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ABSTRACT
BACKGROUND: Longitudinal studies of illness progression in patients with major depressive disorder (MDD)
indicate that the onset of subsequent depressive episodes becomes increasingly decoupled from external stressors.
A possible mechanism underlying this phenomenon is that multiple episodes induce long-lasting neurobiological
changes that confer increased risk for recurrence. Prior morphometric studies have frequently reported volumetric
reductions in patients with MDD—especially in medial prefrontal cortex (mPFC) and the hippocampus—but few
studies have investigated whether these changes are exacerbated by prior episodes.
METHODS: In a sample of 103 medication-free patients with depression and control subjects with no history of
depression, structural magnetic resonance imaging was performed to examine relationships between number of prior
episodes, current stress, hippocampal subfield volume and cortical thickness. Volumetric analyses of the hippo-
campus were performed using a recently validated subfield segmentation approach, and cortical thickness estimates
were obtained using vertex-based methods. Participants were grouped on the basis of the number of prior
depressive episodes and current depressive diagnosis.
RESULTS: Number of prior episodes was associated with both lower reported stress levels and reduced volume in
the dentate gyrus. Cortical thinning of the left mPFC was associated with a greater number of prior depressive
episodes but not current depressive diagnosis.
CONCLUSIONS: Collectively, these findings are consistent with preclinical models suggesting that the dentate
gyrus and mPFC are especially vulnerable to stress exposure and provide evidence for morphometric changes that
are consistent with stress-sensitization models of recurrence in MDD.
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Major depressive disorder (MDD) is a debilitating disease that
affects .20 million Americans every year (1), drains billions of
dollars from the economy (2), and was recently declared the
second leading cause of disability worldwide (3). A substantial
portion of these staggering societal costs is attributable to the
episodic course of the disorder; individuals with one prior
episode have a 60% chance of a recurrence, and the like-
lihood of an additional episode after three to four episodes is
�90% (4,5). Consequently, understanding the mechanisms
that underlie the development of subsequent major depressive
episodes (MDEs) is crucial for alleviating the impact of this
devastating disorder on public health.

Over the last several decades, accruing evidence suggests
that although stressful life events play a central role in
triggering the onset of an initial MDE, their role in episode
onset progressively diminishes as the number of episodes
increases (6,7). In several prospective studies with large
samples, individuals who developed a first depressive episode
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over the study period reported significantly higher levels of
chronic stress compared with individuals who experienced
recurrent MDEs (8–10). Along similar lines, epidemiologic
research has shown that the predictive validity of reported
stress levels before MDE onset declines monotonically with
each successive episode (9,11–13).

These findings raise the possibility that illness progression
in individuals with MDD is linked to specific biological changes
that may mediate the interplay between external stressors and
recurrence. One candidate mechanism is structural abnormal-
ities within the medial prefrontal cortex (mPFC) and the
hippocampus. These regions are known to regulate behavioral
and neuroendocrine responses to stress and can be damaged
by excessive exposure to stress-induced release of steroidal
and inflammatory signaling molecules (11–13). In patients with
depression, numerous magnetic resonance imaging (MRI)
studies and meta-analyses have found evidence for dimin-
ished gray matter volume in aspects of mPFC, including rostral
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Table 1. Sample Demographics

Healthy Control
Subjects (n 5 51)

MDD Subjects
(n 5 52)a

p ValueMean SD Mean SD

% Female 49% — 54% — .62

Age (Years) 36.8 14.1 40.9 12.8 .13

% Caucasian 74% — 73% — .87

Years of Education 15.6 2.1 15.3 2.2 .54

% Unemployed 26% — 45% — .14

BDI-II 2.5 3.2 25.0 10.5 ,.0001

HDRS (17-item) — — 18.0 4.0 —

Number of Episodes — — 3.6 3.3 —

BDI-II, Beck Depression Inventory Second Edition; HDRS, Hamilton
Depression Rating Scale; MDD, major depressive disorder.

aComorbid conditions: panic disorder (n 5 1), generalized anxiety
(n 5 1), social phobia (n 5 1), specific phobia (n 5 2), obsessive-
compulsive disorder (n 5 1), body dysmorphic disorder (n 5 1).
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and dorsal subdivisions of the anterior cingulate cortex as well
as subgenual and subcallosal cortex, and limbic regions such
as the hippocampus and amygdala (14–17). Postmortem
studies also show evidence for structural alterations in these
regions, including decreased cellular density (18–20) and
reduced expression of critical proteins involved in neuro-
genesis and synaptic plasticity (21–23). Further implicating
these areas, similar structural differences were reported in a
large sample of individuals with no history of depression and a
high polygenic risk score for MDD, suggesting that these
differences may partly reflect a biological diathesis for MDD
(24).

