and hippocampi, as defined by a digitized

probability atlas provided by the MNI.9 Under these con-
straints, the solution space includes 2394 voxels at 7 mm
spatial resolution.

For analyses in the frequency domain, LORETA com-
putes current density as the linear, weighted sum of the
scalp electrical potentials, and then squares this value for
each voxel to yield power of current density in units pro-
portional to amperes per square meter (A/m2).

In 2002, Pascual-Marqui introduced a variant of the
LORETA algorithm, in which localization inferences
are based on standardized current density (standard-
ized LORETA, or sLORETA). Conceptually, sLORETA was
inspired by work by Dale et al. (2000). Using a two-step
process, Dale et al. first estimated current density using
the MN solution; subsequently, current density was stan-
dardized using its expected standard deviation, which
was assumed to fully originate from measurement noise.
Although sLORETA uses a slightly different implementa-
tion that considers simultaneously two sources of varia-
tions (variations of the actual sources and variations due
to noisy measurements), its localization inference is also
based on standardized values of current density estimates.
As a result, unlike LORETA, sLORETA does not introduce
Laplacian-based spatial smoothness to solve the inverse
problem and does not compute current density but rather
statistical scores. In initial simulations, sLORETA was
reported to have zero-localization error (Pascual-Marqui,
2002). Independent simulations using (a) a dipolar source,
or (b) two spatially well-separated dipolar sources with
similar depth replicated that sLORETA had higher local-
ization accuracy than LORETA or MN solutions (Wagner,
Fuchs, & Kastner, 2004). However, in the presence of a
strong (or superficial) source, a second weak (or deeper)
source remained undetectable by all methods, including
sLORETA (Wagner et al., 2004). Thus, sLORETA suc-
cessfully resolved two simultaneously active sources only
when their fields were distinct enough and of similar
strength.

8.2.3.1. Cross-modal validation of LORETA. In initial stud-
ies, the physiological validity of LORETA was indirectly
evaluated by comparing LORETA solutions with func-
tional imaging findings derived from similar experimental
manipulations. For example, physiologically meaningful
findings were observed during basic visual, auditory, and
motor tasks (e.g., Mulert et al., 2001; Thut et al., 1999),
epileptic discharges (e.g., Lantz et al., 1997), and cognitive

9 Accordingly, LORETA coordinates are in MNI space. Note, how-
ever, that the LORETA software uses the Structure-Probability Maps
atlas (Lancaster et al., 1997) to label gyri and Brodmann area(s).
Because the MNI (used by LORETA) and the Talairach (used by the
Structure-Probability Maps atlas) templates do not precisely match,
MNI coordinates are temporarily converted to Talairach coordi-
nates (Brett et al., 2002) before the Structure-Probability Maps atlas
is utilized. In our publications (e.g., Pizzagalli et al., 2001, 2004) as
well as those relying on the LORETA-KEY software, reported coor-
dinates remain in MNI space.
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tasks tapping specific brain regions (e.g., Pizzagalli et al.,
2002).

In more recent years, important cross-modal validation
has come from studies directly combining LORETA with
functional fMRI (Mulert et al., 2004; Vitacco, Brandeis,
Pascual-Marqui, & Martin, 2002), structural MRI (Worrell
et al., 2000), PET (Pizzagalli et al., 2004; but see Gamma
et al., 2004), and intracranial recordings (Seeck et al.,
1998). In Pizzagalli et al. (2001), theta current density
in the rostral anterior cingulate cortex (ACC) was asso-
ciated with treatment response in major depression; the
ACC region implicated in this 28-channel EEG study over-
lapped with the one implicated in similar studies using
PET and fMRI (see Pizzagalli et al., 2006 for a meta-
analysis). In Pizzagalli et al. (2004), subjects with the
melancholic subtype of depression were characterized by
decreased activity within the subgenual PFC, which was
manifested as increased inhibitory EEG delta activity and
decreased PET glucose metabolism (Figure 3.2A–B). Delta
current density and glucose metabolism were significantly
and inversely correlated (r = −0.66; Figure 3.2C). In two
recent EEG/fMRI studies, LORETA localizations were, on
average 16 mm (Mulert et al., 2004) and 14.5 mm (Vitacco
et al., 2002) from fMRI activation loci, a discrepancy that
is in the range of the spatial resolution of LORETA (1–
2 cm). Despite some controversy in the field about the
localization capability of LORETA (Grave de Peralta &
Andino, 2000) and recent null findings (Gamma et al.,
2004), substantial consistency between LORETA findings
and other traditional neuroimaging techniques has been
reported.

8.2.3.2. Incremental validity of LORETA. In addition to
improving the spatial resolution of EEG data, initial evi-
dence suggests that EEG source localization techniques
may allow researchers to uncover information not avail-
able in traditional scalp spectral analyses. Two examples
from our laboratory are pertinent to this point. In a first
study, traditional scalp power and LORETA analyses were
applied on the same resting EEG data to investigate puta-
tive abnormalities in major depression (Pizzagalli et al.,
2002). In the LORETA data, depression severity was sig-
nificantly correlated (r = 0.60, p < 0.015) with an “intrac-
erebral” frontal asymmetry index that included the inferior
and superior frontal gyri, indicating that relatively higher
right prefrontal activity was associated with higher depres-
sion severity. When identical analyses were performed on
the scalp frontal asymmetry index (ln F4 – ln F3), the cor-
relation was not significant.

In a more recent study, we investigated whether rest-
ing EEG alpha activity predicted response bias in a sepa-
rate verbal memory task played under different incentive
(monetary) conditions (Pizzagalli, Sherwood, Henriques,
& Davidson, 2005). Extending prior scalp frontal EEG
asymmetry studies (e.g., Sutton and Davidson, 2000), we
found that higher LORETA alpha2 (10.5–12 Hz) current
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Figure 3.7. Example of LORETA findings highlighting relations
between resting intracerebral EEG sources and approach-related
behavior. Whole-brain analyses showing voxel-by-voxel correla-
tions between resting alpha2 (10.5–12 Hz) current density and
response bias toward reward-related cues for 18 healthy subjects.
Six axial brain slices (head seen from above, nose up, L = left,
R = right; A = anterior, P = posterior) are shown. Alpha2 current
density within both dorsolateral prefrontal regions (clusters #1–3;
see green colors) and ventromedial prefrontal regions (cluster #4;
see blue colors) was negatively correlated with reward bias, indi-
cating that higher resting activity within these regions was asso-
ciated with stronger reward bias. Adapted from Pizzagalli et al.
(2005).

density within left dorsolateral regions (Brodmann areas
6, 8, 9, 10, 46) was associated with stronger bias to
respond to reward-related cues (Figure 3.7; see clusters
#1–3). Notably, left dorsolateral prefrontal resting activ-
ity accounted for 54.8% of the variance in reward bias.
Whereas this finding fits the hypothesis that frontal EEG
asymmetry in favor of the left hemisphere might reflect the
propensity to respond with approach-related tendencies
(Davidson, 2004), a second important finding emerged:
alpha2 current density within ventromedial prefrontal
regions (Brodmann areas 10, 11) was also associated with
reward bias (Figure 3.7; see cluster #4). This latter finding,
which is consistent with functional neuroimaging and ani-
mal findings implicating the ventromedial prefrontal cor-
tex in reward monitoring and evaluation of reinforcers,
could obviously not have been achieved with scalp EEG
data. More generally, findings from this study highlight
that source localization techniques can be used to predict
complex behavior.

8.2.3.3. Current limitations and future directions of
LORETA. Although the LORETA algorithm has received
important cross-modal validation, it is important to high-
light three factors that, in most of the studies to date, likely
affected the spatial resolution of this method.10 First, the
vast majority of LORETA studies have used a three-shell

10 These methodological limitations are not restricted to the LORETA
algorithm but would equally apply to any distributed source local-
ization technique.
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spherical head model, which represents only a rather crude
approximation of the biophysical problem. As recently
demonstrated by Ding, Lai, and He (2005), a more com-
plex head model that better represents the geometry of
gray and white matter regions (e.g., FEM) can substantially
improve the spatial resolution of LORETA. Second, most
of the studies have used a general (average) brain tem-
plate (Evans et al., 1993). Clearly, use of individual anatom-
ical MRI scans is expected to improve the precision
of the solution space. Third, although LORETA studies
typically used EEG electrode coordinates derived from
cross-registrations between spherical and realistic head
geometry (e.g., Towle et al., 1993) and registered to a MRI
template, digitization of electrode positions for individual
subjects is expected to further improve the spatial resolu-
tion of LORETA.