Although such effects are generally present on the aggre-
gate level, it is unclear whether they relate to the mere
presence of a depressive state, a biological diathesis, or an
accumulative effect of prior depressive episodes. Prior cross-
sectional and longitudinal studies have suggested that volu-
metric changes associated with MDD fluctuate with state
(25,26) but also depend on prior number of episodes (21–
23,27). The relative contribution of state and depressive
history, however, remains unclear, which partly reflects a
historical emphasis on group comparisons rather than dimen-
sional approaches (28,29).

The goal of the present study was to evaluate differences in
brain morphology and current stress levels across individuals
with no history of depression and individuals with current
depression with varying numbers of prior MDEs. This
approach is particularly relevant for understanding the bio-
logical mechanisms underlying the relationship between stress
and recurrence; in particular, if stress-induced abnormalities in
specific brain regions mediate the increased risk for subse-
quent depressive episodes, individuals with more past depres-
sive episodes should exhibit greater structural deficits as well
as diminished levels of perceived stress.

To address these questions, we analyzed structural MRI
images of 103 individuals with depression and individuals with
no history of depression using whole-brain vertex-based
cortical thickness (VBCT) and a recently developed method-
ology for high-quality segmentation of hippocampal subfields
(30,31). To test for the specificity of associations with hippo-
campal subfields, we also examined amygdala volume, which
has been implicated in MDD (32) and is generally correlated
with hippocampal volume (24,33). Our primary hypotheses
were that 1) current stress levels would be greatest in
individuals reporting few depressive episodes relative to
controls and individuals with a high number of episodes and
2) the number of episodes would be associated with pro-
gressive reductions of cortical and limbic areas known to be
vulnerable to stress (i.e., mPFC and hippocampus).
METHODS AND MATERIALS

Participants

Sample characteristics are described in Table 1. This study
included 103 participants, including 51 healthy control sub-
jects (49% female) and 52 unmedicated subjects with a
current diagnosis of MDD (54% female). There were no
differences between the MDD subjects with current depres-
sion and control subjects with no depression in terms of age
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[t101 5 21.55, p 5 .13], sex [χ2(1, n 5 103) 5 .24, p 5 .62],
percent Caucasian [χ2(1, n 5 103) 5 .027, p 5 .87], years of
education [t100 5 .62, p 5 .54], employment status [χ2(1, n 5

103) 5 5.5, p 5 .14], or marital status [χ2(1, n 5 103) 5 5.5,
p 5 .14]. The MDD subjects were recruited through a
combination of ongoing treatment studies and community
outreach. Healthy control subjects were recruited from the
community. For all subjects, exclusion criteria included any
history of bipolar disorder, attention-deficit/hyperactivity dis-
order, psychosis, or substance dependence. Subjects were
also excluded if they had any evidence of substance abuse
within the last year. Additionally, subjects were excluded if
they had any condition that would interfere with an MRI scan
(e.g., claustrophobia, cochlear implant, cardiac pacemaker).
Control subjects were additionally required to be free of any
current or past history of Axis I disorders. Subjects with
depression were required to meet full criteria for current
MDD as assessed by a Structured Clinical Interview for DSM
(34) as well as have a score of $16 on the 21-item Hamilton
Depression Rating Scale (35) at the time of initial intake.
Additionally, MDD subjects were required to be free of any
use of psychotropic medications for at least 2 weeks (6 weeks
for fluoxetine; 6 months for dopaminergic drugs or neuro-
leptics) before the MRI scan. All procedures were reviewed
and approved by the Committee on the Use of Human
Subjects at Harvard University and the Partners Human
Research Committee institutional review board, and all par-
ticipants provided written informed consent.