In addition to these issues, which could be addressed
in the future, some more conceptual limitations should
be mentioned. First, due to the smoothness assumption
used to solve the inverse problem, LORETA is incapable
of resolving activity from closely spaced sources; in such
cases, LORETA will find a smeared, single source located
between the original two sources. In fact, in experimen-
tal situations in which the generating source is known to
be well-represented by a single dipole (e.g., early sensory
ERPs), dipole fitting procedures might be preferred, as
LORETA will tend to blur the solution (e.g., Fuchs, Wagner,
Kohler, & Wischmann, 1999; Moffitt & Grill, 2004). More-
over, despite the fact that LORETA showed the small-
est overall localization error in the simulations by Fuchs
et al. (1999), these authors found that LORETA tended to
overestimate the depth of sources at eccentricities above
70%, likely due to the fact that the 3-D smoothness con-
straint is difficult to fulfill at the boundary of the solution
space. Second, some authors have argued that the elec-
trophysiological and neuroanatomical constrains used by
LORETA are somewhat arbitrary. In particular, concerns
have been raised about whether the assumption of maxi-
mal synchronization between neighboring neuronal pop-
ulations can be appropriately extended to adjacent voxels
(Kincses, Braun, Kaiser, & Elbert, 1999). Third, although
sources in LORETA are appropriately constrained to gray
matter, their orientation is left undetermined. Phillips
et al. (2002a,b) have recently shown that EEG distributed
source localization approaches can make better use of
anatomical constraints. For example, in their approach,
dipole orientation was fixed perpendicular to the inter-
face between gray and white matter, as derived from high-
resolution MRI. Fourth, at least in current implementa-
tions, LORETA does not accommodate other functional
priors (e.g., weighting factors based on independently
assessed fMRI activations), which have been recently used
to limit the spatial dispersion of distributed source local-
ization techniques (e.g., Phillips et al., 2002a; Phillips et al.,
2002b; Dale et al., 2000). Success in addressing these issues
is expected to further improve the LORETA localization
accuracy.

8.2.4. Variable resolution electromagnetic tomography
(VARETA)
Frequency-domain VARETA is a discrete, spline dis-
tributed solution11 that has been used to estimate sources
of EEG frequency bands (Valdes-Sosa, Marti, Garcia, &
Casanova, 1996; Bosch-Bayard et al., 2001). Conceptually,
it belongs to the family of weighted MN solutions.

As mentioned above, LORETA imposes maximal spatial
smoothness; as a consequence, LORETA is able to recover
smoothly distributed sources with low localization error,
but focal sources are blurred. VARETA, on the other hand,
utilizes different amounts of spatial smoothness for differ-
ent types of generators. This is achieved by a data-driven
procedure that estimates the spatial covariance matrix
through the scalp cross-spectra, which ultimately selects
the amount of spatial smoothness required at each voxel
in the brain (Valdes-Sosa et al., 1996). Mathematically, this
is done by allowing the regularization parameter to vary
according to the location in the solution space. Accord-
ing to the developers, a further key difference between
LORETA and their algorithm is that VARETA is able to
estimate discrete and distributed sources with equal accu-
racy (Fernandez-Bouzas et al., 1999). Nonetheless, initial
empirical findings seem to contain substantial degree of
blurring (e.g., Fernandez et al., 2000; Bosch-Bayard et al.,
2001).

In VARETA, current sources are also restricted to gray
matter, as defined by a probabilistic brain atlas. Currently,
a limited number of studies have used VARETA, although
encouraging results have been reported for localizing EEG
current density during normative mental processes (e.g.,
Fernandez et al., 2000) as well as in pathological conditions
(e.g., Fernandez-Bouzas et al., 1999). Additional testing
from independent laboratories will be important to assess
the validity of this promising approach.

8.2.5. Local Auto-Regressive Average (LAURA)
In 2001, Grave de Peralta and colleagues (Grave de Peralta
et al., 2001) proposed a distributed linear inverse solu-
tion that constrains the minimum norm solution based on
biophysical laws. To solve the inverse problem, this tech-
nique selects the source configuration that better mirrors
the biophysical behavior of electric vector fields. Math-
ematically, this approach uses a Local Auto-Regressive
Average (LAURA) model with coefficients that depend on
the distances between solution points in order to mirror
the electromagnetic laws that (a) the strength of the source
declines with the inverse of the squared distance of the
potential field; and (b) the estimated activity at one point
depends on the activity at neighboring points. As with
other distributed inverse solutions, this method makes
no assumptions about the number or location of active
sources. Simulation studies show that LAURA is able to
resolve multiple simultaneously active sources (Grave de

11 Spline estimates can be understood as the spatially smoothest solu-
tions accounting for the observed data.
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Peralta et al., 2001), and promising applications have
recently appeared (e.g., Murray et al., 2004).

8.2.6. Bayesian solutions
In recent years, Bayesian approaches have attracted
increased attention because they allow incorporation of
a priori information into source estimation by means of
probability distributions (Phillips et al., 2002a; Phillips
et al., 2002b; Trujillo-Barreto et al., 2004). For exam-
ple, Phillips et al. (2002a,b) described an EEG source
localization approach based on the weighted MN solu-
tion that incorporates physiological and anatomical con-
straints derived from other imaging modalities. Their
approach rests on three anatomical/physiological assump-
tions, which are used to reduce the solution space a priori.
They assume that sources are: (1) located in gray matter;
(2) oriented perpendicularly to the cortical mantle; and
(3) locally coherent (i.e., their activity changes smoothly
along the cortical mantle). The first assumption can be
implemented by constraining the solution space to gray
matter, as determined by single subject’s structural MRI
(e.g., Phillips et al., 2002a). This step can be achieved by
segmenting an MRI image into gray matter, white matter,
and cerebrospinal fluid and creating a mask containing a
gray matter coefficient value ranging from 0 (null proba-
bility that a given voxel is in gray matter) to 1 (100% prob-
ability). Anatomical information gathered in this first step
can also be used to constrain the orientation of a local
dipole to fulfill the requirements of the second assump-
tion. Although a description of the mathematical corollar-
ies of these assumptions is beyond the scope of this chap-
ter, it is clear that by determining a priori the orientation
of dipoles based on well-grounded anatomical and physi-
ological bases, the inverse problem is reduced from a vec-
torial problem (orientation and strength are unknown) to
a scalar problem (only strength is unknown). The third
assumption of locally coherent and synchronized electri-
cal activity can be met by imposing spatial smoothness
(Pascual-Marqui et al., 1994), which is mathematically
implemented by minimizing differences among neighbor-
ing voxels.

In addition to these assumptions, which are essentially
identical to the ones implemented by LORETA, Phillips et
al. (2002b)’s method allows the use of basis functions to
further reduce the solution space in the temporal and spa-
tial domains; in the spatial domain, weighting factors can
be introduced a priori based on independent information
derived from fMRI, for example. Simulations showed that
(1) in the absence of noise and localization priors, the best
localization was achieved with a relatively large smooth-
ness constraint; and (2) location priors greatly improved
the localization accuracy, even in the presence of noise and
with reduced smoothing.

In a recent extension of the Bayesian approach, Trujillo-
Barreto et al. (2004) proposed a technique that calculates a
“final” solution through averaging of various models, each
with different anatomical constraints, which are weighted

based on their probability of contributing to the genera-
tion of EEG signals. In initial evaluations with simulated
and real EEG data, this approach has shown promising
findings (Trujillo-Barreto et al., 2004).