Measure of Recent Stress

To assess recent levels of stress, all subjects were adminis-
tered the Perceived Stress Scale (PSS). The PSS is a brief self-
report measure that has been well validated as a measure of
the perceived intensity and tolerability of daily-life stressors
over the previous month (36). The PSS includes items that ask
subjects to rate the perceived predictability and controllability
of these stressors as well as how overwhelmed they felt.
Examples items include: “In the last month, how often have
you felt that you were unable to control the important things in
your life?’’ or ‘‘In the last month, how often have you found
g/journal
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that you could not cope with all the things that you had to
do?’’ Participants rated their response to each item using a
0–4 scale where 0 is defined as “never” and 4 is defined as
“very often.” Total scores for each subject were generated by
summing across the total number of items, resulting in a total
range of 0–56.

Number of Prior MDEs

During the clinical interview, all MDD subjects reported the
number of MDEs they had previously experienced, which
ranged from 1–15 prior episodes (including the current epi-
sode). Because the distribution of the number of episodes was
skewed to the right, the MDD sample was divided into groups
of individuals with one episode (n 5 21), two to four episodes
(n 5 12), and five or more episodes (n 5 21). This variable was
used as a predictor of structural changes across all subjects
(including control subjects), and ranged from 0 (healthy control
subjects) to 3 (MDD subjects with five or more MDEs). As an
alternative approach to normalizing the number of episodes
variable, we also used a logarithmic transform; this produced a
variable that was highly correlated with the subgroup
approach (r 5 .98). However, the grouping approach is
preferable because it is less sensitive to variability in retro-
spective report, which can be subject to bias.

Procedure

All subjects were recruited via advertising within the commu-
nity. When subjects responded to ads, a trained research
assistant administered a telephone screening to assess the
presence of general inclusion and exclusion criteria. Subjects
deemed eligible were scheduled for an initial clinical assess-
ment session, during which the Structured Clinical Interview
for DSM was administered by a certified master’s level
clinician or psychiatrist and self-report questionnaires were
completed. Subjects meeting study inclusion returned for a
second session, which included an MRI scan. Structural and
functional MRI scans were acquired.

MRI Data Acquisition

Imaging data were acquired using a 1.5-T Symphony/Sonata
scanner (Siemens Medical Systems, Iselin, New Jersey). For
the purposes of morphometric analysis, a T1-weighted mag-
netization prepared rapid acquisition gradient-echo image was
acquired with the following parameters: repetition time 5 2730
msec; echo time 5 3.39 msec; field of view 5 256 mm; voxel
size 5 1 3 1 3 1.33; 128 slices.

Hippocampal Subfields and Amygdala Segmentation

Hippocampal and amygdala segmentations of MRI data were
performed using the Multiple Automatically Generated Tem-
plates for different Brains (MAGeT Brain), a recently published
modified multi-atlas algorithm (30,31,37). In more traditional
multi-atlas segmentation algorithms, an atlas library is used to
obtain several representations of the underlying neuroanatomy
of interest. Typically, these libraries contain 20–80 atlases that
have been laboriously manually delineated by neuroanatomic
experts (38–40). However, these methods are limited by the
specific demographics of the atlas library at hand and may be
Biological Psy
difficult to adapt to new datasets (e.g., using a library of young
healthy control subjects to segment a population with a
neurodegenerative disorder). These methods are not easily
used with atlases that are unique or time-consuming to
develop (e.g., atlases derived from reconstructed serial histo-
logic data (41) or high-resolution MRI data) (30). Instead of
using multiple input atlases, MAGeT Brain uses the variability
inherent in any dataset to limit the number of manually labeled
atlases required as input (31,38). The process starts by using
five high-resolution atlases of the hippocampus, the hippo-
campal subfields, and the amygdala as inputs. A subset of the
dataset to be segmented is then taken and used as a
“template library.” For the purpose of the work presented
here, 10 control subjects and 11 MDD subjects were used in
the template library. Each of the manually labeled atlases was
then nonlinearly warped to each subject in the template library,
yielding five different possible labels for the different neuro-
anatomic structures. Each subject to be segmented was then
nonlinearly warped to each of the subjects in the template
library, and each of the five labels from each subject’s
template library was warped to fit each subject. This process
yielded 105 candidate labels for each subject that were fused
using a “majority vote” by taking the most frequently occurring
label at every voxel (31). This algorithm has been shown to
have limited proportional bias in its estimation of hippocampal
volume, and subfield segmentations for MRI data acquired at
3 T were also shown to be accurate.