8.2.7. Simulation studies comparing different
distributed inverse solutions
As evident from the previous section, the past decade has
witnessed substantial progress in developing distributed
source localization techniques that do not assume a priori
the number and location of underlying sources. Although
these approaches have similarities and an identical goal
(i.e., to solve the underdetermined and ill-posed inverse
problem), they often differ in the nature and extent of the
anatomical, physiological, and/or statistical assumptions
they implement. Ultimately, no matter how sophisticated
their mathematical and biophysical implementations are,
the validity and reliability of any of these methods should
be exclusively evaluated by their ability to provide physio-
logically meaningful solutions, in particular in relations to
other neuroimaging techniques (e.g., fMRI, PET; but see
Section 9 for a discussion of challenges relating electro-
physiological and hemodynamic measures).

For most of these techniques, however, their reliabil-
ity and validity have been evaluated by means of artificial
data. In these simulation studies, four basic steps are used
(Michel et al., 2004): (1) dipole(s) is/are placed at each grid
of the solution space; (2) the forward solution is computed
to determine the associated scalp potential distribution;
(3) sources underlying the scalp potential distribution are
estimated using various source localization techniques;
and (4) a localization error is computed by comparing the
initial and estimated source location. Over the years, sev-
eral simulations have been published, and a brief summary
is reported in the following section.

Pascual-Marqui (1999) compared LORETA, MN,
weighted MN, and other linear, distributed inverse solu-
tions. He reported that only LORETA was capable of
correct localization with, on average, localization error
of 1 voxel resolution, whereas the other methods showed
large localization errors, in particular with deep sources.
Although LORETA showed the best 3-D localization
accuracy, it is important to stress that LORETA tended to
underestimate deep sources and that correct localization
was achieved with some degree of blurring. Higher
localization accuracy for LORETA compared to standard
MN solutions has also been reported by Fuchs et al.
(1999) and Babiloni et al. (2004a). Fuchs et al. (1999)’s
simulations showed, however, that the MN tended to
emphasize superficial sources, whereas LORETA tended
to suppress them, yielding instead overly deep, blurred
solutions for the same sources. In a later simulation,
Pascual-Marqui et al. (2002) compared the localization
error and spatial dispersion (i.e., resolution) of sLORETA,
MN (Hamalainen & Ilmoniemi, 1994), and a new tomo-
graphic method described by Dale et al. (2000). Findings
showed that sLORETA had smaller localization error and
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higher spatial resolution, irrespective of the presence or
absence of noise and source orientation. Indeed, sLORETA
was the only algorithm achieving zero-error localization.
Moreover, the spatial blurring of sLORETA was smaller
than the one achieved by the method employed by Dale
et al. (2000). Recently, Yao and Dewald (2005) compared
the performance of moving dipoles, MN solution, and
LORETA using simulated EEG data and real ERP data.
Compared to the other methods, LORETA had the small-
est localization error, as well as the smallest percentage
of undetected sources and falsely-detected sources in
simulated EEG data. Not unexpectedly, LORETA (as well
as the other methods) was unable to separate two discrete
sources spaced only by 5 mm. Whereas these simulation
studies used the three-spherical head model to solve the
inverse solution, Ding et al. (2005) recently evaluated
the localization accuracy of LORETA using a realistic
geometry head model (BEM). As expected, the LORETA
localization error was lower when using the BEM com-
pared to the spherical head model (approximately 10 mm
vs. 20–30 mm).

Other simulations, however, have challenged the local-
ization accuracy of LORETA. Grave de Peralta et al. (2001),
for example, compared MN, weighted MN, LORETA,
and LAURA, and found the best localization accuracy
for LAURA, followed by LORETA and the weighted MN
solution, which showed similar performances. Similarly,
Trujillo-Barreto et al. (2004) compared LORETA with an
extension of the Bayesian model incorporating probabilis-
tic maps derived from segmentation of standard brain tem-
plate within 71 separate brain regions, and found that
the latter method gave higher localization accuracy and
less spatial distortion (i.e., higher spatial resolution), par-
ticularly when subcortical regions were implicated. Bet-
ter localization accuracy of a Bayesian model incorpo-
rating structural and physiological priors compared to
LORETA was also reported by Phillips et al. (2002a,b).
Indeed, in their simulations, Phillips et al. (2002a,b)
showed that the inclusion of a priori location informa-
tion improved the performance of the distributed mini-
mum norm approach, whereas LORETA tended to over-
smooth the solution. In the absence of prior information
about location, Phillips’s method and LORETA achieved
similar localization capabilities.