To this end, five high-resolution atlases of the hippocampus
and its subfields were used as input for the automated
segmentation (30). The amygdala was manually segmented
in the same five high-resolution T1-weighted images following
a previously established protocol for manual segmentation of
the amygdala (42). All segmentations were checked visually by
a trained observer (MTMP) before analysis, based on 15
representative slices encompassing the individual segmenta-
tions (Figure 1). After strict quality control, 99 subjects
remained for hippocampal subfield analysis. For purposes of
methodologic comparison, the relationships between hippo-
campal volume estimates produced by MAGeT as well as
those generated through standard FreeSurfer subcortical
volume segmentation (see later) are reported.

Group-Level Analysis of Hippocampal Subfield and
Amygdalar Volumes

For the remaining 99 subjects, extracted estimates of hippo-
campal volume for each subfield were analyzed using linear
mixed-effect models with hemisphere as the repeated variable
and age, sex, and total intracranial volume included as addi-
tional covariates. All linear mixed-effects model analyses were
performed using IBM SPSS Statistics for Windows, Version 21
(IBM Corp, Armonk, New York).

VBCT

The VBCT was estimated using FreeSurfer with a processing
stream that has previously been described in detail (43).
Briefly, the T1-weighted image was preprocessed and seg-
mented to separate cortical gray matter from white matter and
subcortical structures. The white-gray boundary was tessel-
lated to form a triangular mesh defining the cortical surface.
chiatry February 1, 2015; 77:285–294 www.sobp.org/journal 287
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Figure 1. Examples of representative hippocampal
subfield segmentations for MDD and control subjects.
CA, cornu ammonis; DG, dentate gyrus; MDD, major
depressive disorder; SL, stratum lacunosum; SM,
stratum moleculare; SR, stratum radiatum.
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This mesh was deformed following intensity gradients for
optimal location of the white-gray and gray-pial surfaces,
and cortical thickness was defined as the shortest distance
between the two surfaces at each vertex (44). Additionally, the
local curvature of the gray-white surface was calculated and
used to drive a nonlinear registration to a common template,
which aligned the VBCT maps across subjects for the group
analysis (45). The outputs of this automated workflow were
visually inspected, and any defects were manually corrected.
Consistent with other cortical thickness studies in psychiatric
populations (40,41), the VBCT maps were smoothed along the
cortical surface with an approximate 15-mm full-width at half
maximum Gaussian kernel to account for anatomic variability
and to improve the normality of error distributions. A mass-
univariate random-effects multiple regression was performed
on the resulting maps with an additive model that included
number of episodes as a regressor of interest while controlling
for age and sex. All 103 subjects were included. Clusters were
formed with an uncorrected height threshold of p , .05, and
correction for multiple comparisons was achieved by using a
Monte Carlo simulation of the cluster size distribution under
the null hypothesis to threshold the resulting clusters at
pcorrected , .05 (46).

RESULTS

Relationships Between Reported Current Stress and
Number of Depressive Episodes

Data from the PSS were unavailable for one control subject
and two MDD subjects. The MDD subjects reported signifi-
cantly higher PSS scores (mean 5 34.2, SD 5 7.2) compared
with controls (mean 5 15.6, SD 5 6.0) [t98 5 214.10, p ,
288 Biological Psychiatry February 1, 2015; 77:285–294 www.sobp.or
.001]. As would be predicted by the stress-sensitization
model, as the number of depressive episodes increased,
PSS scores began to decline, creating an inverted U–shaped
curve across the entire sample. When comparing linear versus
quadratic fits across the sample, the R2 of the model including
a quadratic term (R2 5 .68, p , .001) was stronger than that of
the linear model (R2 5 .41, p , .001) (Figure 2A). When
assessing the MDD group alone, the number of episodes
regressor showed a significant inverse relationship to per-
ceived stress (b 5 2.24, p , .05 [one-tailed]), indicating that
increasing number of prior depressive episodes was associ-
ated with decreased PSS scores (Figure 2B). The number of
episodes was not associated with differences in average Beck
Depression Inventory (BDI) scores [F2,48 5 1.57, p 5 .22].