As correctly pointed out by Michel et al. (2004), these
simulation studies are intrinsically limited by the fact that
the dipole localization error used to evaluate the “good-
ness” of any distributed inverse solution is the “most
unnatural test for them.” In fact, as mentioned above, dis-
tributed source localization techniques have been devel-
oped to resolve multiple and spatially distributed sources,
and thus these simulations cannot predict “how a dis-
tributed inverse solution deals with the reciprocal influ-
ences of simultaneously active sources (Michel et al., 2004;
p. 2205).” Accordingly, real EEG data collected during
functionally and anatomically well-characterized experi-
mental tasks (e.g., finger tapping, checkerboard stimula-

tion, N-back working memory task) may provide a better
test of various source localization algorithms. Additionally,
physiological validation through other neuroimaging tech-
niques would provide converging evidence. As reviewed
in Section 4.3.1., encouraging cross-modal validity has
started to emerge for the LORETA algorithm, particu-
larly in studies comparing LORETA with functional fMRI
(Mulert et al., 2004; Vitacco et al., 2002), structural MRI
(Worrell et al., 2000), PET (Pizzagalli et al., 2004), and
intracranial recordings (Seeck et al., 1998). Similar cross-
modal validity will be necessary for evaluating the local-
ization accuracy of other distributed source localization
techniques.

8.2.8. The issue of multiple testing
As with hemodynamic neuroimaging studies, which typi-
cally involve statistical comparisons at thousands or tens
of thousands of locations in the brain, distributed EEG
source localization techniques also face the issue of how
best to determine a statistical threshold that will protect
against Type I errors due to multiple comparisons. In our
own work with LORETA (e.g., Pizzagalli et al., 2001), we
have implemented a randomization procedure based on
the tmax approach to estimate the false-positive rate under
the Null Hypothesis of no voxel-wise differences between
two given groups or conditions. This approach, which
was inspired by statistical solutions developed for neu-
roimaging data (Arndt et al., 1996; Holmes et al., 1996),
relies on permutation procedures. When comparing an
experimental and a control group, for example, two ran-
domly selected groups each containing half of the sub-
jects under investigation can be tested at each of the
2394 voxels. At every iteration, the largest absolute t value
(from a two-tailed test) can then be stored in a histogram.
After 5000 iterations, the t value cutting off the most
extreme 5% of the distribution can be identified and used
to threshold the data, i.e., to accept or reject the Null
Hypothesis.

8.2.9. Summary
The main goal of any EEG source imaging technique is to
draw reliable conclusions about sources underlying scalp-
recorded signals, that is, to solve the inverse problem.
Importantly, the choice of the inverse method also depends
on the experimental situation. Dipole fitting methods can
provide accurate localization in situations of highly focal
activations, for example during somatosensory stimula-
tion or epileptic discharges (Michel et al., 2004; Fuchs
et al., 2004). In more complex cognitive or pathological
conditions that likely recruit widespread neuronal net-
works, distributed imaging techniques are expected to per-
form better.

As appropriately emphasized by Michel et al. (2004), it
should be beyond the scope of any review to declare a spe-
cific source localization algorithm as “the best”. Two main
reasons justify this position. First, as discussed above,
simulation studies based on focal sources may not be
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the most appropriate test of the localization accuracy of
distributed source localization techniques, which may per-
form substantially better when real EEG data generated
by widely distributed neuronal networks are considered.
Second, inconsistencies and even contradictions between
simulation studies stemming from different laboratories
raise some concerns about (1) the mathematical imple-
mentations of “competing” localization algorithm (e.g.,
Pascual-Marqui et al., 2002 for a discussion of this impor-
tant point); and (2) the selection of test sources that might
favor a given algorithms over the others. Clearly, in order
to progress in this important field, independent valida-
tion studies devoid of experimenter bias or preferences are
needed.