Relationships Between Hippocampal Subfield
Volume and Number of Depressive Episodes

Full results of hippocampal volume in relationship to number
of episodes across all subjects (including control subjects) as
well as within the MDD group alone are reported in Table 2.
Whole hippocampus volume showed general agreement
across the subfield segmentation and standard FreeSurfer
segmentation for both hemispheres (left, r 5 .857, p , .001;
right, r 5 .860, p , .001). Across all participants, only the
dentate gyrus was associated with a significant reduction in
volume as the number of episodes increased (b 5 28.13, p 5

.011), although cornu ammonis (CA) area CA2/3 exhibited
trend-level significance (b 5 22.65, p 5 .054) (Figure 3).
However, within the MDD group alone, all five subregions
showed significant declines in volume as a function of multiple
episodes, with the strongest effects in the dentate gyrus and
stratum (both p, .0005). The significance of these within-group
g/journal
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Figure 2. Linear and quadratic relationship between recent stress levels and number of prior episodes. (A) Across all subjects, a quadratic model had a
significantly better fit (R2 5 .68, p , .001) than the linear model (R2 5 .41, p , .001). Error bars represent 6 95% confidence interval. (B) In patients with
current depression, the Perceived Stress Scale showed a significant inverse relationship to with number of episodes (b 5 2.24, p , .05 [one-tailed]). MDE,
major depressive episode.
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effects was unchanged when BDI or PSS scores were
controlled for, and there were no subfields that showed a
significant interaction between BDI scores and number of
episodes (all p . .28). Finally, we also tested for interactions
with gender and number of episodes, but no evidence of a
significant interaction was found for any subfield (all p . .20).

On further examination of the data, we observed a
general pattern across subfield volume such that MDD sub-
jects with a first MDE typically exhibited slightly enlarged
hippocampal volumes compared with control subjects. This
pattern was present across all regions. To test whether this
pattern represented a significant increase in volume, we
repeated the above-mentioned analyses while restricting our
sample to healthy control subjects and MDD subjects with
a first MDE. No subfields showed a significant difference
(all p . .41).

Amygdala Volume Analysis

Similar to the hippocampus, volumetric changes in the amyg-
dala have also been implicated in depression (32), making the
amygdala a useful control region for examination of the
specificity of the association between repeated episodes and
hippocampal subfield volume. For both groups, amygdala and
hippocampal volumes were highly correlated (controls sub-
jects, r 5 .80, p , .001; MDD subjects, r 5 .72, p , .001).
However, across all subjects, we did not observe any asso-
ciation with number of episodes and amygdala volume (b 5

21.09, p 5 .86), and we did not observe any association
within the MDD group alone (b 5 220.09, p 5 .14). This
finding was unchanged when BDI and PSS scores were
controlled for. Additionally, we observed no significant differ-
ence between control subjects and MDD subjects with a first
MDE (b 5 10.80, p 5 .49).
Biological Psy
Whole-Brain VBCT Analysis

For cortical thickness, the number of prior episodes was
associated with significant decreases in left mPFC, including
aspects of Brodmann areas 24 and 25, bilateral parahippo-
campal gyrus, and bilateral portions of motor and premotor
cortex (Figure 4A and Table 2). No other regions showed a
significant negative association with prior depressive epi-
sodes, and there were no regions characterized by increased
cortical thickness as a function of number of MDEs. These
results were unchanged when controlling for both depression
symptom severity as assessed by the BDI and perceived
stress as measured by the PSS. Neither the BDI nor the PSS
showed any significant association with cortical thickness.
Additionally, no region showed a significant interaction
between gender and number of episodes (Table 3).
DISCUSSION

The overarching goal of the present study was to evaluate
changes in gray matter morphometry as a function of illness
progression in patients with MDD. Our findings are broadly
consonant with sensitization models of recurrence. As
expected, reported perceived stress levels were lower in
individuals with multiple episodes compared with patients
with a first episode, although still higher than control subjects
with no history of depression. We also observed that the
number of prior MDEs was a strong predictor of structural
changes in two key brain areas associated with both depres-
sion and stress: the hippocampus and mPFC.