9. DIFFICULTIES INTEGRATING ELECTROMAGNETIC
AND HEMODYNAMIC VARIABLES

Approaches integrating EEG and PET/fMRI are based on
the assumption that brain regions that are electrically
more active over time will also show increases in metabolic
or hemodynamic activities. Although this assumption is
plausible (Logothetis, Pauls, Augath, Trinath, & Oelter-
mann, 2001), several factors contribute to a difficult com-
parison between electrophysiological and hemodynamic
techniques, making a complete integration conceptually
challenging (Nunez & Silberstein, 2000). First, due to the
fundamentally different physiological basis of electromag-
netic and hemodynamic measures, situations can arise in
which the activation period of neurons is too brief to pro-
duce a detectable hemodynamic change, whereas it could
be easily detected by EEG. Second, scalp EEG signals are
highly dependent on synchronization/desynchronization
mechanisms, and their relation to glucose or oxygen uti-
lization is unclear (Nunez & Silberstein, 2000). For exam-
ple, increased neuronal firing and reduced synchrony
would produce a small scalp EEG (e.g., alpha blockade
after eye opening), a process that would require, how-
ever, substantial metabolic supply. Similarly, based on the
observation that both excitatory and inhibitory processes
require glucose utilization (Ackermann, Finch, Babb, &
Engel, 1984), loss of inhibitory synaptic action in patholog-
ical conditions (e.g., interictal periods in epileptic patients)
would produce large EEG signals but decreased PET
metabolic signal. Third, whereas hemodynamic measures
are not affected by the spatial arrangement of the activated
neurons, scalp EEG cannot detect activity from neuronal
assemblies arranged in closed electrical fields (Nunez &
Silberstein, 2000). This may explain why in the EEG liter-
ature it has been generally very difficult to reliably measure
sources originating from the hippocampus, which repre-
sents a closed field due to its structural features. Along
similar lines, spatial configurations of sources involving
opposing dipoles located in sulci would generate activ-
ity that cannot be detected by scalp EEG, as the oppos-
ing dipoles would cancel (see dipolar sources A and B in
Figure 3.6).

Consistent with these fundamental limitations, empiri-
cal evidence indicates that integration of electromagnetic
and hemodynamic measures works extremely well in situ-
ations in which the fMRI and EEG/MEG activations corre-
spond (Dale et al., 2000). However, in cases of imperfect or
lacking correspondence between the fMRI and MEG/EEG
activations, erroneous findings are likely to emerge (Baillet
et al., 2001).

10. CONCLUSIONS

The past 20 years have witnessed unprecedented progress
in our ability to study human brain function noninva-
sively. The high temporal resolution of electromagnetic
measurements (EEG/MEG) continues to offer a unique
window into the dynamics of brain function. In particular,
EEG/MEG measures are exquisitely sensitive to sponta-
neous and induced changes of the functional brain state
allowing investigation of brain mechanisms associated
with covert internal states, which may not necessarily be
accessible to introspection or behavioral observation.

The field of EEG research has perhaps witnessed its
largest advances in the critical area of source imag-
ing. A variety of innovative and sophisticated solutions
for estimating intracerebral sources are continuing to
emerge. In particular, approaches that make no a pri-
ori assumptions about the number of underlying sources
and incorporate physiologically and anatomically sound
priors to mathematically constrain the inverse solution
have shown promising results. These improvements have
opened exciting new avenues for functional brain imag-
ing with both high temporal and spatial resolution. This
is especially relevant for the wide range of experimen-
tal situations in which distributed neural networks are
implicated.

In conclusion, advances in spatial sampling through
high-density recordings, development of more realistic
head models through high-resolution MRI, substantial
progress in source localization techniques, and integra-
tion of different functional neuroimaging techniques have
all contributed to improving our ability to investigate spa-
tiotemporal dynamics of brain mechanisms underlying
normal and pathological mental processes and states. In
fact, the picture emerging from these methodological and
conceptual improvements is that the spatial resolution
of the EEG may approach that of other neuroimaging
approaches, particularly when spatially smoothed fMRI or
PET data are considered (e.g., Michel et al., 2004; Babiloni
et al., 2004b). In the years to come, critical contributions
to our understanding of the human mind can be expected
from the EEG field.
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