The identification of both hippocampal and mPFC regions
as showing a relationship to number of episodes is consistent
with both theoretical models and preclinical evidence relating
stress with structural microdamage in these areas. Both
chiatry February 1, 2015; 77:285–294 www.sobp.org/journal 289
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Table 2. Results from Linear Mixed Models Analysis of
Effects of Number of Episodes on Hippocampal
Subfield Volume

Model Tested β (Unstandardized) SE p Value

Number of Episodes (All Subjects)
CA1 26.31 4.56 .167
CA2-3 22.65 1.36 .054
CA4/dentate gyrusa 28.13 3.15 .011
Stratum 25.25 3.74 .162
Subiculum .38 2.71 .887
Whole hippocampus 222.36 13.09 .089

Number of Episodes (MDD Only)
CA1b 227.81 8.07 .00086
CA2-3a 26.11 2.59 .02028
CA4/dentate gyrusc 223.19 5.74 .00011
Stratumc 225.64 6.67 .00023
Subiculuma 212.69 5.14 .01534
Whole hippocampusc 295.72 22.61 .00006

All models include, sex, age, and total brain volume as covariates.
Model results are shown for each subfield as examined across all
subjects and within MDD subjects.

CA, cornu ammonis; MDD, major depressive disorder.
ap , .05.
bp , .005.
cp , .0005.
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regions express high numbers of glucocorticoid receptors,
which are believed to play a critical role in mediating negative-
feedback regulation of glucocorticoid release during stress
(47,48). In animal models, chronic stress exposure and local
corticosteroid injections produce structural alterations in these
regions, including dearborization and loss of dendritic spines
(49–52). This stress-induced microdamage has been linked to
behavioral changes that mimic aspects of a depressive state,
including impaired working memory, decision making, and
goal-directed behavior (53–55). In humans, similar relation-
ships have been observed among stress, cortisol, glutamate
pathways, and gray-matter volume in these regions in both
Figure 3. Effects of number of episodes on volume of hippocampal
subfields and amygdala (averaged across hemisphere). The x axis shows
number of prior depressive episodes with “C” denoting never-depressed
control subjects. The y axis shows residualized volume after controlling for
sex, age, and total brain volume. Error bars represent 6 SEM. CA, cornu
ammonis; DG, dentate gyrus.

290 Biological Psychiatry February 1, 2015; 77:285–294 www.sobp.or
samples with depression and samples without depression
(56–60).

Prior studies have indicated that hippocampal volume is
sensitive to course of illness in MDD, with initial reports
suggesting that volumetric deficits in the hippocampus were
inversely related to both number of episodes (22) and
duration of untreated illness (21). Further research confirmed
the sensitivity of this structure to clinical course, with
evidence that reduced hippocampal volumes were partially
remediated by antidepressant treatment (23,25,61) as well as
a remitted state obtained without treatment (25). However,
these past studies did not examine the relationship between
number of prior episodes and subfields within the hippo-
campus. Although our analysis of hippocampal subfields
suggested that number of prior episodes was broadly
associated with reduced volumes among patients with cur-
rent depression, the strongest effects for both within-group
and between-group analyses were found in the dentate
gyrus. This region is believed to be the primary site of newly
developing cells (62), which may render it especially vulnerable
to the noxious effects of glucocorticoids and inflammation
(13,63). Damage to this region may underlie well-documented
impairments in memory functioning in patients with MDD
(26,64,65), which also have been strongly linked to number of
prior episodes (66). A more recent study found that hippo-
campal subfield volume—especially in the dentate gyrus—
was correlated with memory performance in healthy older
adults (67).

Whole-brain VBCT analysis revealed an association with
the number of episodes and decreased cortical thickness in
the left mPFC, including aspects of rostral and subgenual
anterior cingulate as well as reductions in bilateral para-
hippocampal gyrus and surrounding temporal cortex. The
mPFC is of particular interest given its key role in mediating
adaptive versus “learned helplessness” responses to stress
(68). In particular, deactivation of mPFC projections to key
midbrain monoaminergic nuclei can result in learned help-
lessness behavior after stress exposure in rodents (69,70).
Similarly in humans, function and structure of this region has
Figure 4. Areas showing an association between cortical thickness and
number of depressive episodes across all subjects, cluster-corrected.
Regions shown include the left medial prefrontal cortex (A) and bilateral
parahippocampal gyrus and medial temporal cortex (B). L, left.
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Table 3. Results from Whole-Brain Analysis of Effects of
Number of Episodes on Cortical Thickness

Region

Talairach
Coordinates z

Score
p Value
(Cluster)x y z

Effects of Prior MDEs (Including
Controls)
Right precentral gyrus 56 1 33 23.75 .0001
Left middle frontal gyrus 231 6 49 23.58 .0024
Left parahippocampal gyrus 229 241 25 23.31 .0001
Right parahippocampal gyrus 34 214 226 23.30 .038
Left anterior cingulate 22 22 3.1 22.87 .026

Sex and age are included as covariates.
MDE, major depressive episode.
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consistently been related to regulation of negative affect (71–
74). The laterality of this effect is also notable, given long-
standing evidence for prefrontal hemispheric differences in
MDD, including a meta-analysis showing asymmetry in the
magnitude of volumetric reductions in left versus right pre-
frontal cortex (15), reduced white matter integrity in left
prefrontal cortex associated with duration of illness (75), and
hyporecruitment of left prefrontal electroencephalogram activ-
ity (76–78).

Taken together, these results highlight structural damage to
mPFC as being a critical factor in risk for recurrence. Such
damage may occur as a consequence of prior MDEs, con-
sistent with stress-sensitization models. Alternatively, naturally
occurring variation in cortical thickness of mPFC may reflect a
biological diathesis that confers risk for multiple depressive
episodes. Consistent with this latter interpretation, similar
patterns of cortical thinning in mPFC have been observed in
individuals with no history of depression with elevated poly-
genic risk for MDD (24). Given the cross-sectional nature of
our study, we are unable to speculate on the direction of
causality. However, in either case, these findings isolate the
structural integrity of the mPFC as a potential bulwark against
MDE relapse because individuals with reduced thickness in
this region reported more prior episodes despite lower levels
of recent stress.

The present study has some limitations. First, our subjects
were scanned on a 1.5-T scanner, which has reduced
sensitivity compared with images acquired at higher field
strengths. Second, sample sizes within the number of epi-
sodes categories were modest, with one cell with 12 partic-
ipants, although the concern of low power is tempered by
focus on linear trend analysis across all categories. Second,
the cross-sectional nature of the study limits our ability to
characterize fully the fluctuations in structure that may occur
as individuals move in and out of depressive episodes. Finally,
we relied on retrospective report regarding the number of
episodes. Although this metric has been used in prior studies,
retrospective reports can be subject to biases. We attempted
to limit such biases by grouping the number of episodes into
several categories so as to minimize the effect of inaccurate
recall; this approach also helped to normalize the distribution
of scores.

In conclusion, this study provides important evidence for
stress-sensitization models of illness progression in MDD and
points to pathophysiologic correlates of the apparent
Biological Psy
decoupling between external stressors and subsequent epi-
sodes. These results suggest that stress-linked microdamage
in mPFC may be a critical mechanism in this process, although
the role of premorbid structural abnormalities cannot be ruled
out. More generally, by providing a critical link between MDE
history and animal models of structural degeneration, these
findings help further our understanding of the pathophysiology
of MDD. Finally, these results also have potential implications
for treatment. In particular, they contribute to the growing
literature suggesting that hippocampal volume may be a
potential biomarker for depression (26). In addition, these
results highlight the dentate gyrus as a potential treatment
target for novel compounds or cognitive retraining protocols
that may help remediate volumetric reductions (67).
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